1
|
Ma D, Qiu L, Wang X, Li L, Peng S, Liao Y, Li K. L-arabinose isomerase from Lactobacillus fermentum C6: Enzymatic characteristics and its recombinant Bacillus subtilis whole cells achieving a significantly increased production of D-tagatose. Int J Biol Macromol 2024; 278:134753. [PMID: 39147336 DOI: 10.1016/j.ijbiomac.2024.134753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
L-arabinose isomerase (L-AI) is a functional enzyme for the isomerizing of D-galactose to produce D-tagatose. In this study, L-AI-C6-encoding gene from the probiotic Lactobacillus fermentum C6 was cloned and expressed in Bacillus subtilis WB600 for investigating enzymatic characteristics and bioconverting D-tagatose by means of whole-cell catalysis. Results showed that the engineered B. subtilis WB600-pMA5-LAI achieved a maximum specific activity of L-AI-C6 (232.65 ± 15.54 U/mg protein) under cultivation in LB medium at 28 °C for 40 h. The recombinant L-AI-C6 was purified, and enzymatic characteristics test showed its optimum reaction temperature and pH at 60 °C and 8.0, respectively. In addition, L-AI-C6 exhibited good stability within the pH range of 5.5-9.0. By using B. subtilis WB600-pMA5-LAI cells as whole-cell catalyst, the highest D-tagatose yield reached 42.91 ± 0.28 % with D-galactose as substrate, which was 2.41 times that of L. fermentum C6 (17.79 ± 0.11 %). This suggested that the cloning and heterologous expression of L-AI-C6 was an effective strategy for improving D-tagatose conversion by whole-cell catalysis. In brief, the present study demonstrated that the reaction temperature, pH, and stability of L-AI-C6 from L. fermentum C6 meet the demands of industrial application, and the constructed B. subtilis WB600-pMA5-LAI shows promising potential for the whole-cell biotransformation of D-tagatose.
Collapse
Affiliation(s)
- Donglin Ma
- College of Food Science and Technology of Guangdong Ocean University, Zhanjiang 524088, China.
| | - Lu Qiu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaofang Wang
- Agriculture Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Lilang Li
- College of Food Science and Technology of Guangdong Ocean University, Zhanjiang 524088, China.
| | - Shuaiying Peng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yan Liao
- College of Food Science and Technology of Guangdong Ocean University, Zhanjiang 524088, China.
| | - Kuntai Li
- College of Food Science and Technology of Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Characterization of l-Arabinose Isomerase from Klebsiella pneumoniae and Its Application in the Production of d-Tagatose from d-Galactose. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
d-Tagatose, a functional sweetener, is converted from d-galactose by l-arabinose isomerase, which catalyzes the conversion of l-arabinose to l-ribulose. In this study, the araA gene encoding l-arabinose isomerase from Klebsiella pneumoniae was cloned and expressed in Escherichia coli, and the expressed enzyme was purified and characterized. The purified l-arabinose isomerase, a soluble protein with 11.6-fold purification and a 22% final yield, displayed a specific activity of 1.8 U/mg for d-galactose and existed as a homohexamer of 336 kDa. The enzyme exhibited maximum activity at pH 8.0 and 40 °C in the presence of Mn2+ and relative activity for pentoses and hexoses in the order l-arabinose > d-galactose > l-ribulose > d-xylulose > d-xylose > d-tagatose > d-glucose. The thermal stability of recombinant E. coli cells expressing l-arabinose isomerase from K. pneumoniae was higher than that of the enzyme. Thus, the reaction conditions of the recombinant cells were optimized to pH 8.0, 50 °C, and 4 g/L cell concentration using 100 g/L d-galactose with 1 mM Mn2+. Under these conditions, 33.5 g/L d-tagatose was produced from d-galactose with 33.5% molar yield and 67 g/L/h productivity. Our findings will help produce d-tagatose using whole-cell reactions, extending its industrial application.
