1
|
Xu H, Hei S, Fu W, Zhang X, Liang P, Pan B, Huang X. Unraveling the Trade-Off Effect of Pyrogenic Carbons Between Biopseudocapacitors and Bioconductors During Anaerobic Methanogenesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2861-2874. [PMID: 39871112 DOI: 10.1021/acs.est.4c10638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia. Further, we found that PCs featured trade-off properties of "biopseudocapacitor" and "bioconductor" during thermal treatment, as endowed by the evolution of oxygen-containing functional groups (for charging and discharging) and graphitic structure (for conductivity). Correspondingly, their trade-off effect on mediating syntrophic methanogenesis (SM) was realized between the generally acknowledged bioconductor role and the pseudocapacitive effect, as highlighted by the enhanced SM of reduced PCs from more balanced electron exchange capacities. Consequently, a performance comparison of PCs obtained at 450, 650, and 850 °C in SM resulted in an optimized sample at 650 °C, where a 61.3 ± 1.8% increase in methane production rate and a 33.4 ± 1.1% decrease in lag time were observed. Microbiologically, DIET-active Methanothrix and Geobacteraceae flourished with the intra- and extracellular electron transport channels established. These findings provide new insights into the mediating mechanism and renewable potential of PCs in regulating energy-harvesting biochemical processes toward carbon neutrality.
Collapse
Affiliation(s)
- Hui Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Shengqiang Hei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
2
|
Wang YL, Yang YL, Tan X, Li X, Zhao L. Enhanced nutrients removal from low C/N ratio rural sewage by embedding heterotrophic nitrifying bacteria and activated alumina in a tidal flow constructed wetland. BIORESOURCE TECHNOLOGY 2024; 413:131513. [PMID: 39313009 DOI: 10.1016/j.biortech.2024.131513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Rural sewage treatment facilitates nitrogen and phosphorus removal yet can be costly. To address this challenge, a cost-effective embedding material mainly consisting of heterotrophic nitrifying bacteria, activated alumina (AA), and a solid carbon source (HPMC) was applied to a tidal flow constructed wetlands (TFCWs); aimed at stable nitrogen and phosphorus removal under low carbon-to-nitrogen (C/N) ratios. The TFCWs could be shortened to 16 d of startup duration time compared with the control group; and improved the ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) removal efficiencies to 98 %, 93 %, and 68 %, respectively. Also, effluent NH4+-N, TN, and TP in the enhanced TFCWs could be stable at 0.52 ± 0.18, 1.23 ± 0.45, and 0.75 ± 0.25 mg/L, respectively. Microbial community analysis revealed that AA and HPMC were enriched Pseudomonas sp., which potentially accelerated the NH4+-N assimilation pathway and phosphate biological removal. Embedding materials-TFCWs can provide new solutions for integrated rural sewage technology.
Collapse
Affiliation(s)
- Yan-Lin Wang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yan-Ling Yang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xu Tan
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China; China Architecture Design and Research Group, Beijing 100044, PR China.
| | - Xing Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Li Zhao
- China Architecture Design and Research Group, Beijing 100044, PR China.
| |
Collapse
|
3
|
Cao S, Ren X, Zhang G, Wang H, Wei B, Niu C. Gut microbiota metagenomics and mediation of phenol degradation in Bactrocera minax (Diptera, Tephritidae). PEST MANAGEMENT SCIENCE 2024; 80:3935-3944. [PMID: 38520323 DOI: 10.1002/ps.8096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Gut microbiota mediating insect-plant interactions have many manifestations, either by provisioning missing nutrients, or by overcoming plant defensive reactions. However, the mechanism by which gut microbiota empower insects to survive by overcoming a variety of plant secondary metabolites remains largely unknown. Bactrocera minax larvae develop in immature citrus fruits, which present numerous phenolic compounds that challenge the larvae. To explore the role of gut microbes in host use and adaptability, we uncovered the mechanisms of phenol degradation by gut microbes using metagenomic and metatranscriptomic analyses, and verified the degradation ability of isolated and cultured bacteria. Research on this subject can help develop potential strain for the environmental friendly pest management operations. RESULTS We demonstrated the ability of gut microbes in B. minax larvae to degrade phenols in unripe citrus. After antibiotic treatment, coniferyl alcohol and coumaric aldehyde significantly reduced the survival rate, body length and body weight of the larvae. The metagenomic and metatranscriptomic analyses in B. minax provided evidence for the presence of genes in bacteria and the related pathway involved in phenol degradation. Among them, Enterococcus faecalis and Serratia marcescens, isolated from the gut of B. minax larvae, played critical roles in phenol degradation. Furthermore, supplementation of E. faecalis and S. marcescens in artificial diets containing coniferyl alcohol and coumaric aldehyde increased the survival rate of larvae. CONCLUSION In summary, our results provided the first comprehensive analysis of gut bacterial communities by high-throughput sequencing and elucidated the role of bacteria in phenol degradation in B. minax, which shed light on the mechanism underlying specialist insect adaption to host secondary metabolites via gut bacteria. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuai Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueming Ren
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Guijian Zhang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Haoran Wang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Bingbing Wei
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Sasi R, Vasu ST. Batch-mode degradation of high-strength phenolic pollutants by Pseudomonas aeruginosa strain STV1713 immobilized on single and hybrid matrices. Biodegradation 2024; 35:423-438. [PMID: 38310579 DOI: 10.1007/s10532-023-10067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Controlled environments are pivotal in all bioconversion processes, influencing the efficacy of biocatalysts. In this study, we designed a batch bioreactor system with a packed immobilization column and a decontamination chamber to enhance phenol and 2,4-dichlorophenol degradation using the hyper-tolerant bacterium Pseudomonas aeruginosa STV1713. When free cells were employed to degrade phenol and 2,4-DCP at a concentration of 1000 mg/L, the cells completely removed the pollutants within 28 h and 66 h, respectively. Simultaneous reductions in chemical oxygen demand and biological oxygen demand were observed (phenol: 30.21 mg/L/h and 16.92 mg/L/h, respectively; 2,4-dichlorophenol: 12.85 mg/L/h and 7.21 mg/L/h, respectively). After assessing the degradation capabilities, the bacterium was immobilized on various matrices (sodium alginate, alginate-chitosan-alginate and polyvinyl alcohol-alginate) to enhance pollutant removal. Hybrid immobilized cells exhibited greater tolerance and degradation capabilities than those immobilized in a single matrix. Among them, polyvinyl alcohol-alginate immobilized cells displayed the highest degradation capacities (up to 2000 mg/L for phenol and 2500 mg/L for 2,4-dichlorophenol). Morphological analysis of the immobilized cells revealed enhanced cell preservation in hybrid matrices. Furthermore, the elucidation of the metabolic pathway through the catechol dioxygenase enzyme assay indicated higher activity of the catechol 1,2-dioxygenase enzyme, suggesting that the bacterium employed an ortho-degradation mechanism for pollutant removal. Additionally, enzyme zymography confirmed the presence of catechol 1,2-dioxygenase, with the molecular weight of the enzyme determined as 245 kDa.
Collapse
Affiliation(s)
- Reshmi Sasi
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, 673601, India
| | - Suchithra Tharamel Vasu
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, 673601, India.
| |
Collapse
|
5
|
Partovinia A, Vatankhah E. Investigating the effect of electrosprayed alginate/PVA beads size on the microbial growth kinetics: Phenol biodegradation through immobilized activated sludge. Heliyon 2023; 9:e15538. [PMID: 37151691 PMCID: PMC10161716 DOI: 10.1016/j.heliyon.2023.e15538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
The presence of cyclic organic compounds, including phenol, in the wastewater of many industries has made phenol removal an important issue. Meanwhile, the biological methods of removing phenol have attracted the attention of researchers in recent years. Recently, the use of immobilized microbial cells is proposed as a new approach in industrial wastewater treatment. In this research, the aim is to study the effect of immobilized beads size on the phenol biodegradation efficiency and specific microbial growth rate. For this purpose, electrospray technique was used to immobilize activated sludge in hybrid matrix of alginate and polyvinyl alcohol (PVA). The fabricated alginate/PVA beads were characterized using Fourier transform infrared spectroscopy (FTIR). Evaluation of the results related to the free and immobilized cell systems in the shake flask experiments showed that at low phenol concentrations the immobilized cell system had the same performance as the free cell system, while the immobilized cell system at higher concentrations had a better performance in removing phenol so that at a concentration of 2000 mg/L, removal percentage has increased from 15% to 25-34%. On the other hand, in this survey, the kinetic behavior of activated sludge was in good agreement with Haldane's equation. Moreover, the maximum specific growth rate was measured 0.033 and 0.041 (h-1) beside 544 and 636 mg/L substrate inhibition constant, for free and immobilized cell systems, respectively. This result shows that the phenol biodegradation has been improved by using the cell immobilization technique especially with applying the smaller beads, which is due to improved mass transfer and microbial cell protection from harsh environments.
