1
|
Ren K, Wang Q, Chen J, Zhang H, Guo Z, Xu M, Rao Z, Zhang X. Design-build-test of recombinant Bacillus subtilis chassis cell by lifespan engineering for robust bioprocesses. Synth Syst Biotechnol 2024; 9:470-480. [PMID: 38634000 PMCID: PMC11021899 DOI: 10.1016/j.synbio.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/03/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
Microbial cell factories utilize renewable raw materials for industrial chemical production, providing a promising path for sustainable development. Bacillus subtilis is widely used in industry for its food safety properties, but challenges remain in the limitations of microbial fermentation. This study proposes a novel strategy based on lifespan engineering to design robust B. subtilis chassis cells to supplement traditional metabolic modification strategies that can alleviate cell autolysis, tolerate toxic substrates, and get a higher mass transfer efficiency. The modified chassis cells could produce high levels of l-glutaminase, and tolerate hydroquinone to produce α-arbutin efficiently. In a 5 L bioreactor, the l-glutaminase enzyme activity of the final strain CRE15TG was increased to 2817.4 ± 21.7 U mL-1, about 1.98-fold compared with that of the wild type. The α-arbutin yield of strain CRE15A was increased to 134.7 g L-1, about 1.34-fold compared with that of the WT. To our knowledge, both of the products in this study performed the highest yields reported so far. The chassis modification strategy described in this study can Improve the utilization efficiency of chassis cells, mitigate the possible adverse effects caused by excessive metabolic modification of engineered strains, and provide a new idea for the future design of microbial cell factories.
Collapse
Affiliation(s)
- Kexin Ren
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Qiang Wang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Jianghua Chen
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hengwei Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Zhoule Guo
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| |
Collapse
|
2
|
Pérez-García F, Brito LF, Bakken TI, Brautaset T. Riboflavin overproduction from diverse feedstocks with engineered Corynebacterium glutamicum. Biofabrication 2024; 16:045012. [PMID: 38996414 DOI: 10.1088/1758-5090/ad628e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Riboflavin overproduction byCorynebacterium glutamicumwas achieved by screening synthetic operons, enabling fine-tuned expression of the riboflavin biosynthetic genesribGCAH.The synthetic operons were designed by means of predicted translational initiation rates of each open reading frame, with the best-performing selection enabling riboflavin overproduction without negatively affecting cell growth. Overexpression of the fructose-1,6-bisphosphatase (fbp) and 5-phosphoribosyl 1-pyrophosphate aminotransferase (purF) encoding genes was then done to redirect the metabolic flux towards the riboflavin precursors. The resulting strain produced 8.3 g l-1of riboflavin in glucose-based fed-batch fermentations, which is the highest reported riboflavin titer withC. glutamicum. Further genetic engineering enabled both xylose and mannitol utilization byC. glutamicum, and we demonstrated riboflavin overproduction with the xylose-rich feedstocks rice husk hydrolysate and spent sulfite liquor, and the mannitol-rich feedstock brown seaweed hydrolysate. Remarkably, rice husk hydrolysate provided 30% higher riboflavin yields compared to glucose in the bioreactors.
Collapse
Affiliation(s)
- Fernando Pérez-García
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Luciana Fernandes Brito
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thea Isabel Bakken
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
3
|
You J, Wang Y, Wang K, Du Y, Zhang X, Zhang X, Yang T, Pan X, Rao Z. Utilizing 5' UTR Engineering Enables Fine-Tuning of Multiple Genes within Operons to Balance Metabolic Flux in Bacillus subtilis. BIOLOGY 2024; 13:277. [PMID: 38666889 PMCID: PMC11047901 DOI: 10.3390/biology13040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The application of synthetic biology tools to modulate gene expression to increase yield has been thoroughly demonstrated as an effective and convenient approach in industrial production. In this study, we employed a high-throughput screening strategy to identify a 5' UTR sequence from the genome of B. subtilis 168. This sequence resulted in a 5.8-fold increase in the expression level of EGFP. By utilizing the 5' UTR sequence to overexpress individual genes within the rib operon, it was determined that the genes ribD and ribAB serve as rate-limiting enzymes in the riboflavin synthesis pathway. Constructing a 5' UTR library to regulate EGFP expression resulted in a variation range in gene expression levels exceeding 100-fold. Employing the same 5' UTR library to regulate the expression of EGFP and mCherry within the operon led to a change in the expression ratio of these two genes by over 10,000-fold. So, employing a 5' UTR library to modulate the expression of the rib operon gene and construct a synthetic rib operon resulted in a 2.09-fold increase in riboflavin production. These results indicate that the 5' UTR sequence identified and characterized in this study can serve as a versatile synthetic biology toolkit for achieving complex metabolic network reconstruction. This toolkit can facilitate the fine-tuning of gene expression to produce target products.
