1
|
Fan J, Jin Y, Liu J, Fei X. Studies on the degradation pattern of wheat malt endo-1,4-β-xylanase on wheat-derived arabinoxylans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4278-4285. [PMID: 38308361 DOI: 10.1002/jsfa.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Wheat malt endo-1,4-β-xylanase is a key enzyme for arabinoxylan degradation, but its wheat-derived arabinoxylan degradation pattern is unclear. RESULTS Water-extractable arabinoxylan (WEAX) of 300-750 kDa and 30-100 kDa were the two components with the highest degradation efficiency of wheat malt endo-1,4-β-xylanase, followed by > 1000 kDa WEAX, but 100-300 kDa WEAX showed the lowest degradation efficiency. The main enzymatic products were the 5-30 kDa WEAX, which accounted for 57.57%, 68.15%, and 52.28% of WAXH, WAXM, and WAXL products, respectively. The enzymatic efficiency of wheat malt endo-1,4-β-xylanase was relatively high, and the continuity of enzymatic efficiency was good, especially since the enzymatic reaction was the most intense in 1-3 h. WEAX of > 300 kDa was highly significant and positively correlated with viscosity. In comparison, WEAX of < 30 kDa was highly significant and negatively correlated with viscosity. As the enzymatic degradation proceeded, there were fewer and fewer macromolecular components but more and more small molecule components, and the system viscosity became smaller and smaller. CONCLUSION In this study, it was found that wheat malt endo-1,4-β-xylanase degraded preferentially 300-750 kDa and 30-100 kDa WEAX, not in the order of substrate size in a sequential enzymatic degradation. Wheat malt endo-1,4-β-xylanase was most efficient within 3 h, primarily generating < 30 kDa WEAX ultimately. The main products were highly significantly negatively correlated with the system viscosity, so that the system viscosity gradually decreased as the enzymatic hydrolysis proceeded. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingxiao Fan
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuhong Jin
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Junhan Liu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liége, Gembloux, Belgium
| | - Ximing Fei
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
2
|
Yu J, Liu X, Guan L, Jiang Z, Yan Q, Yang S. High-level expression and enzymatic properties of a novel thermostable xylanase with high arabinoxylan degradation ability from Chaetomium sp. suitable for beer mashing. Int J Biol Macromol 2020; 168:223-232. [PMID: 33309660 DOI: 10.1016/j.ijbiomac.2020.12.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 11/16/2022]
Abstract
A novel thermostable xylanase gene from Chaetomium sp. CQ31 was cloned and codon-optimized (CsXynBop). The deduced protein sequence of the gene shared the highest similarity of 75% with the glycoside hydrolase (GH) family 10 xylanase from Achaetomium sp. Xz-8. CsXynBop was over-expressed in Pichia pastoris GS115 by high-cell density fermentation, with the highest xylanase yield of 10,017 U/mL. The recombinant xylanase (CsXynBop) was purified to homogeneity and biochemically characterized. CsXynBop was optimally active at pH 6.5 and 85 °C, respectively, and stable over a broad pH range of 5.0-9.5 and up to 60 °C. The enzyme exhibited strict substrate specificity towards oat-spelt xylan (2, 489 U/mg), beechwood xylan (1522 U/mg), birchwood xylan (1067 U/mg), and showed relatively high activity towards arabinoxylan (1208 U/mg), but exhibited no activity on other tested polysaccharides. CsXynBop hydrolyzed different xylans to yield mainly xylooligosaccharides (XOSs) with degree of polymerization (DP) 2-5. The application of CsXynBop (200 U/g malt) in malt mashing substantially decreased the filtration time and viscosity of malt by 42.3% and 8.6%, respectively. These excellent characteristics of CsXynBop may make it a good candidate in beer industry.
Collapse
Affiliation(s)
- Jing Yu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xueqiang Liu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Leying Guan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Cann I, Pereira GV, Abdel-Hamid AM, Kim H, Wefers D, Kayang BB, Kanai T, Sato T, Bernardi RC, Atomi H, Mackie RI. Thermophilic Degradation of Hemicellulose, a Critical Feedstock in the Production of Bioenergy and Other Value-Added Products. Appl Environ Microbiol 2020; 86:e02296-19. [PMID: 31980431 PMCID: PMC7082577 DOI: 10.1128/aem.02296-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Renewable fuels have gained importance as the world moves toward diversifying its energy portfolio. A critical step in the biomass-to-bioenergy initiative is deconstruction of plant cell wall polysaccharides to their unit sugars for subsequent fermentation to fuels. To acquire carbon and energy for their metabolic processes, diverse microorganisms have evolved genes encoding enzymes that depolymerize polysaccharides to their carbon/energy-rich building blocks. The microbial enzymes mostly target the energy present in cellulose, hemicellulose, and pectin, three major forms of energy storage in plants. In the effort to develop bioenergy as an alternative to fossil fuel, a common strategy is to harness microbial enzymes to hydrolyze cellulose to glucose for fermentation to fuels. However, the conversion of plant biomass to renewable fuels will require both cellulose and hemicellulose, the two largest components of the plant cell wall, as feedstock to improve economic feasibility. Here, we explore the enzymes and strategies evolved by two well-studied bacteria to depolymerize the hemicelluloses xylan/arabinoxylan and mannan. The sets of enzymes, in addition to their applications in biofuels and value-added chemical production, have utility in animal feed enzymes, a rapidly developing industry with potential to minimize adverse impacts of animal agriculture on the environment.