Collapse
Affiliation(s)
- Ali Partovinia
- Bioprocess Engineering Laboratory, Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
- Corresponding author.
| | - Elham Vatankhah
- Department of Biological Systems, Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
Characterization and Biodegradation of Phenol by Pseudomonas aeruginosa and Klebsiella variicola Strains Isolated from Sewage Sludge and Their Effect on Soybean Seeds Germination. Molecules 2023; 28:molecules28031203. [PMID: 36770871 PMCID: PMC9921572 DOI: 10.3390/molecules28031203] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Phenols are very soluble in water; as a result, they can pollute a massive volume of fresh water, wastewater, groundwater, oceans, and soil, negatively affecting plant germination and animal and human health. For the detoxification and bioremediation of phenol in wastewater, phenol biodegradation using novel bacteria isolated from sewage sludge was investigated. Twenty samples from sewage sludge (SS) were collected, and bacteria in SS contents were cultured in the mineral salt agar (MSA) containing phenol (500 mg/L). Twenty colonies (S1 up to S20) were recovered from all the tested SS samples. The characteristics of three bacterial properties, 16S rDNA sequencing, similarities, GenBank accession number, and phylogenetic analysis showed that strains S3, S10, and S18 were Pseudomonas aeruginosa, Klebsiella pneumoniae, and Klebsiella variicola, respectively. P. aeruginosa, K. pneumoniae, and K. variicola were able to degrade 1000 mg/L phenol in the mineral salt medium. The bacterial strains from sewage sludge were efficient in removing 71.70 and 74.67% of phenol at 1000 mg/L within three days and could tolerate high phenol concentrations (2000 mg/L). The findings showed that P. aeruginosa, K. pneumoniae, and K. variicola could potentially treat phenolic water. All soybean and faba bean seeds were germinated after being treated with 250, 500, 750, and 1000 mg/L phenol in a mineral salt medium inoculated with these strains. The highest maximum phenol removal and detoxification rates were P. aeruginosa and K. variicola. These strains may help decompose and detoxify phenol from industrial wastewater with high phenol levels and bioremediating phenol-contaminated soils.
Collapse
|
7
|
Szilveszter S, Fikó DR, Máthé I, Felföldi T, Ráduly B. Kinetic characterization of a new phenol degrading Acinetobacter towneri strain isolated from landfill leachate treating bioreactor. World J Microbiol Biotechnol 2023; 39:79. [PMID: 36646861 PMCID: PMC9842574 DOI: 10.1007/s11274-022-03487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/05/2022] [Indexed: 01/18/2023]
Abstract
The objective of this study was to establish and to mathematically describe the phenol degrading properties of a new Acinetobacter towneri CFII-87 strain, isolated from a bioreactor treating landfill leachate. For this purpose, the biokinetic parameters of phenol biodegradation at various initial phenol concentrations of the A. towneri CFII-87 strain have been experimentally measured, and four different mathematical inhibition models (Haldane, Yano, Aiba and Edwards models) have been used to simulate the substrate-inhibited phenol degradation process. The results of the batch biodegradation experiments show that the new A. towneri CFII-87 strain grows on and metabolizes phenol up to 1000 mg/L concentration, manifests significant substrate inhibition and lag time only at concentrations above 800 mg/L phenol, and has a maximum growth rate at 300 mg/L initial phenol concentration. The comparison of the model predictions with the experimental phenol and biomass data revealed that the Haldane, Aiba and Edwards models can be used with success to describe the phenol biodegradation process by A. towneri CFII-87, while the Yano model, especially at higher initial phenol concentrations, fails to describe the process. The best performing inhibition model was the Edwards model, presenting correlation coefficients of R2 > 0.98 and modelling efficiency of ME > 0.94 for the prediction of biomass and phenol concentrations on the validation datasets. The calculated biokinetic model parameters place this new strain among the bacteria with the highest tolerance towards phenol. The results suggest that the A. towneri CFII-87 strain can potentially be used in the treatment of phenolic wastewaters.
Collapse
Affiliation(s)
- Szabolcs Szilveszter
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, P-ța Libertății 1, 530104, Miercurea Ciuc, Jud. HR, Romania
| | - Dezső-Róbert Fikó
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, P-ța Libertății 1, 530104, Miercurea Ciuc, Jud. HR, Romania
- Department of Analytical Chemistry and Environmental Engineering, University POLITEHNICA of Bucharest, Str. Gheorghe Polizu 1-7, Bucharest, Romania
| | - István Máthé
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, P-ța Libertății 1, 530104, Miercurea Ciuc, Jud. HR, Romania
| | - Tamás Felföldi
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary
- Centre for Ecological Research, Institute of Aquatic Ecology, Karolina út 29., Budapest, 1113, Hungary
| | - Botond Ráduly
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, P-ța Libertății 1, 530104, Miercurea Ciuc, Jud. HR, Romania.
| |
Collapse
|
8
|
Manogaran M, Halmi MIE, Othman AR, Yasid NA, Gunasekaran B, Shukor MYA. Decolorization of Reactive Red 120 by a novel bacterial consortium: Kinetics and heavy metal inhibition study. AIMS ENVIRONMENTAL SCIENCE 2023; 10:424-445. [DOI: 10.3934/environsci.2023024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
<abstract><p>Juru River is one of the most polluted rivers in Malaysia. A dye-degrading bacterial consortium has been isolated from the river's sediment. This consortium JR3 consists of <italic>Pseudomonas aeruginosa</italic> MM01, <italic>Enterobacter</italic> sp. MM05 and <italic>Serratia marcescens</italic> MM06, which were able to decolorize up to 700 ppm of the Reactive Red 120 (RR120) dye under optimal conditions with limited substrate available. Substrate inhibition kinetics were investigated, and, based on the best model, Aiba, the maximum growth rate was 0.795 h<sup>–1</sup>, while the saturation constant and inhibitory constant were 0.185% and 0.14%, respectively. In addition, the influence of various metal ions on the growth and decolorization rate of this bacterial consortium on RR120 was investigated. Chromium showed the weakest effect on the decolorization of 200 ppm RR120, with 73.5% removal and bacterial growth of 11.461 log CFU mL<sup>–1</sup>. Zinc yielded the second weakest effect, followed by silver and lead, with percentages of RR120 decolorization of 63.8%, 54.6% and 50.5%, respectively. Meanwhile, cadmium, arsenic and copper reduced the decolorization of RR120 in consortium JR3 by half. Mercury strongly inhibited decolorization by 32.5%. Based on the least inhibited heavy metal in RR120 decolorization activity of consortium JR3, the best inhibitory kinetic model was Levenspiel, with a maximum growth rate of 0.632 h<sup>–1</sup>, while the saturation constant and inhibitory constants were 15.08% and 0.5783%, respectively. The metal-tolerant azo dye-degrading bacterial consortium will be very useful in dye remediation in metal-laden polluted environments.</p></abstract>
Collapse
Affiliation(s)
- Motharasan Manogaran
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| | - Mohd Izuan Effendi Halmi
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor D.E., Malaysia
| | - Nur Adeela Yasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| | - Baskaran Gunasekaran
- Faculty of Applied Sciences, UCSI University Kuala Lumpur (South Wing), No.1, Jalan Menara Gading, UCSI Heights 56000 Cheras, Kuala Lumpur, Malaysia
| | - Mohd Yunus Abd Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| |
Collapse
|
9
|
Wu S, Hao P, Lv Z, Zhang X, Wang L, Basang W, Zhu Y, Gao Y. Construction of Magnetic Composite Bacterial Carrier and Application in 17β-Estradiol Degradation. Molecules 2022; 27:molecules27185807. [PMID: 36144543 PMCID: PMC9504236 DOI: 10.3390/molecules27185807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Estrogen contamination is widespread and microbial degradation is a promising removal method; however, unfavorable environments can hinder microbial function. In this study, a natural estrogen 17β-estradiol (E2) was introduced as a degradation target, and a new combination of bacterial carrier was investigated. We found the best combination of polyvinyl alcohol (PVA) and sodium alginate (SA) was 4% total concentration, PVA:SA = 5:5, with nano-Fe3O4 at 2%, and maltose and glycine added to promote degradation, for which the optimal concentrations were 5 g·L−1 and 10 g·L−1, respectively. Based on the above exploration, the bacterial carrier was made, and the degradation efficiency of the immobilized bacteria reached 92.3% in 5 days. The immobilized bacteria were reused for three cycles, and the degradation efficiency of each round could exceed 94%. Immobilization showed advantages at pH 5, pH 11, 10 °C, 40 °C, and 40 g·L−1 NaCl, and the degradation efficiency of the immobilized bacteria was higher than 90%. In the wastewater, the immobilized bacteria could degrade E2 to about 1 mg·L−1 on the 5th day. This study constructed a bacterial immobilization carrier using a new combination, explored the application potential of the carrier, and provided a new choice of bacterial immobilization carrier.
