1
|
Aktas B, Aslim B, Ozdemir DA. A neurotherapeutic approach with Lacticaseibacillus rhamnosus E9 on gut microbiota and intestinal barrier in MPTP-induced mouse model of Parkinson's disease. Sci Rep 2024; 14:15460. [PMID: 38965287 PMCID: PMC11224381 DOI: 10.1038/s41598-024-65061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
The gut microbiota plays a crucial role in neural development and progression of neural disorders like Parkinson's disease (PD). Probiotics have been suggested to impact neurodegenerative diseases via gut-brain axis. This study aims to investigate the therapeutic potential of Lacticaseibacillus rhamnosus E9, a high exopolysaccharide producer, on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of PD. C57BL/6 mice subjected to MPTP were fed L. rhamnosus E9 for fifteen days and sacrificed after the last administration. Motor functions were determined by open-field, catalepsy, and wire-hanging tests. The ileum and the brain tissues were collected for ELISA, qPCR, and immunohistochemistry analyses. The cecum content was obtained for microbiota analysis. E9 supplementation alleviated MPTP-induced motor dysfunctions accompanied by decreased levels of striatal TH and dopamine. E9 also reduced the level of ROS in the striatum and decreased the DAT expression while increasing the DR1. Furthermore, E9 improved intestinal integrity by enhancing ZO-1 and Occludin levels and reversed the dysbiosis of the gut microbiota induced by MPTP. In conclusion, E9 supplementation improved the MPTP-induced motor deficits and neural damage as well as intestinal barrier by modulating the gut microbiota in PD mice. These findings suggest that E9 supplementation holds therapeutic potential in managing PD through the gut-brain axis.
Collapse
Affiliation(s)
- Busra Aktas
- Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University, Burdur, 15200, Turkey.
| | - Belma Aslim
- Department of Biology, Faculty of Science, Gazi University, Ankara, 06500, Turkey
| | - Deniz Ates Ozdemir
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, 06230, Turkey
| |
Collapse
|
2
|
Hameed A, Condò C, Tauseef I, Idrees M, Ghazanfar S, Farid A, Muzammal M, Al Mohaini M, Alsalman AJ, Al Hawaj MA, Adetunji CO, Dauda WP, Hameed Y, Alhashem YN, Alanazi AA. Isolation and Characterization of a Cholesterol-Lowering Bacteria from Bubalus bubalis Raw Milk. FERMENTATION-BASEL 2022; 8:163. [DOI: 10.3390/fermentation8040163] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Probiotics retrieved from animal sources have substantial health benefits for both humans and animals. The present study was designed to identify lactic acid bacteria (LAB) isolated from domestic water buffalo milk (Bubalus bubalis) and to evaluate their potential as target-based probiotics. Forty-six LAB strains were isolated and, among them, five strains (NMCC-M2, NMCC-M4, NMCC-M5, NMCC-M6, and NMCC-M7) were regarded as possible probiotics on the basis of their phenotypic and biochemical properties. These isolates were molecularly identified as Weissella confusa (NMCC-M2), Leuconostoc pseudo-mesenteroides (NMCC-M4), Lactococcus lactis Subsp. hordniae (NMCC-M5), Enterococcus faecium NMCC-M6, and Enterococcus lactis NMCC-M7. The tested bacterial strains showed significant antimicrobial activity, susceptibility to antibiotics, acid and bile tolerance, sugar fermentation, enzymatic potential, and nonhemolytic characteristics. Interestingly, NMCC-M2 displayed the best probiotic features including survival at pH 3 and 0.5% (w/v) bile salts, complete susceptibility to the tested antibiotics, high enzymatic potential, and in vitro cholesterol reduction (48.0 µg/mL for NMCC-M2) with 0.3% bile salt supplementation. Therefore, the isolated strain NMCC-M2 could be considered as a potential target-based probiotic in cholesterol-lowering fermented food products.