Collapse
|
3
|
Zhang S, Xu Z, Ma M, Zhao G, Chang R, Si H, Dai M. A novel Lactococcus lactis l-arabinose isomerase for d-tagatose production from lactose. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Characterization of an L-Arabinose Isomerase from Bacillus velezensis and Its Application for L-Ribulose and L-Ribose Biosynthesis. Appl Biochem Biotechnol 2020; 192:935-951. [PMID: 32617845 DOI: 10.1007/s12010-020-03380-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
L-Ribulose and L-ribose are two high-value unnatural sugars that can be biosynthesized by sugar isomerases. In this paper, an L-arabinose isomerase (BvAI) from Bacillus velezensis CICC 24777 was cloned and overexpressed in Escherichia coli BL21 (DE3) strain. The maximum activity of recombinant BvAI was observed at 45 °C and pH 8.0, in the presence of 1.0 mM Mn2+. Approximately 207.2 g/L L-ribulose was obtained from 300 g/L L-arabinose in 1.5 h by E. coli harboring BvAI. In addition, approximately 74.25 g/L L-ribose was produced from 300 g/L L-arabinose in 7 h by E. coli co-expressing BvAI and L-RI from Actinotalea fermentans ATCC 43279 (AfRI). This study provides a feasible approach for producing L-ribose from L-arabinose using a co-expression system harboring L-Al and L-RI.
Collapse
|
5
|
Recent advances in properties, production, and applications of L-ribulose. Appl Microbiol Biotechnol 2020; 104:5663-5672. [PMID: 32372201 DOI: 10.1007/s00253-020-10637-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/31/2022]
Abstract
Currently, due to the special functions and potential application values, rare sugars become the hot topic in carbohydrate fields. L-Ribulose, an isomer of L-ribose, is an expensive rare ketopentose. As an important precursor for other rare sugars and L-nucleoside analogue synthesis, L-ribulose attracts more and more attention in recent days. Compared with complicated chemical synthesis, the bioconversion method becomes a good alternative approach to L-ribulose production. Generally, the bioconversion of L-ribulose was linked with ribitol, L-arabinose, L-ribose, L-xylulose, and L-arabitol. Herein, an overview of recent advances in the metabolic pathway, chemical synthesis, bioproduction of L-ribulose, and the potential application of L-ribulose is reviewed in detail in this paper. KEY POINTS: 1. L-Ribulose is a rare sugar and the key precursor for L-ribose production. 2. L-Ribulose is the starting material for L-nucleoside derivative synthesis. 3. Chemical synthesis, bioproduction, and applications of L-ribulose are reviewed.
Collapse
|
6
|
Guo Z, Long L, Ding S. Characterization of a D-lyxose isomerase from Bacillus velezensis and its application for the production of D-mannose and L-ribose. AMB Express 2019; 9:149. [PMID: 31529161 PMCID: PMC6746899 DOI: 10.1186/s13568-019-0877-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/09/2019] [Indexed: 11/10/2022] Open
Abstract
D-Mannose and L-ribose are two important monosaccharides, which have attracted public attention recently because of their great application potentials in food, cosmetic and pharmaceutical industries. Sugar isomerases catalyze the sugar isomerization and therefore can be used as the biocatalysts for production of the high-value sugars from inexpensive sugars. L-arabinose isomerase catalyzes the conversion of L-arabinose to L-ribulose, while D-lyxose isomerase catalyzes L-ribulose and D-fructose to L-ribose and D-mannose, respectively. In this paper, a putative D-LI from Bacillus velezensis (BvLI) was identified, characterized and used to produce D-mannose and L-ribose from D-fructose and L-arabinose, respectively. The recombinant BvLI exhibited a maximum activity at 55 °C and pH 6.5, in the presence of 0.1 mM Co2+. Approximately 110.75 g/L D-mannose was obtained from 500 g/L D-fructose in 6 h by the recombinant BvLI, and approximately 105 g/L L-ribose was obtained from 500 g/L L-arabinose in 8 h by the successive biocatalysis of L-arabinose isomerase from Bacillus licheniformis (BlAI) and BvLI.