Collapse
Affiliation(s)
- Sicheng Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Peng Hao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zongshuo Lv
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiqing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Correspondence: ; Tel.: +86-131-5975-2912
| |
Collapse
|
10
|
Alam SA, Saha P. Biodegradation of p-nitrophenol by a member of the genus Brachybacterium, isolated from the river Ganges. 3 Biotech 2022; 12:213. [PMID: 35959168 PMCID: PMC9357598 DOI: 10.1007/s13205-022-03263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/18/2022] [Indexed: 11/01/2022] Open
Abstract
A p-nitrophenol (PNP) degrading halotolerant, Gram-variable bacterial strain designated as DNPG3, was isolated from a water sample collected from the river Ganges in Hooghly, West Bengal (WB), India, by enrichment culture technique. Based on 16S rRNA gene sequence analysis (carried out at EzTaxon server and Ribosomal data base project site), the strain DNPG3 was identified as Brachybacterium sp., with B. zhongshanense strain JBT (97.08% identity) as it is nearest phylogenetic relative. The strain could tolerate up to 3 mM of PNP, while the optimal growth for the strain was recorded as 0.25 mM. The strain could carry out biodegradation of PNP with concomitant release of nitrite and p-benzoquinone (PBQ) was detected as a hydrolysis product. Under the catabolic condition, it could carry out 36% biodegradation of PNP within 144 h, while, under co-metabolic condition (with glucose), 100% biodegradation was achieved within 48 h at 30 °C. Calcium alginate bead-based cell immobilization studies (of the strain DNPG3) indicated complete biodegradation of PNP (under catabolic condition) within 26 h. This is the first report of PNP biodegradation by any representative strain of the genus Brachybacterium. The study definitely indicated that Brachybacterium sp. strain DNPG3 has biotechnological potential and the strain may be a suitable candidate for developing clean, green, eco-friendly, cost-effective bioremediation processes towards effective removal of PNP from the contaminated sites. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03263-7.
Collapse
Affiliation(s)
- Sk Aftabul Alam
- Department of Microbiology, The University of Burdwan, Golapbag, Burdwan, West Bengal 713104 India
| | - Pradipta Saha
- Department of Microbiology, The University of Burdwan, Golapbag, Burdwan, West Bengal 713104 India
| |
Collapse
|
11
|
Usha Mary T, Swaminathan M. Enhanced biodegradation of thiocyanate by immobilized Bacillus brevis. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Li X, Wang Y, Luo T, Ma Y, Wang B, Huang Q. Remediation potential of immobilized bacterial strain with biochar as carrier in petroleum hydrocarbon and Ni co-contaminated soil. ENVIRONMENTAL TECHNOLOGY 2022; 43:1068-1081. [PMID: 32844719 DOI: 10.1080/09593330.2020.1815858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/18/2020] [Indexed: 05/22/2023]
Abstract
The remediation of organic pollutant-heavy metal co-contaminated soil is a great challenge. Immobilized microorganism technology (IMT) is a potential approach to remediate co-contaminated soil. In this study, we evaluated the feasibility of IMT for the remediation of petroleum hydrocarbon-heavy metal nickel (Ni) co-contaminated soil. The Ni resistant and hydrocarbon-degrading bacteria strain Citrobacter sp. was added to co-contaminated soil by immobilizing on corncob biochar. The potential performance in biodegradation of petroleum hydrocarbon and changing the mobility and speciation of nickel (Ni) in soil were determined, with consideration of the influences of the soil properties and dehydrogenase activity. The results demonstrated that the degradation rate of petroleum hydrocarbons by immobilized microorganisms group (IM) was 45.52%, significantly higher than that of the free bacteria (30.15%), biochar (25.92%) and blank group (18.47%) (P<0.05). At the same time, IM was more effective in immobilizing Ni in the soil by transforming available Ni to a stable fraction with a maximum residual concentration increasing by 101.50 mg·kg-1, and the carcinogenic nickel sulfide was not detected after remediation in IM. IM exhibited a higher level of soil dehydrogenase activity (0.3956 μg·mL-1·h-1·g-1) than that of free bacteria (0.2878 μg·mL-1·h-1·g-1). A linear correlation was found between the petroleum pollutants degradation rate and dehydrogenase activity (P<0.05). This study indicates the effectiveness and potential of IMT application in degrading petroleum hydrocarbon and immobilizing heavy metals in co-contaminated soil.
Collapse
Affiliation(s)
- Xi Li
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, People's Republic of China
| | - Yaxuan Wang
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Ting Luo
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Yongsong Ma
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Bing Wang
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Qiuyu Huang
- Sichuan Bureau of Geology and Mineral Resources Chengdu Analytical & Testing Center for Mineral and Rocks, Chengdu, People's Republic of China
| |
Collapse
|
13
|
Xiao Y, Huang Y, Wu W, Li Y, Li Z, Li Y, Tang D. Preparation and application of embedded and immobilized Achromobacter sp. agent for effective removal of ammonia nitrogen from water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3561-3575. [PMID: 34928826 DOI: 10.2166/wst.2021.465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A novel wastewater-quality-improver, Sodium Alginate Embedded Microbe-treated Zeolite (SAEMZ), was proposed. The strains used are screened from black-odorous water and have high-efficiency NH4+-N degradation performance. The Gram-positive bacteria, belonging to Achromobacter sp., was determined through the screening and identification for this strain, whose removal rate of NH4+-N can reach 88.06%, to decrease the NH4+-N concentration from 61.83 mg/L to 7.80 mg/L, and its optimal growth conditions are pH 7-8, rotation speed 150-210 r/min, temperature 25-35 °C. The SAEMZ's removal effect on NH4+-N was considered in this research from aspects of reusability, storage stability, and the effects of dosage, coexisting ions, and wastewater's concentration. The increase of the SAEMZ's dosage effectively improved the NH4+-N removal rate; Ca2+ in the solution promoted the NH4+-N removal rate, while Mg2+ and Mn2+ inhibited it. Also, the NH4+-N removal rate improved slightly with Fe2+ concentration's increase and then decreased significantly; with the increase of the wastewater dilution factor, the NH4+-N removal rate showed an upward trend and with the increase of the SAEMZ's reuse times, it decreased. Therefore, recycle times should be controlled to less than 3 times in practical application; the SAEMZ still maintains its physiological stability, high mechanical strength, and good storage stability after being stored at 4 °C for 120 days.
Collapse
Affiliation(s)
- Yao Xiao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China E-mail:
| | - Yongbing Huang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China E-mail:
| | - Weishan Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China E-mail:
| | - Yao Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China E-mail:
| | - Zhipeng Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China E-mail:
| | - Yanzheng Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China E-mail:
| | - Dongmei Tang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China E-mail:
| |
Collapse
|
14
|
Guo J, Chen C, Chen W, Jiang J, Chen B, Zheng F. Effective immobilization of Bacillus subtilis in chitosan-sodium alginate composite carrier for ammonia removal from anaerobically digested swine wastewater. CHEMOSPHERE 2021; 284:131266. [PMID: 34175512 DOI: 10.1016/j.chemosphere.2021.131266] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
To overcome the easy loss of microorganism, the mass production of sludge and the consumption of aeration energy during biological treatment of anaerobically digested swine wastewater, this study used chitosan-sodium alginate composite carrier to prepare immobilized bacteria pellets. The heterotrophic bacteria tolerant to high concentrations of ammonia nitrogen were isolated and the conditions for immobilizing bacteria were optimized. The performance of immobilized bacteria pellets to remove ammonia nitrogen from ADSW was determined and the corresponding mechanism was investigated. Results showed that the isolated bacteria were Bacillus subtilis, and the optimal conditions to prepare the immobilized bacteria pellets by response surface methodology tests were sodium alginate of 0.84% (m/V), chitosan of 0.22% (m/V), embedding time of 32 min and embedding amount of 15% (V/V). In ADSW treatment, at pH 6, 20 g/L of the immobilized bacteria pellets removed 96.5% of ammonia nitrogen. Both adsorption and microbial action contributed to ammonia nitrogen removal, and their contributions were 54.3% and 42.2%, respectively. Compared with the immobilized bacteria pellets using chitosan-sodium alginate as carrier, the one using mono alginate as carrier had a weaker ability to remove ammonia nitrogen, with a removal efficiency of 67.4%. The main mechanism was the formation of polyelectrolyte membrane by the connection between amino groups of chitosan and carboxyl groups of sodium alginate, which stabilized the immobilized bacteria pellets and prolonged their service life. To sum up, the immobilized bacteria pellets using chitosan-sodium alginate as an embedding agent have a promising prospect in ammonia nitrogen removal from wastewater.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China.
