1
|
Alves GS, de Andrades D, Salgado JCS, Mariano CB, Berto GL, Segato F, Ayub MAZ, Ward RJ, Alnoch RC, Polizeli MDLTM. Homologous expression, purification, and characterization of a recombinant acetylxylan esterase from Aspergillus nidulans. Int J Biol Macromol 2024; 280:135816. [PMID: 39306183 DOI: 10.1016/j.ijbiomac.2024.135816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024]
Abstract
Acetylxylan esterases (AXEs) are essential enzymes that break down the acetyl groups in acetylated xylan found in plant cell walls polysaccharides. They work synergistically with backbone-depolymerizing xylanolytic enzymes to accelerate the degradation of complex polysaccharides. In this study, we cloned the gene axeA, which encodes the acetylxylan esterase from Aspergillus nidulans FGSC A4 (AxeAN), into the pEXPYR expression vector and introduced it into the high protein-producing strain A. nidulans A773. The purified AxeAN, with a molecular weight of 33.5 kDa as confirmed by SDS-PAGE, was found to be active on ρ-nitrophenyl acetate (ρNPA), exhibiting a remarkably high specific activity (170 U mg-1) at pH 7.0 and 55 °C. AxeAN demonstrated stability over a wide pH range (5.5-9.0), retaining >80% of its initial activity after 24 h. The KM and Vmax were 0.098 mmol L-1 and 320 U mg-1, respectively, using ρNPA as a substrate. We also evaluated the synergistic effect of AxeAN with an endo-1,4-β-xylanase from Malbranchea pulchella (MpXyn10) in the hydrolysis of four different xylans (Birchwood, Beechwood, Oat spelt, and Arabinoxylan) to produce xylooligosaccharides (XOS). The best results were obtained using Birchwood xylan as substrate and MpXyn10-AxeAN as biocatalysts after 24 h of reaction (50 °C), with a XOS-yield of 91%, value 41% higher when compared to MpXyn10 (XOS-yield of 63%). These findings showed the potential of the application of AxeAN, together with other xylanases, to produce xylooligosaccharides with high purity and other products with high added value in the field of lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Gabriela S Alves
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Diandra de Andrades
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Jose C S Salgado
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil; Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Clara B Mariano
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Gabriela Leila Berto
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena 12602-810, SP, Brazil
| | - Fernando Segato
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena 12602-810, SP, Brazil
| | - Marco Antônio Záchia Ayub
- Laboratory of Biotechnology and Biochemical Engineering (BiotecLab), Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Richard J Ward
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Robson C Alnoch
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
| | - Maria de Lourdes T M Polizeli
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
| |
Collapse
|
2
|
Advances in Komagataella phaffii Engineering for the Production of Renewable Chemicals and Proteins. FERMENTATION 2022. [DOI: 10.3390/fermentation8110575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The need for a more sustainable society has prompted the development of bio-based processes to produce fuels, chemicals, and materials in substitution for fossil-based ones. In this context, microorganisms have been employed to convert renewable carbon sources into various products. The methylotrophic yeast Komagataella phaffii has been extensively used in the production of heterologous proteins. More recently, it has been explored as a host organism to produce various chemicals through new metabolic engineering and synthetic biology tools. This review first summarizes Komagataella taxonomy and diversity and then highlights the recent approaches in cell engineering to produce renewable chemicals and proteins. Finally, strategies to optimize and develop new fermentative processes using K. phaffii as a cell factory are presented and discussed. The yeast K. phaffii shows an outstanding performance for renewable chemicals and protein production due to its ability to metabolize different carbon sources and the availability of engineering tools. Indeed, it has been employed in producing alcohols, carboxylic acids, proteins, and other compounds using different carbon sources, including glycerol, glucose, xylose, methanol, and even CO2.