Collapse
|
7
|
Liu X, Li Z, Chen Z, Wang N, Gao Y, Nakanishi H, Gao XD. Production of l-Ribulose Using an Encapsulated l-Arabinose Isomerase in Yeast Spores. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4868-4875. [PMID: 30995033 DOI: 10.1021/acs.jafc.9b00640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The rare sugar l-ribulose is produced from the abundant sugar l-arabinose by enzymatic conversion. An l-arabinose isomerase (AI) from Geobacillus thermodenitrificans was efficiently expressed and encapsulated in Saccharomyces cerevisiae spores. Deletion of the yeast OSW2 gene, which causes a mild defect in the integrity of the spore wall, substantially improved the activity of encapsulated AI, without damaging its superior enzymatic properties of thermostability, pH tolerance,and resistance toward SDS and proteinase treatments. In a 10 mL reaction, 100 mg of dry AI encapsulated in spores produced 250 mg of l-ribulose from 1 g of l-arabinose, indicating a 25% conversion rate. Notably, the product of l-ribulose was directly purified from the reaction solution with an approximately 91% recovery using a Ca2+ ion exchange column. Our results describe not only a facile approach for the production of l-ribulose but also a useful strategy for the enzymatic conversion of rare sugars in "Izumoring".
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Yahui Gao
- School of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
8
|
Zhang Y, Zhao C, Ni Z, Shao M, Han M, Huang D, Liu F. Heterologous expression and biochemical characterization of a thermostable xylulose kinase from Bacillus coagulans IPE22. J Basic Microbiol 2019; 59:542-551. [PMID: 30747439 DOI: 10.1002/jobm.201800482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/02/2019] [Accepted: 01/13/2019] [Indexed: 12/28/2022]
Abstract
Xylulose kinase is an important enzyme involved in xylose metabolism, which is considered as essential biocatalyst for sustainable lignocellulosic-derived pentose utilization. Bacillus coagulans IPE22 is an ideal bacterium for refinery due to its strong ability to ferment xylose at high temperature. However, the B. coagulans xylose utilization mechanism remains unclear and the related promising enzymes need to be developed. In the present study, the gene coding for xylulose kinase from B. coagulans IPE22 (Bc-XK) was expressed in Escherichia coli BL21 (DE3). Bc-XK has a 1536 bp open reading frame, encoding a protein of 511 amino acids (56.15 kDa). Multiple sequence alignments were performed and a phylogenetic tree was built to evaluate differences among Bc-XK and other bacteria homologs. Bc-XK showed a broad adaptability to high temperature and the enzyme displayed its best performance at pH 8.0 and 60 °C. Bc-XK was activated by Mg2+ , Mn2+ , and Co2+ . Meanwhile, the enzyme could keep activity at 60 °C for at least 180 min. KM values of Bc-XK for xylulose and ATP were 1.29 mM and 0.76 mM, respectively. The high temperature stability of Bc-XK implied that it was an attractive candidate for industrial application.
Collapse
Affiliation(s)
- Yuming Zhang
- College of Life Sciences, Hebei University, Baoding, China
| | | | - Zhihua Ni
- College of Life Sciences, Hebei University, Baoding, China
| | - Menghua Shao
- College of Life Sciences, Hebei University, Baoding, China
| | - Mengying Han
- College of Life Sciences, Hebei University, Baoding, China
| | - Dawei Huang
- College of Life Sciences, Hebei University, Baoding, China
| | - Fengsong Liu
- College of Life Sciences, Hebei University, Baoding, China
| |
Collapse
|
9
|
Towards efficient enzymatic conversion of D-galactose to D-tagatose: purification and characterization of L-arabinose isomerase from Lactobacillus brevis. Bioprocess Biosyst Eng 2018; 42:107-116. [PMID: 30251190 DOI: 10.1007/s00449-018-2018-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
L-arabinose isomerase (L-AI) (EC 5. 3. 1. 4. L-AI) that mediates the isomerization of D-galactose to D-tagatose was isolated from Lactobacillus brevis (MF 465792), and was further purified and characterized. Pure enzyme with molecular weight of 60.1 kDa was successfully obtained after the purification using Native-PAGE gel extraction method, which was a monomer in solution. The L-AI was found to be stable at 45-75 °C, and at pH 7.0-9.0. Its optimum temperature and pH was determined as 65 °C and 7.0, respectively. Besides, we found that Ca2+, Cu2+, and Ba2+ ions inhibited the enzyme activity, whereas the enzyme activity was significantly enhanced in the presence of Mg2+, Mn2+, or Co2+ ions. The optimum concentration of Mn2+ and Co2+ was determined to be 1 mM. Furthermore, we characterized the kinetic parameters for L-AI and determined the Km (129 mM) and the Vmax (0.045 mM min- 1) values. Notably, L. brevisL-AI exhibited a high bioconversion yield of 43% from D-galactose to D-tagatose under the optimal condition, and appeared to be a more efficient catalyst compared with other L-AIs from various organisms.