| | - Cheng Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Wenjing Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Jianying Jiang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Bozhi Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Fei Zheng
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| |
Collapse
|
15
|
Microbial degradation of n-hexadecane using Pseudomonas aeruginosa PU1 isolated from transformer-oil contaminated soil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Microorganisms employed in the removal of contaminants from wastewater of iron and steel industries. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-021-00982-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Khan N, Khan MD, Sabir S, Nizami AS, Anwer AH, Rehan M, ZainKhan M. Deciphering the effects of temperature on bio-methane generation through anaerobic digestion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29766-29777. [PMID: 31873899 DOI: 10.1007/s11356-019-07245-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) is a sustainable wastewater treatment technology which facilitates energy, nutrient, and water recovery from organic wastes. The agricultural and industrial wastes are suitable substrates for the AD, as they contain a high level of biodegradable compounds. The aim of this study was to examine the AD of three different concentrations of phenol (100, 200, and 300 mg/L) containing wastewater with and without co-substrate (acetate) at four different temperatures (25, 35, 45, and 55 °C) to produce methane (CH4)-enriched biogas. It was observed that the chemical oxygen demand (COD) and phenol removal efficiencies of up to 76% and 72%, respectively, were achieved. The CH4 generation was found higher in anaerobic batch reactors (ABRs) using acetate as co-substrate, with the highest yield of 189.1 μL CH4 from 500 μL sample injected, obtained using 200 mg/L of phenol at 35 °C. The results revealed that the performance of ABR in terms of degradation efficiency, COD removal, and biogas generation was highest at 35 °C followed by 55, 45, and 25 °C indicating 35 °C to be the optimum temperature for AD of phenolic wastewater with maximum energy recovery. Scanning electron microscopy (SEM) revealed that the morphology of the anaerobic sludge depends greatly on the temperature at which the system is maintained which in turn affects the performance and degradation of toxic contaminants like phenol. It was observed that the anaerobic sludge maintained at 35 °C showed uniform channels leading to higher permeability through enhanced mass transfer to achieve higher degradation rates. However, the denser sludge as in the case of 55 °C showed lesser permeability leading to limited transfer and thus reduced treatment. Quantitative real-time PCR (qPCR) analysis revealed a more noteworthy change in the population of the microbial communities due to temperature than the presence of phenol with the methanogens being the dominating species at 35 °C. The findings suggest that the planned operation of the ABR could be a promising choice for CH4-enriched biogas and COD removal from phenolic wastewater.
Collapse
Affiliation(s)
- Nishat Khan
- Department of Chemistry, Environmental Research Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mohammad Danish Khan
- Department of Chemistry, Environmental Research Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Suhail Sabir
- Department of Chemistry, Environmental Research Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan.
| | - Abdul Hakeem Anwer
- Department of Chemistry, Environmental Research Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mohammad Rehan
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad ZainKhan
- Department of Chemistry, Environmental Research Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
18
|
Umar Mustapha M, Halimoon N, Wan Johari WL, Abd Shukor MY. Enhanced Carbofuran Degradation Using Immobilized and Free Cells of Enterobacter sp. Isolated from Soil. Molecules 2020; 25:molecules25122771. [PMID: 32560037 PMCID: PMC7355768 DOI: 10.3390/molecules25122771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
Extensive use of carbofuran insecticide harms the environment and human health. Carbofuran is an endocrine disruptor and has the highest acute toxicity to humans than all groups of carbamate pesticides used. Carbofuran is highly mobile in soil and soluble in water with a lengthy half-life (50 days). Therefore, it has the potential to contaminate groundwater and nearby water bodies after rainfall events. A bacterial strain BRC05 was isolated from agricultural soil characterized and presumptively identified as Enterobacter sp. The strain was immobilized using gellan gum as an entrapment material. The effect of different heavy metals and the ability of the immobilized cells to degrade carbofuran were compared with their free cell counterparts. The results showed a significant increase in the degradation of carbofuran by immobilized cells compared with freely suspended cells. Carbofuran was completely degraded within 9 h by immobilized cells at 50 mg/L, while it took 12 h for free cells to degrade carbofuran at the same concentration. Besides, the immobilized cells completely degraded carbofuran within 38 h at 100 mg/L. On the other hand, free cells degraded the compound in 68 h. The viability of the freely suspended cell and degradation efficiency was inhibited at a concentration greater than 100 mg/L. Whereas, the immobilized cells almost completely degraded carbofuran at 100 mg/L. At 250 mg/L concentration, the rate of degradation decreased significantly in free cells. The immobilized cells could also be reused for about nine cycles without losing their degradation activity. Hence, the gellan gum-immobilized cells of Enterobacter sp. could be potentially used in the bioremediation of carbofuran in contaminated soil.
Collapse
Affiliation(s)
- Mohammed Umar Mustapha
- Desert Research Monitoring and Control Centre, Yobe State University, Damaturu P.M.B 1144, Nigeria;
| | - Normala Halimoon
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Correspondence:
| | - Wan Lutfi Wan Johari
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
| | - Mohd. Yunus Abd Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
| |
Collapse
|
19
|
Nogina T, Fomina M, Dumanskaya T, Zelena L, Khomenko L, Mikhalovsky S, Podgorskyi V, Gadd GM. A new Rhodococcus aetherivorans strain isolated from lubricant-contaminated soil as a prospective phenol-biodegrading agent. Appl Microbiol Biotechnol 2020; 104:3611-3625. [PMID: 32043191 PMCID: PMC7089913 DOI: 10.1007/s00253-020-10385-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 11/29/2022]
Abstract
Microbe-based decontamination of phenol-polluted environments has significant advantages over physical and chemical approaches by being relatively cheaper and ensuring complete phenol degradation. There is a need to search for commercially prospective bacterial strains that are resistant to phenol and other co-pollutants, e.g. oil hydrocarbons, in contaminated environments, and able to carry out efficient phenol biodegradation at a variable range of concentrations. This research characterizes the phenol-biodegrading ability of a new actinobacteria strain isolated from a lubricant-contaminated soil environment. Phenotypic and phylogenetic analyses showed that the novel strain UCM Ac-603 belonged to the species Rhodococcus aetherivorans, and phenol degrading ability was quantitatively characterized for the first time. R. aetherivorans UCM Ac-603 tolerated and assimilated phenol (100% of supplied concentration) and various hydrocarbons (56.2–94.4%) as sole carbon sources. Additional nutrient supplementation was not required for degradation and this organism could grow at a phenol concentration of 500 mg L−1 without inhibition. Complete phenol assimilation occurred after 4 days at an initial concentration of 1750 mg L−1 for freely-suspended cells and at 2000 mg L−1 for vermiculite-immobilized cells: 99.9% assimilation of phenol was possible from a total concentration of 3000 mg L−1 supplied at daily fractional phenol additions of 750 mg L−1 over 4 days. In terms of phenol degradation rates, R. aetherivorans UCM Ac-602 showed efficient phenol degradation over a wide range of initial concentrations with the rates (e.g. 35.7 mg L−1 h−1 at 500 mg L−1 phenol, and 18.2 mg L−1 h−1 at 1750 mg L−1 phenol) significantly exceeding (1.2–5 times) reported data for almost all other phenol-assimilating bacteria. Such efficient phenol degradation ability compared to currently known strains and other beneficial characteristics of R. aetherivorans UCM Ac-602 suggest it is a promising candidate for bioremediation of phenol-contaminated environments.
Collapse
Affiliation(s)
- Taisiya Nogina
- Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143, Ukraine
| | - Marina Fomina
- Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143, Ukraine
| | - Tatiana Dumanskaya
- Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143, Ukraine
| | - Liubov Zelena
- Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143, Ukraine
| | - Lyudmila Khomenko
- Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143, Ukraine
| | - Sergey Mikhalovsky
- ANAMAD Ltd, Sussex Innovation Centre, Science Park Square, Falmer, Brighton, BN1 9SB, UK.,Chuiko Institute of Surface Chemistry, 17, General Naumov Street, Kyiv, 03164, Ukraine
| | - Valentin Podgorskyi
- Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv, 03143, Ukraine
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK. .,State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China.
| |
Collapse
|
20
|
Hu S, Hu H, Li W, Hong X, Cai D, Lin J, Li M, Zhao Y. Investigating the biodegradation of sulfadiazine in soil using Enterobacter cloacae T2 immobilized on bagasse. RSC Adv 2020. [DOI: 10.1039/c9ra07302g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The application of the antibiotic sulfadiazine (SD) in veterinary medicine has created serious environmental issues due to its high mobility and non-degradability. A novel immobilized cell system has been developed and showed significant SD biodegradation potential in soil.