Collapse
Affiliation(s)
- Abdul Hameed
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | - Carla Condò
- Departemtent of Life Sciences, University of Medona and Reggio Emilia, Via Giuseppe Campi 287, 41125 Modena, Italy
| | - Isfahan Tauseef
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | - Maryam Idrees
- National Institute for Genomics Advanced and Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced and Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan
| | - Muhammad Muzammal
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Al Ahsa 31982, Saudi Arabia
- King Abdullah International Medical Research Center, Al Ahsa 31982, Saudi Arabia
| | - Abdulkhaliq J. Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Maitham A. Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo State University, Etsako West 312102, Nigeria
| | | | - Yasir Hameed
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Yousef N. Alhashem
- Clinical Laboratory Sciences Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Abeer A. Alanazi
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
3
|
Pei L, Liu J, Huang Z, Iqbal M, Shen Y. Effects of Lactic Acid Bacteria Isolated from Equine on Salmonella-Infected Gut Mouse Model. Probiotics Antimicrob Proteins 2021; 15:469-478. [PMID: 34651283 DOI: 10.1007/s12602-021-09841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the antibacterial potential of lactic acid bacteria (Weissella confuse, Pediococcus acidilactici, and Ligilactobacillus equi) isolated from healthy equine in Wuhan against Salmonella Typhimurium CVCC542-induced mice model on intestinal microflora. In previous studies, these isolated strains showed good probiotic potentials in vitro. In this study, fifty healthy mice were randomly divided into five groups, the blank control group, the control group, the Pediococcus acidilactici group (1 × 108 CFU/day), the Ligilactobacillus equi group (1 × 108 CFU/day), and the Weissella confuse group (1 × 108 CFU/day). The body weight in control group and Weissella confuse group showed significant decreased (P < 0.05, P < 0.01), while Pediococcus acidilactici group and Ligilactobacillus equi group showed good recovering after treatments. The lowest diarrhea rate was shown in Ligilactobacillus equi group after treatment. In histopathology, Ligilactobacillus equi group showed the least structural damage in duodenum, and all probiotic treatment groups showed less damage in cecum. The sequence data and optical transform unit showed that Pediococcus acidilactici group and Ligilactobacillus equi group had higher number than control group, while the diversity data showed that the control group and Weissella confuse group had lower diversity in cecum. Microbial community analysis showed increased abundance of Firmicutes, Bacteroidetes, uncultured_bacterium_f_Muribaculaceae, and Lactobacillus in treatment groups, while potential microbes that can induce intestinal diseases such as Verrucomicrobia, Akkermansia, and Lachnospiraceae_NK4A136_group decreased in the treatment groups. In conclusion, lactic acid bacteria isolated from the healthy horses could alleviate the infection of Salmonella and regulate intestinal flora.
Collapse
Affiliation(s)
- Lulu Pei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juanjuan Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonghao Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaoqin Shen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Ding Z, Hani A, Li W, Gao L, Ke W, Guo X. Influence of a cholesterol-lowering strain Lactobacillus plantarum LP3 isolated from traditional fermented yak milk on gut bacterial microbiota and metabolome of rats fed with a high-fat diet. Food Funct 2021; 11:8342-8353. [PMID: 32930686 DOI: 10.1039/d0fo01939a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
L. plantarum LP3 isolated from traditinal fermented Tibetan yak milk has been identified as a potential probiotic candidate strain with high cholesterol-lowering activity. In this study, thirty Sprague-Dawley (SD) rats were randomly divided into three groups, including normal diet (NC), high-fat diet (HC), and high-fat diet + L. plantarum LP3 (HLp). The effects of L. plantarum LP3 on plasma lipid profile, gut bacterial microbiota, and metabolome induced by high-fat diet in rats were investigated. Results shown that L. plantarum LP3 administration was found to reduce the levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol (LDL-C) and atherogenic index in the serum of high-fat diet rats. It also controlled the decrease of Bacteroidetes and increase of Firmicutes at the phylum level in gut microbiota induced by high-fat diet in SD rats and increased the diversity and relative abundance of intestinal flora in obese rats. In particular, the LP3 strain controlled the changes induced by the high-fat diet in the abundance of for Lachnospiraceae and Erysipelotrichaceae. We also further observed the beneficial regulatory effects of L. plantarum LP3 on changes in the levels of obesity-related metabolites. The biosynthesis of fatty acids, steroids, and bile acids and metabolism of linoleic acid, linolenic acid, and arachidonic acid were the main metabolic pathways adjusted by L. plantarum LP3 in obese rats, and the metabolic rates were similar to those observed in normal diet rats levels. The findings of this study provided useful information on the mechanism underlying the hypocholesterolemic effects of L. plantarum LP3 in the high-fat induced SD rat model with the perspective of modulation of gut microbiota and metabolites.