Collapse
|
10
|
Xu W, Zhang W, Zhang T, Jiang B, Mu W. l -arabinose isomerases: Characteristics, modification, and application. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
de Sousa M, Manzo RM, García JL, Mammarella EJ, Gonçalves LRB, Pessela BC. Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis. Molecules 2017; 22:molecules22122164. [PMID: 29211024 PMCID: PMC6149694 DOI: 10.3390/molecules22122164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022] Open
Abstract
l-Arabinose isomerase (EC 5.3.1.4) (l-AI) from Enterococcus faecium DBFIQ E36 was overproduced in Escherichia coli by designing a codon-optimized synthetic araA gene. Using this optimized gene, two N- and C-terminal His-tagged-l-AI proteins were produced. The cloning of the two chimeric genes into regulated expression vectors resulted in the production of high amounts of recombinant N-His-l-AI and C-His-l-AI in soluble and active forms. Both His-tagged enzymes were purified in a single step through metal-affinity chromatography and showed different kinetic and structural characteristics. Analytical ultracentrifugation revealed that C-His-l-AI was preferentially hexameric in solution, whereas N-His-l-AI was mainly monomeric. The specific activity of the N-His-l-AI at acidic pH was higher than that of C-His-l-AI and showed a maximum bioconversion yield of 26% at 50 °C for d-tagatose biosynthesis, with Km and Vmax parameters of 252 mM and 0.092 U mg-1, respectively. However, C-His-l-AI was more active and stable at alkaline pH than N-His-l-AI. N-His-l-AI follows a Michaelis-Menten kinetic, whereas C-His-l-AI fitted to a sigmoidal saturation curve.
Collapse
Affiliation(s)
- Marylane de Sousa
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, BL 709, Fortaleza-CE 60455-760, Brazil.
| | - Ricardo M Manzo
- Food and Biotechnology Engineering Group, Institute of Technological Development for the Chemical Industry, National University of the Litoral (UNL), National Council of Scientific and Technical Research (CONICET), RN 168 Km 472 "Paraje El Pozo" S/N, S3000 Santa Fe, Argentina.
| | - José L García
- Center for Biological Research, CIB, Higher Council for Scientific Research, CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Enrique J Mammarella
- Food and Biotechnology Engineering Group, Institute of Technological Development for the Chemical Industry, National University of the Litoral (UNL), National Council of Scientific and Technical Research (CONICET), RN 168 Km 472 "Paraje El Pozo" S/N, S3000 Santa Fe, Argentina.
| | - Luciana R B Gonçalves
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, BL 709, Fortaleza-CE 60455-760, Brazil.
| | - Benevides C Pessela
- Department of Food Biotechnology and Microbiology, Institute of Research in Food Sciences, CIAL, Higher Council for Scientific Research, CSIC, C/Nicolás Cabrera 9, UAM Campus, 28049 Madrid, Spain.