Collapse
Affiliation(s)
- Shengbing Hu
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Huimin Hu
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Wenlong Li
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Xiaxiao Hong
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Daihong Cai
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Jiawei Lin
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Minghua Li
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Yuechun Zhao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| |
Collapse
|
21
|
Selective biodegradation of recalcitrant black chicken feathers by a newly isolated thermotolerant bacterium Pseudochrobactrum sp. IY-BUK1 for enhanced production of keratinase and protein-rich hydrolysates. Int Microbiol 2019; 23:189-200. [PMID: 31297626 DOI: 10.1007/s10123-019-00090-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022]
Abstract
Black chicken feathers generated in large amount from poultry and slaughter houses are highly recalcitrant to microbial degradation due to their tough structural nature. A novel keratinolytic bacterium that possessed high affinity for black feather was isolated from chicken manure and identified as Pseudochrobactrum sp. IY-BUK1. Keratinase and feather soluble protein were effectively produced by the free living cells of the bacterium in media containing only black feathers and a mixture of equal amount of black-, brown- and white-coloured feathers. Complete degradation of 5 g/L of black feathers was completed in 3 days following optimisation of physico-chemical conditions. However, the bacterium selectively completed the degradation of black feather in a medium containing mixture of feathers in 144 h leaving behind approximately 33% and 45% of brown and white feathers in the medium respectively. Gellan gum-immobilised cells of strain IY-BUK1 enhanced the keratinase production by about 150% and were used repeatedly for ten cycles to degrade 5 g/L of black feather in a semi continuous fermentation of 18 h per cycle with enhanced and stable production of soluble protein. The study demonstrated the potential use of Pseudochrobactrum sp. IY-BUK1 not only in biodegradation of highly recalcitrant black feathers, but also in producing keratinase enzymes and valuable soluble proteins for possible industrial usage.
Collapse
|
22
|
Singh R, Shitiz K, Singh A. Immobilization of cesium-resistant bacterial cells by radiation polymerization and their bioremoval efficiency. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:1587-1596. [PMID: 31169517 DOI: 10.2166/wst.2019.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biological approaches for the removal of heavy metals and radionuclides from contaminated water are reported. The present study was carried out with the objective of identifying bacterial strains for the uptake of cesium that could be used for bioremediation. Polymer carriers prepared by radiation polymerization were used for the immobilization of bacteria and the efficiency of free cells and immobilized cells for the removal of cesium was evaluated. Thirty-five bacterial isolates were screened for resistance to cesium and five bacterial isolates based on resistance to cesium (BR-3, BR-6, BR-21, BR-39, BR-40) were selected for immobilization. Polymer carriers were prepared using 10, 20, 30, 40 and 50% acrylamide at different doses of 1 to 5 kGy gamma radiation. The polymer carriers prepared using 30% and 40% acrylamide at 5 kGy were found to be suitable based on gel fraction and absorption capacity for the immobilization of bacterial cells. Bioremoval of cesium by free and immobilized bacterial cells was evaluated. Significant reductions of 76-81% cesium were observed with bacterial cells immobilized by radiation polymerization.
Collapse
Affiliation(s)
- Rita Singh
- Defence Laboratory, Defence Research & Development Organization, Jodhpur, India E-mail: ; Present address: Defence Institute of Bio-Energy Research, Defence Research & Development Organization, Pithoragarh, India
| | - Kirti Shitiz
- Defence Laboratory, Defence Research & Development Organization, Jodhpur, India E-mail:
| | - Antaryami Singh
- Defence Laboratory, Defence Research & Development Organization, Jodhpur, India E-mail: ; Present address: Defence Institute of Bio-Energy Research, Defence Research & Development Organization, Pithoragarh, India
| |
Collapse
|
23
|
Sepehr S, Shahnavaz B, Asoodeh A, Karrabi M. Biodegradation of phenol by cold-tolerant bacteria isolated from alpine soils of Binaloud Mountains in Iran. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:367-379. [PMID: 30628541 DOI: 10.1080/10934529.2018.1553818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/17/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Degradation of phenol is considered to be a challenge because of harsh environments in cold regions and ground waters. Molecular characterization of phenol degrading bacteria was investigated to gain an insight into the biodegradation in cold areas. The psychrotolerant and psychrophiles bacteria were isolated from alpine soils in the northeast of Iran. These strains belonged to Pseudomonas sp., Stenotrophomonas spp. and Shinella spp. based on analysis of the 16S rRNA gene. These strains were capable of the complete phenol degradation at a concentration of 200 mg L-1 at 20 °C. Moreover, the strains could degrade phenol at a concentration of 400 and 600 mg L-1 at a higher time. Effects of environmental factors were studied using one factor at a time (OFAT) approach for Pseudomonas sp.ATR208. When the bacterium was grown in a liquid medium with 600 mg L-1 of concentration supplemented with optimum carbon and nitrogen sources, more than 99% of phenol removal was obtained at 20 °C and 24 h. Therefore, the present study indicated the potential of the local cold tolerant bacteria in the phenol bioremediation.
Collapse
Affiliation(s)
- Shadi Sepehr
- a Department of Biology, Faculty of Science , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Bahar Shahnavaz
- a Department of Biology, Faculty of Science , Ferdowsi University of Mashhad , Mashhad , Iran
- b Institute of Applied Zoology, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Ahmad Asoodeh
- c Department of Chemistry, Faculty of Science , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Mohsen Karrabi
- d Department of Civil Engineering, Faculty of Engineering , Ferdowsi University of Mashhad , Mashhad , Iran
| |
Collapse
|
24
|
Yusuf I, Ahmad SA, Phang LY, Yasid NA, Shukor MY. Effective production of keratinase by gellan gum-immobilised Alcaligenes sp. AQ05-001 using heavy metal-free and polluted feather wastes as substrates. 3 Biotech 2019; 9:32. [PMID: 30622870 DOI: 10.1007/s13205-018-1555-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 12/26/2018] [Indexed: 11/29/2022] Open
Abstract
The ability of gellan gum-immobilised cells of the heavy metal-tolerant bacterium Alcaligenes sp. AQ05-001 to utilise both heavy metal-free and heavy metal-polluted feathers (HMPFs) as substrates to produce keratinase enzyme was studied. Optimisation of the media pH, incubation temperature and immobilisation parameters (bead size, bead number, gellan gum concentration) was determined for the best possible production of keratinase using the one-factor-at-a-time technique. The results showed that the immobilised cells could tolerate a broader range of heavy metal concentrations and produced higher keratinase activity at a gellan gum concentration of 0.8% (w/v), a bead size of 3 mm, bead number of 250, pH of 8 and temperature of 30 °C. The entrapped bacterium was used repeatedly for ten cycles to produce keratinase using feathers polluted with 25 ppm of Co, Cu and Ag as substrates without the need for desorption. However, its inability to tolerate/utilise feathers polluted with Hg, Pb, and Zn above 5 ppm, and Ag and Cd above 10 ppm resulted in a considerable decrease in keratinase production. Furthermore, the immobilised cells could retain approximately 95% of their keratinase production capacity when 5 ppm of Co, Cu, and Ag, and 10 ppm of As and Cd were used to pollute feathers. When the feathers containing a mixture of Ag, Co, and Cu at 25 ppm each and Hg, Ni, Pb, and Zn at 5 ppm each were used as substrates, the immobilised cells maintained their operational stability and biological activity (keratinase production) at the end of 3rd and 4th cycles, respectively. The study indicates that HMPF can be effectively utilised as a substrate by the immobilised-cell system of Alcaligenes sp. AQ05-001 for the semi-continuous production of keratinase enzyme.
Collapse
Affiliation(s)
- Ibrahim Yusuf
- 1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia-UPM, 43400 Serdang, Selangor Malaysia
- 2Department of Microbiology, Faculty of Science, Bayero University Kano, P.M.B. 3011, Kano, Nigeria
| | - Siti Aqlima Ahmad
- 1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia-UPM, 43400 Serdang, Selangor Malaysia
| | - Lai Yee Phang
- 3Department of Bioprocess, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia-UPM, 43400 Serdang, Selangor Malaysia
| | - Nur Adeela Yasid
- 1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia-UPM, 43400 Serdang, Selangor Malaysia
| | - Mohd Yunus Shukor
- 1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia-UPM, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
25
|
Liu J, Li S, Li X, Gao Y, Ling W. Removal of estrone, 17β-estradiol, and estriol from sewage and cow dung by immobilized Novosphingobium sp. ARI-1. ENVIRONMENTAL TECHNOLOGY 2018; 39:2423-2433. [PMID: 28707514 DOI: 10.1080/09593330.2017.1355935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Immobilized bacterial agents (IBA) can increase the cell density and improve the environmental adaptability of bacteria. An estrogen-degrading bacterium, Novosphingobium sp. ARI-1, was immobilized in calcium alginate (CA) using an embedding method and applied to the removal of estrogens from natural sewage and cow dung. The optimum immobilization conditions were as follows: sodium alginate (SA) and CaCl2·2H2O concentrations of 5% (m/v) and 4% (m/v), respectively; a bacterial suspension to SA ratio of 1:2; and cross-linking for 6 h at 4°C. Immobilized strain ARI-1 mediated the biodegradation of estrone (E1), 17β-estradiol (E2), and estriol (E3) either individually or in combination and was tolerant of various temperatures and pH values. Immobilized ARI-1 removed 80.43%, 94.76%, and 100% of E1, E2, and E3 from sewage containing 1.75, 0.71, and 1.52 μg L-1 of the three test estrogens within seven days, respectively. In cow dung containing initial E1, E2, and E3 concentrations of 0.71, 0.64, and 0.66 mg kg-1, respectively, E1 and E2 concentrations were below the limit of detection, and 1.09% of E3 remained after incubation with immobilized ARI-1 for seven days. These results confirmed the utility of immobilized strain ARI-1 for the removal of estrogens from environmental matrices.