Collapse
Affiliation(s)
- Zitong Ding
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. and Probiotics and biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Anum Hani
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. and Probiotics and biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Wenyuan Li
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. and Probiotics and biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Li'e Gao
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. and Probiotics and biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Wencan Ke
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. and Probiotics and biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Xusheng Guo
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. and Probiotics and biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
5
|
Domingos-Lopes MFP, Stanton C, Ross RP, Silva CCG. Histamine and cholesterol lowering abilities of lactic acid bacteria isolated from artisanal Pico cheese. J Appl Microbiol 2020; 129:1428-1440. [PMID: 32500572 DOI: 10.1111/jam.14733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/27/2020] [Accepted: 05/26/2020] [Indexed: 01/30/2023]
Abstract
AIMS This study was designed to select lactic acid bacteria with histamine- and cholesterol-reducing abilities to be used as potential probiotics. METHODS AND RESULTS Thirty strains of lactic acid bacteria isolated from an artisanal raw milk cheese were screened for their abilities to degrade histamine, reduce cholesterol and hydrolyse bile salts. Strains were also screened for safety and probiotic traits, such as resistance to gastrointestinal conditions, adhesion to Caco-2 cells, resistance to antibiotics and presence of virulence genes. Two Lactobacillus paracasei strains presented high cholesterol- and histamine-lowering abilities, tested negative for the presence of virulence genes and showed susceptibility to most important antibiotics. These strains were also shown to possess desirable in vitro probiotic properties, revealed by tolerance to gastrointestinal conditions and high adhesion to intestinal cells. CONCLUSIONS Among the screened strains, Lb. paracasei L3C21M6 revealed the best cholesterol and histamine reducing abilities together with desirable probiotic and safety features to be used in food applications. SIGNIFICANCE AND IMPACT OF THE STUDY The strain L3C21M6 is a good candidate for use as a probiotic with histamine-degrading activity and cholesterol lowering effect. In addition, this strain could be use in dairy foods to prevent histamine food poisoning.
Collapse
Affiliation(s)
- M F P Domingos-Lopes
- Instituto de Investigação e Tecnologias Agrárias e do Ambiente dos Açores (IITAA), Universidade dos Açores, Angra do Heroísmo, Portugal
| | - C Stanton
- Teagasc Moorepark Food Reseach Centre, Fermoy, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - R P Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - C C G Silva
- Instituto de Investigação e Tecnologias Agrárias e do Ambiente dos Açores (IITAA), Universidade dos Açores, Angra do Heroísmo, Portugal
| |
Collapse
|
6
|
Onal Darilmaz D, Beyatli Y. Bile salt deconjugation activity of
Propionibacterium
strains and their cholesterol co‐precipitation abilities. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Derya Onal Darilmaz
- Faculty of Science and Letters, Department of Biotechnology and Molecular Biology Aksaray University 68100Aksaray Turkey
| | - Yavuz Beyatli
- Faculty of Science, Department of Biology Gazi University 06500Ankara Turkey
| |
Collapse
|
7
|
Tukenmez U, Aktas B, Aslim B, Yavuz S. The relationship between the structural characteristics of lactobacilli-EPS and its ability to induce apoptosis in colon cancer cells in vitro. Sci Rep 2019; 9:8268. [PMID: 31164685 PMCID: PMC6547643 DOI: 10.1038/s41598-019-44753-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
Colon cancer is one of the most common cancer around the world. Exopolysaccharides (EPSs) produced by lactobacilli as potential prebiotics have been found to have an anti-tumor effect. In this study, lyophilized EPSs of four Lactobacillus spp. for their impact on apoptosis in colon cancer cells (HT-29) was evaluated using flow cytometry. The relationship between capability of a lactobacilli-EPS to induce apoptosis and their monosaccharide composition, molecular weight (MW), and linkage type was investigated by HPLC, SEC, and NMR, respectively. Changes in apoptotic-markers were examined by qPCR and Western Blotting. EPSs were capable of inhibiting proliferation in a time-dependent manner and induced apoptosis via increasing the expression of Bax, Caspase 3 and 9 while decreasing Bcl-2 and Survivin. All EPSs contained mannose, glucose, and N-acetylglucosamine with different relative proportions. Some contained arabinose or fructose. MW ranged from 102-104Da with two or three fractions. EPS of L. delbrueckii ssp. bulgaricus B3 having the highest amount of mannose and the lowest amount of glucose, showed the highest apoptosis induction. In conclusion, lactobacilli-EPSs inhibit cell proliferation in HT-29 via apoptosis. Results suggest that a relationship exists between the ability of EPS to induce apoptosis and its mannose and glucose composition.