- Department of Engineering and Technology, Polytechnic Institute of Sciences and Technology, Av. Luanda Sul, Rua Lateral Via S10, P.O. Box 1316, Talatona-Luanda Sul, Angola.
| |
Collapse
|
12
|
Xu W, Fan C, Zhang T, Jiang B, Mu W. Cloning, Expression, and Characterization of a Novel L-Arabinose Isomerase from the Psychrotolerant Bacterium Pseudoalteromonas haloplanktis. Mol Biotechnol 2017; 58:695-706. [PMID: 27586234 DOI: 10.1007/s12033-016-9969-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
L-Arabinose isomerase (L-AI, EC 5.3.1.4) catalyzes the isomerization between L-arabinose and L-ribulose, and most of the reported ones can also catalyze D-galactose to D-tagatose, except Bacillus subtilis L-AI. In this article, the L-AI from the psychrotolerant bacterium Pseudoalteromonas haloplanktis ATCC 14393 was characterized. The enzyme showed no substrate specificity toward D-galactose, which was similar to B. subtilis L-AI but distinguished from other reported L-AIs. The araA gene encoding the P. haloplanktis L-AI was cloned and overexpressed in E. coli BL21 (DE3). The recombinant enzyme was purified by one-step nickel affinity chromatography . The enzyme displayed the maximal activity at 40 °C and pH 8.0, and showed more than 75 % of maximal activity from pH 7.5-9.0. Metal ion Mn2+ was required as optimum metal cofactor for activity simulation, but it did not play a significant role in thermostability improvement as reported previously. The Michaelis-Menten constant (K m), turnover number (k cat), and catalytic efficiency (k cat/K m) for substrate L-arabinose were measured to be 111.68 mM, 773.30/min, and 6.92/mM/min, respectively. The molecular docking results showed that the active site residues of P. haloplanktis L-AI could only immobilize L-arabinose and recognized it as substrate for isomerization.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chen Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China. .,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
13
|
Mei W, Wang L, Zang Y, Zheng Z, Ouyang J. Characterization of an L-arabinose isomerase from Bacillus coagulans NL01 and its application for D-tagatose production. BMC Biotechnol 2016; 16:55. [PMID: 27363468 PMCID: PMC4929721 DOI: 10.1186/s12896-016-0286-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/21/2016] [Indexed: 11/16/2022] Open
Abstract
Background L-arabinose isomerase (AI) is a crucial catalyst for the biotransformation of D-galactose to D-tagatose. In previous reports, AIs from thermophilic bacterial strains had been wildly researched, but the browning reaction and by-products formed at high temperatures restricted their applications. By contrast, AIs from mesophilic Bacillus strains have some different features including lower optimal temperatures and lower requirements of metallic cofactors. These characters will be beneficial to the development of a more energy-efficient and safer production process. However, the relevant data about the kinetics and reaction properties of Bacillus AIs in D-tagatose production are still insufficient. Thus, in order to support further applications of these AIs, a comprehensive characterization of a Bacillus AI is needed. Results The coding gene (1422 bp) of Bacillus coagulans NL01 AI (BCAI) was cloned and overexpressed in the Escherichia coli BL21 (DE3) strain. The enzymatic property test showed that the optimal temperature and pH of BCAI were 60 °C and 7.5 respectively. The raw purified BCAI originally showed high activity in absence of outsourcing metallic ions and its thermostability did not change in a low concentration (0.5 mM) of Mn2+ at temperatures from 70 °C to 90 °C. Besides these, the catalytic efficiencies (kcat/Km) for L-arabinose and D-galactose were 8.7 mM-1 min-1 and 1.0 mM-1 min-1 respectively. Under optimal conditions, the recombinant E. coli cell containing BCAI could convert 150 g L-1 and 250 g L-1 D-galactose to D-tagatose with attractive conversion rates of 32 % (32 h) and 27 % (48 h). Conclusions In this study, a novel AI from B. coagulans NL01was cloned, purified and characterized. Compared with other reported AIs, this AI could retain high proportions of activity at a broader range of temperatures and was less dependent on metallic cofactors such as Mn2+. Its substrate specificity was understood deeply by carrying out molecular modelling and docking studies. When the recombinant E. coli expressing the AI was used as a biocatalyst, D-tagatose could be produced efficiently in a simple one-pot biotransformation system. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0286-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wending Mei
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Lu Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Ying Zang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Zhaojuan Zheng
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jia Ouyang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,Key Laboratory of Forest Genetics & Biotechnology of the Ministry of Education, Nanjing, People's Republic of China.