Collapse
Affiliation(s)
- Juan Liu
- a Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences , Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Shunyao Li
- a Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences , Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Xin Li
- a Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences , Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Yanzheng Gao
- a Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences , Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Wanting Ling
- a Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences , Nanjing Agricultural University , Nanjing , People's Republic of China
| |
Collapse
|
26
|
Liu J, Pan D, Wu X, Chen H, Cao H, Li QX, Hua R. Enhanced degradation of prometryn and other s-triazine herbicides in pure cultures and wastewater by polyvinyl alcohol-sodium alginate immobilized Leucobacter sp. JW-1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:78-86. [PMID: 28963898 DOI: 10.1016/j.scitotenv.2017.09.208] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
The s-triazine herbicides, such as prometryn, have been widely used in agriculture and have raised much public concern over their contamination of water and soil. Leucobacter sp. JW-1 cells were immobilized in polyvinyl alcohol‑sodium alginate (PVA-SA) beads and then used to degrade prometryn. Orthogonal array experiments showed that the optimal immobilization conditions of PVA-SA immobilized Leucobacter sp. JW-1 beads (PSLBs) were 3% JW-1 cells (w/v, wet weight), 10-12% (w/v) PVA, 2-3% (w/v) calcium chloride, and an immobilization time of 24-36h. The PSLBs were more tolerance to pH, temperature and salinity changes than free JW-1 cells and were stable and effective for degrading prometryn through six reuse cycles without losing their degradation capacity. The half-life of prometryn degradation by PSLBs at 100mgL-1 in pesticide plant wastewaters were 1.1-6.9h. The rate constants of prometryn degradation by PSLBs in wastewaters ranged from 304 to 576mgL-1day-1, which were approximately 1.25-118 times those of degradation by free JW-1 cells. The PSLBs degraded 99.9% of atrazine, 99.9% of ametryn, 97.8% of propazine, 100.0% of simetryn, 77.9% of simazine, 98.9% of terbuthylazine, 95.2% of prometon, 98.9% of atraton, and 31.6% of terbumeton at an initial concentration of 50mgL-1 of each herbicide in 2days. This study indicates that PSLBs persistently biodegrade s-triazine herbicides better than JW-1 free cells, and can be an efficient, safe and reusable biomaterial for the removal of s-triazine herbicides from contaminated sites.
Collapse
Affiliation(s)
- Junwei Liu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Dandan Pan
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China.
| | - Haiyan Chen
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Haiqun Cao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 957822, USA
| | - Rimao Hua
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| |
Collapse
|
27
|
|
28
|
Silva JRO, Santos DS, Santos UR, Eguiluz KIB, Salazar-Banda GR, Schneider JK, Krause LC, López JA, Hernández-Macedo ML. Electrochemical and/or microbiological treatment of pyrolysis wastewater. CHEMOSPHERE 2017; 185:145-151. [PMID: 28688848 DOI: 10.1016/j.chemosphere.2017.06.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/05/2017] [Accepted: 06/29/2017] [Indexed: 05/23/2023]
Abstract
Electrochemical oxidation may be used as treatment to decompose partially or completely organic pollutants (wastewater) from industrial processes such as pyrolysis. Pyrolysis is a thermochemical process used to obtain bio-oil from biomasses, generating a liquid waste rich in organic compounds including aldehydes and phenols, which can be submitted to biological and electrochemical treatments in order to minimize its environmental impact. Thus, electrochemical systems employing dimensionally stable anodes (DSAs) have been proposed to enable biodegradation processes in subsurface environments. In order to investigate the organic compound degradation from residual coconut pyrolysis wastewater, ternary DSAs containing ruthenium, iridium and cerium synthetized by the 'ionic liquid method' at different calcination temperatures (500, 550, 600 and 700 °C) for the pretreatment of these compounds, were developed in order to allow posterior degradation by Pseudomonas sp., Bacillus sp. or Acinetobacter sp. bacteria. The electrode synthesized applying 500 °C displayed the highest voltammetric charge and was used in the pretreatment of pyrolysis effluent prior to microbial treatment. Regarding biological treatment, the Pseudomonas sp. exhibited high furfural degradation in wastewater samples electrochemically pretreated at 2.0 V. On the other hand, the use of Acinetobacter efficiently degraded phenolic compounds such as phenol, 4-methylphenol, 2,5-methylphenol, 4-ethylphenol and 3,5-methylphenol in both wastewater samples, with and without electrochemical pretreatment. Overall, the results indicate that the combination of both processes used in this study is relevant for the treatment of pyrolysis wastewater.
Collapse
Affiliation(s)
- José R O Silva
- Laboratório de Biologia Molecular, Instituto de Tecnologia e Pesquisa, Universidade Tiradentes, Aracaju, SE, Brazil
| | - Dara S Santos
- Laboratório de Eletroquímica e Nanotecnologia, Instituto de Tecnologia e Pesquisa, Universidade Tiradentes, Aracaju, SE, Brazil
| | - Ubiratan R Santos
- Laboratório de Biologia Molecular, Instituto de Tecnologia e Pesquisa, Universidade Tiradentes, Aracaju, SE, Brazil
| | - Katlin I B Eguiluz
- Laboratório de Eletroquímica e Nanotecnologia, Instituto de Tecnologia e Pesquisa, Universidade Tiradentes, Aracaju, SE, Brazil
| | - Giancarlo R Salazar-Banda
- Laboratório de Eletroquímica e Nanotecnologia, Instituto de Tecnologia e Pesquisa, Universidade Tiradentes, Aracaju, SE, Brazil
| | - Jaderson K Schneider
- Laboratório de Química Analítica, Ambiental e Oleoquímica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laiza C Krause
- Laboratório de Síntese de Materiais e Cromatografia, Instituto de Tecnologia e Pesquisa, Universidade Tiradentes, Aracaju, SE, Brazil
| | - Jorge A López
- Laboratório de Biologia Molecular, Instituto de Tecnologia e Pesquisa, Universidade Tiradentes, Aracaju, SE, Brazil
| | - Maria L Hernández-Macedo
- Laboratório de Biologia Molecular, Instituto de Tecnologia e Pesquisa, Universidade Tiradentes, Aracaju, SE, Brazil.
| |
Collapse
|
29
|
Ontañon OM, González PS, Barros GG, Agostini E. Improvement of simultaneous Cr(VI) and phenol removal by an immobilised bacterial consortium and characterisation of biodegradation products. N Biotechnol 2017; 37:172-179. [DOI: 10.1016/j.nbt.2017.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/26/2016] [Accepted: 02/12/2017] [Indexed: 10/20/2022]
|
30
|
Wei G, Xia D, Li-Li W, Hong Y. Isolation, selection, and biological characterization research of highly effective electricigens from MFCs for phenol degradation. Folia Microbiol (Praha) 2017. [DOI: 10.1007/s12223-017-0536-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Xia X, Gurr GM, Vasseur L, Zheng D, Zhong H, Qin B, Lin J, Wang Y, Song F, Li Y, Lin H, You M. Metagenomic Sequencing of Diamondback Moth Gut Microbiome Unveils Key Holobiont Adaptations for Herbivory. Front Microbiol 2017; 8:663. [PMID: 28491055 PMCID: PMC5405146 DOI: 10.3389/fmicb.2017.00663] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/31/2017] [Indexed: 01/18/2023] Open
Abstract
Herbivore specialists adapt to feed on a specific group of host plants by evolving various mechanisms to respond to plant defenses. Insects also possess complex gut microbiotas but their potential role in adaptation is poorly understood. Our previous study of the genome of diamondback moth, Plutella xylostella, revealed an intrinsic capacity to detoxify plant defense compounds, which is an important factor in its success as a pest. Here we expand on that work with a complete taxonomic and functional profile of the P. xylostella gut microbiota obtained by metagenomic sequencing. Gene enrichment in the metagenome, accompanied by functional identification, revealed an important role of specific gut bacteria in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids. Microbes participating in these pathways mainly belonged to three highly abundant bacteria: Enterobacter cloacae, Enterobacter asburiae, and Carnobacterium maltaromaticum. Results show that while the gut microbial community may be complex, a small number of functionally active species can be disproportionally important. The presence of specific enzymes in the microbiota community, such as supporting amino acid synthesis, digestion and detoxification functions, demonstrates the beneficial interactions between P. xylostella and its gut microbiota. These interactions can be potential targets for manipulation to provide novel pest management approaches.