Collapse
Affiliation(s)
- Isaac Cann
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Japan
| | - Gabriel V Pereira
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ahmed M Abdel-Hamid
- Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Heejin Kim
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Daniel Wefers
- Karlsruhe Institute of Technology, Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe, Germany
| | - Boniface B Kayang
- Department of Animal Science, School of Agriculture, University of Ghana, Legon, Ghana
| | - Tamotsu Kanai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Japan
| | - Takaaki Sato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Japan
- JST, CREST, Tokyo, Japan
| | - Rafael C Bernardi
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Japan
- JST, CREST, Tokyo, Japan
| | - Roderick I Mackie
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Jia X, Mi S, Wang J, Qiao W, Peng X, Han Y. Insight into glycoside hydrolases for debranched xylan degradation from extremely thermophilic bacterium Caldicellulosiruptor lactoaceticus. PLoS One 2014; 9:e106482. [PMID: 25184498 PMCID: PMC4153629 DOI: 10.1371/journal.pone.0106482] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/05/2014] [Indexed: 11/18/2022] Open
Abstract
Caldicellulosiruptor lactoaceticus 6A, an anaerobic and extremely thermophilic bacterium, uses natural xylan as carbon source. The encoded genes of C. lactoaceticus 6A for glycoside hydrolase (GH) provide a platform for xylan degradation. The GH family 10 xylanase (Xyn10A) and GH67 α-glucuronidase (Agu67A) from C. lactoaceticus 6A were heterologously expressed, purified and characterized. Both Xyn10A and Agu67A are predicted as intracellular enzymes as no signal peptides identified. Xyn10A and Agu67A had molecular weight of 47.0 kDa and 80.0 kDa respectively as determined by SDS-PAGE, while both appeared as homodimer when analyzed by gel filtration. Xyn10A displayed the highest activity at 80 °C and pH 6.5, as 75 °C and pH 6.5 for Agu67A. Xyn10A had good stability at 75 °C, 80 °C, and pH 4.5-8.5, respectively, and was sensitive to various metal ions and reagents. Xyn10A possessed hydrolytic activity towards xylo-oligosaccharides (XOs) and beechwood xylan. At optimum conditions, the specific activity of Xyn10A was 44.6 IU/mg with beechwood xylan as substrate, and liberated branched XOs, xylobiose, and xylose. Agu67A was active on branched XOs with methyl-glucuronic acids (MeGlcA) sub-chains, and primarily generated XOs equivalents and MeGlcA. The specific activity of Agu67A was 1.3 IU/mg with aldobiouronic acid as substrate. The synergistic action of Xyn10A and Agu67A was observed with MeGlcA branched XOs and xylan as substrates, both backbone and branched chain of substrates were degraded, and liberated xylose, xylobiose, and MeGlcA. The synergism of Xyn10A and Agu67A provided not only a thermophilic method for natural xylan degradation, but also insight into the mechanisms for xylan utilization of C. lactoaceticus.
Collapse
Affiliation(s)
- Xiaojing Jia
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shuofu Mi
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Jinzhi Wang
- Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weibo Qiao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Wolfe GV, Fitzhugh C, Almasary A, Green A, Bennett P, Wilson M, Siering P. Microbial heterotrophic production in an oligotrophic acidic geothermal lake: responses to organic amendments and terrestrial plant litter. FEMS Microbiol Ecol 2014; 89:606-24. [PMID: 24890617 DOI: 10.1111/1574-6941.12360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 04/26/2014] [Accepted: 05/21/2014] [Indexed: 02/01/2023] Open
Abstract
Boiling Springs Lake (BSL) is an oligotrophic, acidic geothermal feature where even very low levels of microbial heterotrophic production still exceed autotrophy. To test whether allochthonous leaf litter (LL) inputs fuel this excess, we quantified leaf litterfall, leaching and decomposition kinetics, and measured the impact of organic amendments on production, germination and cell growth, using pyrosequencing to track changes in microbial community composition. Coniferous leaves in BSL exhibited high mass loss rates during leaching and decomposition, likely due to a combination of chemical hydrolysis and contributions of both introduced and endemic microbes. We measured very low in situ (3)H-thymidine incorporation over hours by the dominant chemolithotroph Acidimicrobium (13-65 μg C L(-1) day(-1)), which was inhibited by simple C sources (acetate, glucose). Longer term incubations with additions of 0.01-0.02% complex C/N sources induced germination of the Firmicute Alicyclobacillus within 1-2 days, as well as growth of Acetobacteraceae after 3-4 days. LL additions yielded the opposite successional patterns of these r-selected heterotrophs, boosting production to 30-150 μg C L(-1) day(-1). Growth and germination studies suggest both prokaryotes and fungi likely consume allochthonous organics, and might be novel sources of lignocellulose-degrading enzymes. A model of BSL's C budget supports the hypothesis that allochthonous inputs fuel seasonal microbial heterotrophy, but that dissolved organic C sources greatly exceed direct LL inputs.
Collapse
Affiliation(s)
- Gordon V Wolfe
- Department Biological Sciences, California State University, Chico, Chico, CA, USA
| | | | | | | | | | | | | |
Collapse
|