| |
Collapse
|
14
|
Rhimi M, Bermudez-Humaran LG, Huang Y, Boudebbouze S, Gaci N, Garnier A, Gratadoux JJ, Mkaouar H, Langella P, Maguin E. The secreted L-arabinose isomerase displays anti-hyperglycemic effects in mice. Microb Cell Fact 2015; 14:204. [PMID: 26691177 PMCID: PMC4687139 DOI: 10.1186/s12934-015-0391-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/27/2015] [Indexed: 12/02/2022] Open
Abstract
Background The l-arabinose isomerase is an intracellular enzyme which converts l-arabinose into l-ribulose in living systems and d-galactose into d-tagatose in industrial processes and at industrial scales. d-tagatose is a natural ketohexose with potential uses in pharmaceutical and food industries. The d-galactose isomerization reaction is thermodynamically equilibrated, and leads to secondary subproducts at high pH. Therefore, an attractive l-arabinose isomerase should be thermoactive and acidotolerant with high catalytic efficiency. While many reports focused on the set out of a low cost process for the industrial production of d-tagatose, these procedures remain costly. When compared to intracellular enzymes, the production of extracellular ones constitutes an interesting strategy to increase the suitability of the biocatalysts. Results The l-arabinose isomerase (l-AI) from Lactobacillus sakei was expressed in Lactococcus lactis in fusion with the signal peptide of usp45 (SPUsp45). The l-AI protein and activity were detected only in the supernatant of the induced cultures of the recombinant L. lactis demonstrating the secretion in the medium of the intracellular L. sakeil-AI in an active form. Moreover, we showed an improvement in the enzyme secretion using either (1) L. lactis strains deficient for their two major proteases, ClpP and HtrA, or (2) an enhancer of protein secretion in L. lactis fused to the recombinant l-AI with the SPUsp45. Th l-AI enzyme secreted by the recombinant L. lactis strains or produced intracellularly in E. coli, showed the same functional properties than the native enzyme. Furthermore, when mice are fed with the L. lactis strain secreting the l-AI and galactose, tagatose was produced in vivo and reduced the glycemia index. Conclusions We report for the first time the secretion of the intracellular l-arabinose isomerase in the supernatant of food grade L. lactis cultures with hardly
display other secreted proteins. The secreted l-AI originated from the food grade L. sakei 23 K was active and showed the same catalytic and structural properties as the intracellular enzyme. The L. lactis strains secreting the l-arabinose isomerase has the ability to produce d-tagatose in vivo and conferred an anti-hyperglycemic effect to mice.
Collapse
Affiliation(s)
- Moez Rhimi
- INRA, UMR 1319 Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France.
| | - Luis G Bermudez-Humaran
- INRA, UMR 1319 Micalis, Commensal and Probiotics-Host Interactions Laboratory, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Commensal and Probiotics-Host Interactions Laboratory, 78352, Jouy-en-Josas Cedex, France.
| | - Yuan Huang
- INRA, UMR 1319 Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France.
| | - Samira Boudebbouze
- INRA, UMR 1319 Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France.
| | - Nadia Gaci
- INRA, UMR 1319 Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France.
| | - Alexandrine Garnier
- INRA, UMR 1319 Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France.
| | - Jean-Jacques Gratadoux
- INRA, UMR 1319 Micalis, Commensal and Probiotics-Host Interactions Laboratory, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Commensal and Probiotics-Host Interactions Laboratory, 78352, Jouy-en-Josas Cedex, France.
| | - Héla Mkaouar
- INRA, UMR 1319 Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France.
| | - Philippe Langella
- INRA, UMR 1319 Micalis, Commensal and Probiotics-Host Interactions Laboratory, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Commensal and Probiotics-Host Interactions Laboratory, 78352, Jouy-en-Josas Cedex, France.
| | - Emmanuelle Maguin
- INRA, UMR 1319 Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France. .,AgroParisTech, Micalis, Interactions of Firmicutes With Their Environments, 78352, Jouy-en-Josas Cedex, France.