Collapse
Affiliation(s)
- Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of AgricultureFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Geoff M. Gurr
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of AgricultureFuzhou, China
- Graham Centre, Charles Sturt UniversityOrange, NSW, Australia
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of AgricultureFuzhou, China
- Department of Biological Sciences, Brock UniversitySt. Catharines, ON, Canada
| | - Dandan Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of AgricultureFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | | | | | - Junhan Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of AgricultureFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yue Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of AgricultureFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - FengQin Song
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of AgricultureFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yong Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of AgricultureFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Hailan Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of AgricultureFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of AgricultureFuzhou, China
- Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
32
|
Ibrahim S, Shukor MY, Syed MA, Johari WLW, Shamaan NA, Sabullah MK, Ahmad SA. Enhanced caffeine degradation by immobilised cells of Leifsonia sp. strain SIU. J GEN APPL MICROBIOL 2017; 62:18-24. [PMID: 26923127 DOI: 10.2323/jgam.62.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In a previous study, we isolated Leifsonia sp. strain SIU, a new bacterium from agricultured soil. The bacterium was tested for its ability to degrade caffeine. The isolate was encapsulated in gellan gum and its ability to degrade caffeine was compared with the free cells. The optimal caffeine degradation was attained at a gellan gum concentration of 0.75% (w/v), a bead size of 4 mm diameter, and 250 beads per 100 mL of medium. At a caffeine concentration of 0.1 g/L, immobilised cells of the strain SIU degraded caffeine within 9 h, which is faster when compared to the case of free cells, in which it took 12 h to degrade. The immobilised cells degraded caffeine completely within 39 and 78 h at 0.5 and 1.0 g/L, while the free cells took 72 and 148 h at 0.5 and 1.0 g/L, respectively. At higher caffeine concentrations, immobilised cells exhibited a higher caffeine degradation rate. At concentrations of 1.5 and 2.0 g/L, caffeine-degrading activities of both immobilised and free cells were inhibited. The immobilised cells showed no loss in caffeine-degrading activity after being used repeatedly for nine 24-h cycles. The effect of heavy metals on immobilised cells was also tested. This study showed an increase in caffeine degradation efficiency when the cells were encapsulated in gellan gum.
Collapse
Affiliation(s)
- Salihu Ibrahim
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia
| | | | | | | | | | | | | |
Collapse
|
33
|
Hu S, Hu H, Li W, Ke Y, Li M, Zhao Y. Enhanced sulfamethoxazole degradation in soil by immobilized sulfamethoxazole-degrading microbes on bagasse. RSC Adv 2017. [DOI: 10.1039/c7ra10150c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The presence of sulfamethoxazole (SMX) in the environment is becoming a serious problem because of its toxicity and high risk to human health and microbial activity.
Collapse
Affiliation(s)
- Shengbing Hu
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Huimin Hu
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Wenlong Li
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Yaoyi Ke
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Minghua Li
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Yuechun Zhao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| |
Collapse
|
34
|
Jiang B, Shi S, Song L, Tan L, Li M, Liu J, Xue L. Efficient treatment of phenolic wastewater with high salinity using a novel integrated system of magnetically immobilized cells coupling with electrodes. BIORESOURCE TECHNOLOGY 2016; 218:108-114. [PMID: 27347805 DOI: 10.1016/j.biortech.2016.06.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/17/2016] [Accepted: 06/19/2016] [Indexed: 06/06/2023]
Abstract
A novel integrated system in which magnetically immobilized cells coupled with a pair of stainless iron meshes-graphite plate electrodes has been designed and operated to enhance the treatment performance of phenolic wastewater under high salinity. With NaCl concentration increased, phenol, o-cresol, m-cresol, p-cresol and COD removal rates by integrated system increased significantly, which were obviously higher than the sum of removal rates by single magnetically immobilized cells and electrode reaction. This integrated system exhibited higher removal rates for all the compounds than that by single magnetically immobilized cells during six cycles for reuse, and it still performed better, even when the voltage was cut off. These results indicated that there was a coupling effect between biodegradation and electrode reaction. The investigation of phenol hydroxylase activity and cells concentration confirmed that electrode reaction played an important role in this coupling effect.
Collapse
Affiliation(s)
- Bei Jiang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian 116081, China.
| | - Lun Song
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
| | - Liang Tan
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Meidi Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Jiaxin Liu
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Lanlan Xue
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
35
|
The influence of different modes of bioreactor operation on the efficiency of phenol degradation by Rhodococcus UKMP-5M. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2016. [DOI: 10.1007/s12210-016-0567-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Metabolic Responses of Bacterial Cells to Immobilization. Molecules 2016; 21:molecules21070958. [PMID: 27455220 PMCID: PMC6273605 DOI: 10.3390/molecules21070958] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 01/15/2023] Open
Abstract
In recent years immobilized cells have commonly been used for various biotechnological applications, e.g., antibiotic production, soil bioremediation, biodegradation and biotransformation of xenobiotics in wastewater treatment plants. Although the literature data on the physiological changes and behaviour of cells in the immobilized state remain fragmentary, it is well documented that in natural settings microorganisms are mainly found in association with surfaces, which results in biofilm formation. Biofilms are characterized by genetic and physiological heterogeneity and the occurrence of altered microenvironments within the matrix. Microbial cells in communities display a variety of metabolic differences as compared to their free-living counterparts. Immobilization of bacteria can occur either as a natural phenomenon or as an artificial process. The majority of changes observed in immobilized cells result from protection provided by the supports. Knowledge about the main physiological responses occurring in immobilized cells may contribute to improving the efficiency of immobilization techniques. This paper reviews the main metabolic changes exhibited by immobilized bacterial cells, including growth rate, biodegradation capabilities, biocatalytic efficiency and plasmid stability.
Collapse
|
37
|
Meta-cleavage pathway of phenol degradation by Acinetobacter sp. strain AQ5NOL 1. RENDICONTI LINCEI 2016. [DOI: 10.1007/s12210-016-0554-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Liu Z, Xie W, Li D, Peng Y, Li Z, Liu S. Biodegradation of Phenol by Bacteria Strain Acinetobacter Calcoaceticus PA Isolated from Phenolic Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13030300. [PMID: 27005648 PMCID: PMC4808963 DOI: 10.3390/ijerph13030300] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/11/2016] [Accepted: 02/14/2016] [Indexed: 11/16/2022]
Abstract
A phenol-degrading bacterium strain PA was successfully isolated from the effluent of petrochemical wastewater. Based on its morphological, physiological and biochemical characteristics, the strain PA was characterized as a Gram-negative, strictly aerobic, nonmotile and short rod-shaped bacterium that utilizes phenol as a sole carbon and energy source. 16S rDNA sequence analysis revealed that this strain is affiliated to Acinetobacter calcoaceticus in the group of Gammaproteobacteria. The strain was efficient in removing 91.6% of the initial 800 mg∙L−1 phenol within 48 h, and had a tolerance of phenol concentration as high as 1700 mg∙L−1. These results indicated that A. calcoaceticus possesses a promising potential in treating phenolic wastewater.
Collapse
Affiliation(s)
- Zhenghui Liu
- Department of Environmental Engineering, School of Environmental and Biological Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
- Technology Research Center for Petrochemical Resources Clean Utilization of Guangdong Province, Maoming 525000, China.
| | - Wenyu Xie
- Department of Environmental Engineering, School of Environmental and Biological Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
- Technology Research Center for Petrochemical Resources Clean Utilization of Guangdong Province, Maoming 525000, China.
| | - Dehao Li
- Department of Environmental Engineering, School of Environmental and Biological Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
- Technology Research Center for Petrochemical Resources Clean Utilization of Guangdong Province, Maoming 525000, China.
| | - Yang Peng
- Department of Environmental Engineering, School of Environmental and Biological Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| | - Zesheng Li
- Technology Research Center for Petrochemical Resources Clean Utilization of Guangdong Province, Maoming 525000, China.
| | - Shusi Liu
- Department of Environmental Engineering, School of Environmental and Biological Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| |
Collapse
|
39
|
Facilitation as Attenuating of Environmental Stress among Structured Microbial Populations. ScientificWorldJournal 2016; 2016:5713939. [PMID: 26904719 PMCID: PMC4745299 DOI: 10.1155/2016/5713939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/15/2015] [Accepted: 12/31/2015] [Indexed: 11/29/2022] Open
Abstract
There is currently an intense debate in microbial societies on whether evolution in complex communities is driven by competition or cooperation. Since Darwin, competition for scarce food resources has been considered the main ecological interaction shaping population dynamics and community structure both in vivo and in vitro. However, facilitation may be widespread across several animal and plant species. This could also be true in microbial strains growing under environmental stress. Pure and mixed strains of Serratia marcescens and Candida rugosa were grown in mineral culture media containing phenol. Growth rates were estimated as the angular coefficients computed from linearized growth curves. Fitness index was estimated as the quotient between growth rates computed for lineages grown in isolation and in mixed cultures. The growth rates were significantly higher in associated cultures than in pure cultures and fitness index was greater than 1 for both microbial species showing that the interaction between Serratia marcescens and Candida rugosa yielded more efficient phenol utilization by both lineages. This result corroborates the hypothesis that facilitation between microbial strains can increase their fitness and performance in environmental bioremediation.