Collapse
Affiliation(s)
| | - Busra Aktas
- Faculty of Arts and Science, Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
| | - Belma Aslim
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey
| | - Serkan Yavuz
- Faculty of Science, Department of Chemistry, Gazi University, Ankara, Turkey
| |
Collapse
|
8
|
Öztürk M, Aydin Y, Kiliçsaymaz Z, Önal C, Ba N. Molecular Cloning, Characterization, and Comparison of Four Bile Salt Hydrolase-Related Enzymes from Lactobacillus plantarum GD2 of Human Origin. FOOD BIOTECHNOL 2018. [DOI: 10.1080/08905436.2018.1507911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mehmet Öztürk
- Department of Biology, Abant Izzet Baysal University, Gölköy, Bolu, Turkey
| | - Yasin Aydin
- Department of Biology, Hitit University, Çorum, Turkey
| | - Zekiye Kiliçsaymaz
- Department of Biology, Abant Izzet Baysal University, Gölköy, Bolu, Turkey
| | - Cansu Önal
- Department of Biology, Abant Izzet Baysal University, Gölköy, Bolu, Turkey
| | - Ndeye Ba
- Department of Biology, Abant Izzet Baysal University, Gölköy, Bolu, Turkey
| |
Collapse
|
9
|
Kaya Y, Kök MŞ, Öztürk M. Molecular cloning, expression and characterization of bile salt hydrolase from Lactobacillus rhamnosus E9 strain. FOOD BIOTECHNOL 2017. [DOI: 10.1080/08905436.2017.1303778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yeşim Kaya
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Muğla, Turkey
| | - M. Şamil Kök
- Department of Food Engineering, Faculty of Architecture and Engineering, Abant Izzet Baysal University, Bolu, Turkey
| | - Mehmet Öztürk
- Department of Biology, Faculty of Arts and Science, Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
10
|
Practical identification of human originated Lactobacillus species by amplified ribosomal DNA restriction analysis (ARDRA) for probiotic use. Mol Biol Rep 2015; 42:1323-32. [DOI: 10.1007/s11033-015-3877-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/07/2014] [Indexed: 12/11/2022]
|
11
|
Anandharaj M, Sivasankari B, Santhanakaruppu R, Manimaran M, Rani RP, Sivakumar S. Determining the probiotic potential of cholesterol-reducing Lactobacillus and Weissella strains isolated from gherkins (fermented cucumber) and south Indian fermented koozh. Res Microbiol 2015; 166:428-439. [PMID: 25839996 DOI: 10.1016/j.resmic.2015.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 02/19/2015] [Accepted: 03/14/2015] [Indexed: 02/06/2023]
Abstract
This study sought to evaluate the probiotic potential of lactic acid bacteria (LAB) isolated from traditionally fermented south Indian koozh and gherkin (cucumber). A total of 51 LAB strains were isolated, among which four were identified as Lactobacillus spp. and three as Weissella spp. The strains were screened for their probiotic potential. All isolated Lactobacillus and Weissella strains were capable of surviving under low pH and bile salt conditions. GI9 and FKI21 were able to survive at pH 2.0 and 0.50% bile salt for 3 h without losing their viability. All LAB strains exhibited inhibitory activity against tested pathogens and were able to deconjugate bile salt. Higher deconjugation was observed in the presence of sodium glycocholate (P < 0.05). Strain FKI21 showed maximum auto-aggregation (79%) and co-aggregation with Escherichia coli MTCC 1089 (68%). Exopolysaccharide production of LAB strains ranged from 68.39 to 127.12 mg/L (P < 0.05). Moreover, GI9 (58.08 μg/ml) and FKI21 (56.25 μg/ml) exhibited maximum cholesterol reduction with bile salts. 16S rRNA sequencing confirmed GI9 and FKI21 as Lactobacillus crispatus and Weissella koreensis, respectively. This is the first study to report isolation of W. koreensis FKI21 from fermented koozh and demonstrates its cholesterol-reducing potential.