Collapse
|
3
|
Juturu V, Wu JC. Heterologous Protein Expression in Pichia pastoris
: Latest Research Progress and Applications. Chembiochem 2017; 19:7-21. [DOI: 10.1002/cbic.201700460] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Veeresh Juturu
- Institute of Chemical and Engineering Sciences; Agency for Science; Technology and Research (A*STAR); 1 Pesek Road Jurong Island Singapore 627833 Singapore
| | - Jin Chuan Wu
- Institute of Chemical and Engineering Sciences; Agency for Science; Technology and Research (A*STAR); 1 Pesek Road Jurong Island Singapore 627833 Singapore
| |
Collapse
|
4
|
Yang Y, Zhu N, Yang J, Lin Y, Liu J, Wang R, Wang F, Yuan H. A novel bifunctional acetyl xylan esterase/arabinofuranosidase from Penicillium chrysogenum P33 enhances enzymatic hydrolysis of lignocellulose. Microb Cell Fact 2017; 16:166. [PMID: 28950907 PMCID: PMC5615437 DOI: 10.1186/s12934-017-0777-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Xylan, the major constituent of hemicellulose, is composed of β-(1,4)-linked xylopyranosyl units that for the backbone, with side chains formed by other chemical moieties such as arabinose, galactose, mannose, ferulic acid and acetyl groups. Acetyl xylan esterases and α-L-arabinofuranosidases are two important accessory enzymes that remove side chain residues from xylan backbones and may act in synergy with other xylanolytic enzymes. Compared with enzymes possessing a single catalytic activity, multifunctional enzymes can achieve lignocellulosic biomass hydrolysis using a less complex mixture of enzymes. RESULTS Here, we cloned an acetyl xylan esterase (PcAxe) from Penicillium chrysogenum P33 and expressed it in Pichia pastoris GS115. The optimal pH and temperature of the recombinant PcAxe (rPcAxe) for 4-nitrophenyl acetate were 7.0 and 40 °C, respectively. rPcAxe is stable across a broad pH range, retaining 100% enzyme activity om pH 6-9 after a 1 h incubation. The enzyme tolerates the presence of a wide range of metal ions. Sequence alignment revealed a GH62 domain exhibiting α-L-arabinofuranosidase activity with pH and temperature optima of pH 7.0 and 50 °C, in addition to the expected esterase domain. rPcAxe displayed significant synergy with a recombinant xylanase, with a degree of synergy of 1.35 for the hydrolysis of delignified corn stover. Release of glucose was increased by 51% from delignified corn stover when 2 mg of a commercial cellulase was replaced by an equivalent amount of rPcAxe, indicating superior hydrolytic efficiency. CONCLUSIONS The novel bifunctional enzyme PcAxe was identified in P. chrysogenum P33. rPcAxe includes a carbohydrate esterase domain and a glycosyl hydrolase family 62 domain. This is the first detailed report on a novel bifunctional enzyme possessing acetyl xylan esterase and α-L-arabinofuranosidase activities. These findings expand our current knowledge of glycoside hydrolases and pave the way for the discovery of similar novel enzymes.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ning Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yujian Lin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiawen Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ruonan Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengqin Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Abstract
Colorimetric detection of reaction products is typically preferred for initial surveys of acetyl xylan esterase (AcXE) activity. This chapter will describe common colorimetric methods, and variations thereof, for measuring AcXE activities on commercial, synthesized, and natural substrates. Whereas assays using pNP-acetate, α-naphthyl acetate, and 4-methylumbelliferyl acetate (4MUA) are emphasized, common methods used to measure AcXE activity towards carbohydrate analogs (e.g., acetylated p-nitrophenyl β-D-xylopyranosides) and various acetylated xylans are also described. Strengths and limitations of the colorimetric assays are highlighted.
Collapse
Affiliation(s)
- Galina Mai-Gisondi
- Department of Bioproducts and Biosystems, Aalto University, 00076, Kemistintie 1, Espoo, Aalto, Finland
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
7
|
Adesioye FA, Makhalanyane TP, Biely P, Cowan DA. Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. Enzyme Microb Technol 2016; 93-94:79-91. [DOI: 10.1016/j.enzmictec.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/18/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023]
|