Collapse
|
40
|
Lin J, Sharma V, Milase R, Mbhense N. Simultaneous enhancement of phenolic compound degradations byAcinetobacterstrain V2via a step-wise continuous acclimation process. J Basic Microbiol 2015; 56:627-34. [DOI: 10.1002/jobm.201500263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/29/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Johnson Lin
- School of Life Sciences; University of KwaZulu-Natal (Westville); Durban Republic of South Africa
| | - Vikas Sharma
- School of Life Sciences; University of KwaZulu-Natal (Westville); Durban Republic of South Africa
| | - Ridwaan Milase
- School of Life Sciences; University of KwaZulu-Natal (Westville); Durban Republic of South Africa
| | - Ntuthuko Mbhense
- School of Life Sciences; University of KwaZulu-Natal (Westville); Durban Republic of South Africa
| |
Collapse
|
41
|
Ontañon OM, González PS, Agostini E. Biochemical and molecular mechanisms involved in simultaneous phenol and Cr(VI) removal by Acinetobacter guillouiae SFC 500-1A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13014-13023. [PMID: 25916475 DOI: 10.1007/s11356-015-4571-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
Bioremediation has emerged as an environmental friendly strategy to deal with environmental pollution. Since the majority of polluted sites contain complex mixtures of inorganic and organic pollutants, it is important to find bacterial strains that can cope with multiple contaminants. In this work, a bacterial strain isolated from tannery sediments was identified as Acinetobacter guillouiae SFC 500-1A. This strain was able to simultaneously remove high phenol and Cr(VI) concentrations, and the mechanisms involved in such process were evaluated. The phenol biodegradation was catalized by a phenol-induced catechol 1,2-dioxygenase through an ortho-cleavage pathway. Also, NADH-dependent chromate reductase activity was measured in the cytosolic fraction. The ability of this strain to reduce Cr(VI) to Cr(III) was corroborated by detection of Cr(III) in cellular biomass after the removal process. While phenol did not affect significantly the chromate reductase activity, Cr(VI) was a major disruptor of catechol dioxygenase activity. Nevertheless, this activity was high even in presence of high Cr(VI) concentrations. Our results suggest the potential application of A. guillouiae SFC 500-1A for wastewaters treatment, and the obtained data provide the insights into the removal mechanisms, dynamics, and possible limitations of the bioremediation.
Collapse
Affiliation(s)
- Ornella M Ontañon
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36 Km 601. CP 5800, Río Cuarto, Córdoba, Argentina,
| | | | | |
Collapse
|
42
|
Immobilization of a yeast strain isolated from a petrochemical wastewater and effect of phenol on attached cells. BMC Proc 2014. [PMCID: PMC4210764 DOI: 10.1186/1753-6561-8-s4-p216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
43
|
Chen F, Yu S, Dong X, Zhang L, Wu Q. Preparation and characterization of PbO₂ electrode and its application in electro-catalytic degradation of o-aminophenol in aqueous solution assisted by CuO-Ce₂O₃/γ-Al₂O₃ catalyst. JOURNAL OF HAZARDOUS MATERIALS 2013; 260:747-753. [PMID: 23846125 DOI: 10.1016/j.jhazmat.2013.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/14/2013] [Accepted: 06/15/2013] [Indexed: 06/02/2023]
Abstract
The electrochemical degradation of o-aminophenol (OAP) in aqueous solution was investigated by galvanostatic electrolysis using PbO₂ electrode as anode. The Ti/SnO₂-Sb₂O₃/PbO₂ anode was prepared by thermal decomposition and electro-deposition method, and was characterized by X-ray diffraction (XRD). The hydroxyl radicals electro-generated on anode were detected by fluorescence spectroscopy. The effects of initial pH and current density on the efficiency of the electrochemical degradation process were also studied. UV spectroscopy and chemical oxygen demand (COD) measurements were conducted to evaluate the removal effects of organic pollutants. The experimental results showed that the refractory organics in wastewater can be removed by pure electrochemical process, COD removal efficiency of 91.6% was obtained in 70 min at initial pH 11.0 and current density was equal to 50 mA cm(-2). In order to improve the efficiency of degradation and accelerate the reaction rate, a novel catalyst, γ-Al₂O₃ supported Ce-doped CuO, was synthesized by impregnating process and was characterized by X-ray photoelectron spectroscopy (XPS). The catalyst exhibited excellent catalytic activity in the electro-catalytic degradation of OAP wastewater and the COD removal efficiency of 91.7% was obtained in 20 min under mild conditions. Finally, a hypothetical mechanism of electro-catalytic degradation was proposed.
Collapse
Affiliation(s)
- Fengtao Chen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | | | | | | | | |
Collapse
|
44
|
Zhu L, Lv ML, Dai X, Zhou JH, Xu XY. The stability of aerobic granular sludge under 4-chloroaniline shock in a sequential air-lift bioreactor (SABR). BIORESOURCE TECHNOLOGY 2013; 140:126-130. [PMID: 23685649 DOI: 10.1016/j.biortech.2013.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 06/02/2023]
Abstract
The aerobic granular sludge technology has a great potential in treatment of municipal wastewater and industrial wastewater containing toxic non-degradable pollutants. However, the formation and structural stability of aerobic granular sludge is susceptible to toxic shock. In the study, the effect of 4-chloroaniline (4-ClA) as a common toxic pollutant on the granular structure and performance was investigated, and the mechanism was revealed to provide more information on 4-ClA degradation with aerobic granular sludge process. The results showed that a 4-ClA shock at influent 200 mg L(-1) could cause the disintegration of aerobic granular sludge and decrease of the pollutant removal performance. The analysis of extracellular polymeric substances (EPS) within the mature and disintegrated granular sludge showed that the decrease of protein content in EPS, especially the components like Amide I 3-turn helix and β-sheet structures and aspartate, was not good for the stability of aerobic granular sludge. The microbial community results demonstrated that the disappearance of dominant bacteria like Kineosphaera limosa or appearance like Acinetobacter, might contribute to the reduction of EPS and disintegration of aerobic granular sludge.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | |
Collapse
|
45
|
Duan X, Ma F, Yuan Z, Chang L, Jin X. Electrochemical degradation of phenol in aqueous solution using PbO2 anode. J Taiwan Inst Chem Eng 2013. [DOI: 10.1016/j.jtice.2012.08.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Sun JQ, Xu L, Tang YQ, Chen FM, Wu XL. Simultaneous degradation of phenol and n-hexadecane by Acinetobacter strains. BIORESOURCE TECHNOLOGY 2012; 123:664-668. [PMID: 22939600 DOI: 10.1016/j.biortech.2012.06.072] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/22/2012] [Accepted: 06/24/2012] [Indexed: 06/01/2023]
Abstract
Three phenol- and alkanes-degrading bacterial strains were isolated from a freshwater sample. Upon the 16S rRNA gene analysis, phenotype and physiological features, the three strains were designated as Acinetobacter sp. with both phenol hydroxylase gene (phe) and alkane monooxygenase gene (alkM) detected. They could simultaneously degrade phenol and n-hexadecane for growth, but prefer phenol than n-hexadecane. Between phenol (400mgl(-1)) and n-hexadecane (400mgl(-1)), n-hexadecane enhanced phenol degradation in mineral salt medium (MSM), while phenol affects negatively the n-hexadecane degradation. However, combination of phenol (400mgl(-1)) and n-hexadecane (400mgl(-1)) in MSM led to higher growth of the strains than the phenol and n-hexadecane separately. The transcription levels of phe and alkM genes supported the physiological properties of the strains.
Collapse
Affiliation(s)
- Ji-Quan Sun
- College of Engineering, Peking University, Beijing 100871, PR China
| | | | | | | | | |
Collapse
|
47
|
|