Collapse
Affiliation(s)
- Marimuthu Anandharaj
- Department of Biology, Gandhigram Rural Institute - Deemed University, Gandhigram, 624302, Tamilnadu, India; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Balayogan Sivasankari
- Department of Biology, Gandhigram Rural Institute - Deemed University, Gandhigram, 624302, Tamilnadu, India.
| | - Rajendran Santhanakaruppu
- Department of Biology, Gandhigram Rural Institute - Deemed University, Gandhigram, 624302, Tamilnadu, India
| | - Muthusamy Manimaran
- Department of Biology, Gandhigram Rural Institute - Deemed University, Gandhigram, 624302, Tamilnadu, India
| | - Rizwana Parveen Rani
- Department of Biology, Gandhigram Rural Institute - Deemed University, Gandhigram, 624302, Tamilnadu, India
| | - Subramaniyan Sivakumar
- Department of Biology, Gandhigram Rural Institute - Deemed University, Gandhigram, 624302, Tamilnadu, India; Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| |
Collapse
|
12
|
Antioxidant Lactobacilli Could Protect Gingival Fibroblasts Against Hydrogen Peroxide: A Preliminary In Vitro Study. Probiotics Antimicrob Proteins 2014; 6:157-64. [DOI: 10.1007/s12602-014-9165-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Anandharaj M, Sivasankari B. Isolation of potential probiotic Lactobacillus oris HMI68 from mother's milk with cholesterol-reducing property. J Biosci Bioeng 2014; 118:153-9. [PMID: 24613732 DOI: 10.1016/j.jbiosc.2014.01.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
The objective of this study was to evaluate the probiotic properties of Lactobacillus strains isolated from mother's milk and their effects on cholesterol assimilation. In this study 120 isolates from mother's milk were phenotypically and genotypically characterized. Among these, only 6 predominant strains were identified as Lactobacillus spp. The following parameters were selected as important test variables in model stomach passage survival trials: acid and bile tolerance, antimicrobial activity, antibiotic susceptibility and cholesterol reduction. Results showed that the considerable variation existed among six strains. Moreover, the strain HMI68 is the most acid-tolerant and the HMI28 and HMI74 is the most acid-sensitive of all strains tested. HMI118 did not grow at 0.5% and 1% bile concentration after 5 h but the HMI68 and HMI43 showed some tolerance to such bile concentration. The differences found in the growth rate were not significant (P > 0.05). HMI68 showed resistance to most of the antibiotics as well as antagonistic activity against the tested pathogens. The amount of cholesterol reduction is increased when the media supplemented with bile salts. HMI68 assimilate 61.05 ± 0.05 μg/ml cholesterol with the presence of 0.3% bile salt this could be significantly decreased by 25.41 ± 1.09 μg/ml without bile salt. HMI68 was identified to be Lactobacillus oris HMI68 and 16S rRNA sequence was deposited in the National Center for Biotechnological Information (GenBank). For the first time the cholesterol-reducing property of L. oris isolated from mother's milk were investigated in this study. Therefore the effective L. oris HMI68 strain was regarded as a candidate probiotic.
Collapse
Affiliation(s)
- Marimuthu Anandharaj
- Department of Biology, Gandhigram Rural Institute - Deemed University, Gandhigram 624302, Dindigul, Tamilnadu, India.
| | - Balayogan Sivasankari
- Department of Biology, Gandhigram Rural Institute - Deemed University, Gandhigram 624302, Dindigul, Tamilnadu, India.
| |
Collapse
|
14
|
Öner Ö, Aslim B, Aydas SB. Mechanisms of Cholesterol-Lowering Effects of Lactobacilli and Bifidobacteria Strains as Potential Probiotics with TheirbshGene Analysis. J Mol Microbiol Biotechnol 2014; 24:12-8. [DOI: 10.1159/000354316] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
15
|
|
16
|
Gao Y, Li D, Liu S, Liu Y. Probiotic potential of L. sake C2 isolated from traditional Chinese fermented cabbage. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1608-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|