| |
Collapse
|
15
|
Engineering of Alicyclobacillus hesperidum L-arabinose isomerase for improved catalytic activity and reduced pH optimum using random and site-directed mutagenesis. Appl Biochem Biotechnol 2015; 177:1480-92. [PMID: 26335445 DOI: 10.1007/s12010-015-1828-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
Abstract
A mutation, D478N, was obtained by an error-prone polymerase chain reaction using the L-arabinose isomerase (L-AI) gene from Alicyclobacillus hesperidum URH17-3-68 as the template. The mutated isomerase showed higher activity for D-galactose isomerization. The mutation site obtained from random mutagenesis was then introduced as a single-site mutation using site-directed mutagenesis. Single-site variants, D478N, D478Q, D478A, D478K, and D478R, were constructed. The optimum temperatures were all higher than 60 °C. D478A, D478N, and D478Q retained more than 80 % of the maximum relative activity of the wild-type L-AI at 75 °C. With the exception of the D478A variant, all variants showed decreased optimum pH values in the acidic range (6.0-6.5). All of the variant L-AIs could be significantly activated by the addition of Co(2+) and Mn(2+). D478N and D478Q showed higher catalytic efficiencies (k cat/K m) toward D-galactose than that of wild-type L-AI. In addition, the D478N and D478Q variants exhibited a much higher conversion ratio of D-galactose to D-tagatose at 6.0 than the wild-type L-AI. According to the molecular model, residue D478 was located on the surface of the enzyme and distant from the active site. It was supposed that the charged state of residue 478 may influence the optimum pH for substrate binding or isomerization.
Collapse
|
16
|
Xu Z, Li S, Feng X, Liang J, Xu H. L-Arabinose isomerase and its use for biotechnological production of rare sugars. Appl Microbiol Biotechnol 2014; 98:8869-78. [PMID: 25280744 DOI: 10.1007/s00253-014-6073-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 11/26/2022]
Abstract
L-Arabinose isomerase (AI), a key enzyme in the microbial pentose phosphate pathway, has been regarded as an important biological catalyst in rare sugar production. This enzyme could isomerize L-arabinose into L-ribulose, as well as D-galactose into D-tagatose. Both the two monosaccharides show excellent commercial values in food and pharmaceutical industries. With the identification of novel AI family members, some of them have exhibited remarkable potential in industrial applications. The biological production processes for D-tagatose and L-ribose (or L-ribulose) using AI have been developed and improved in recent years. Meanwhile, protein engineering techniques involving rational design has effectively enhanced the catalytic properties of various AIs. Moreover, the crystal structure of AI has been disclosed, which sheds light on the understanding of AI structure and catalytic mechanism at molecular levels. This article reports recent developments in (i) novel AI screening, (ii) AI-mediated rare sugar production processes, (iii) molecular modification of AI, and (iv) structural biology study of AI. Based on previous reports, an analysis of the future development has also been initiated.
Collapse
Affiliation(s)
- Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, 210009, People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Kim BJ, Hong SH, Shin KC, Jo YS, Oh DK. Characterization of a F280N variant of l-arabinose isomerase from Geobacillus thermodenitrificans identified as a d-galactose isomerase. Appl Microbiol Biotechnol 2014; 98:9271-81. [DOI: 10.1007/s00253-014-5827-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
|
18
|
Torres PR, Manzo RM, Rubiolo AC, Batista-Viera FD, Mammarella EJ. Purification of an l-arabinose isomerase from Enterococcus faecium DBFIQ E36 employing a biospecific affinity strategy. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Fan C, Liu K, Zhang T, Zhou L, Xue D, Jiang B, Mu W. Biochemical characterization of a thermostable l-arabinose isomerase from a thermoacidophilic bacterium, Alicyclobacillus hesperidum URH17-3-68. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Characterization of an L-Arabinose Isomerase from Bacillus thermoglucosidasius for D-Tagatose Production. Biosci Biotechnol Biochem 2013; 77:385-8. [DOI: 10.1271/bbb.120723] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|