Collapse
Affiliation(s)
- Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Yifan Wang
- Department of Food Science and Technology, Texas A & M University, College Station, TX 77843, USA;
| | - Kang Wang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Yuxuan Du
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Xiaoling Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| |
Collapse
|
4
|
Zhang J, Liang Q, Mu D, Lian F, Gong Y, Ye M, Chen G, Ye Y, Du Z. Cultivating the uncultured: Harnessing the "sandwich agar plate" approach to isolate heme-dependent bacteria from marine sediment. MLIFE 2024; 3:143-155. [PMID: 38827516 PMCID: PMC11139205 DOI: 10.1002/mlf2.12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 06/04/2024]
Abstract
In the classical microbial isolation technique, the isolation process inevitably destroys all microbial interactions and thus makes it difficult to culture the many microorganisms that rely on these interactions for survival. In this study, we designed a simple coculture technique named the "sandwich agar plate method," which maintains microbial interactions throughout the isolation and pure culture processes. The total yield of uncultured species in sandwich agar plates based on eight helper strains was almost 10-fold that of the control group. Many uncultured species displayed commensal lifestyles. Further study found that heme was the growth-promoting factor of some marine commensal bacteria. Subsequent genomic analysis revealed that heme auxotrophies were common in various biotopes and prevalent in many uncultured microbial taxa. Moreover, our study supported that the survival strategies of heme auxotrophy in different habitats varied considerably. These findings highlight that cocultivation based on the "sandwich agar plate method" could be developed and used to isolate more uncultured bacteria.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong UniversityQingdaoChina
- Marine CollegeShandong UniversityWeihaiChina
| | | | - Da‐Shuai Mu
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong UniversityQingdaoChina
- Marine CollegeShandong UniversityWeihaiChina
- Shandong University‐Weihai Research Institute of Industrial TechnologyWeihaiChina
| | | | - Ya Gong
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong UniversityQingdaoChina
- Marine CollegeShandong UniversityWeihaiChina
| | - Mengqi Ye
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong UniversityQingdaoChina
- Marine CollegeShandong UniversityWeihaiChina
| | - Guan‐Jun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong UniversityQingdaoChina
- Marine CollegeShandong UniversityWeihaiChina
| | - Yuqi Ye
- Marine CollegeShandong UniversityWeihaiChina
| | - Zong‐Jun Du
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong UniversityQingdaoChina
- Marine CollegeShandong UniversityWeihaiChina
- Shandong University‐Weihai Research Institute of Industrial TechnologyWeihaiChina
| |
Collapse
|
5
|
Owusu-Kwarteng J, Agyei D, Akabanda F, Atuna RA, Amagloh FK. Plant-Based Alkaline Fermented Foods as Sustainable Sources of Nutrients and Health-Promoting Bioactive Compounds. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.885328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traditional food fermentation is a practice that precedes human history. Acidic products such as yogurts and sourdoughs or alcoholic beverages produced through lactic acid or yeast fermentations, respectively, are widely described and documented. However, a relatively less popular group of fermented products known as alkaline fermented foods are common traditional products in Africa and Asia. These products are so called “alkaline” because the pH tends to increase during fermentation due to the formation of ammonia resulting from protein degradation by Bacillus species. Plant-based alkaline fermented foods (AFFs) are generally produced from legumes including soybean, non-soybean leguminous seeds, and other non-legume plant raw materials. Alkaline fermented food products such as natto, douchi, kinema, doenjang, chongkukjang, thua nao, meitauza, yandou, dawadawa/iru, ugba, kawal, okpehe, otiru, oso, ogiri, bikalga, maari/tayohounta, ntoba mbodi, cabuk, and owoh are produced at small industrial scale or household levels and widely consumed in Asia and Africa where they provide essential nutrients and health-promoting bioactive compounds for the population. Alkaline food fermentation is important for sustainable food security as it contributes to traditional dietary diversity, significantly reduces antinutritional components in raw plant materials thereby improving digestibility, improves health via the production of vitamins, and may confer probiotic and post-biotic effects onto consumers. In this review, we present currently available scientific information on plant-based AFFs and their role as sustainable sources of nutrients and bioactive compounds for improved health. Finally, we provide perspectives on research needs required to harness the full potential of AFFs in contributing to nutrition and health.
Collapse
|
6
|
You J, Du Y, Pan X, Zhang X, Yang T, Rao Z. Increased Production of Riboflavin by Coordinated Expression of Multiple Genes in Operons in Bacillus subtilis. ACS Synth Biol 2022; 11:1801-1810. [PMID: 35467340 DOI: 10.1021/acssynbio.1c00640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Riboflavin is an essential vitamin widely used in the food, pharmaceutical, and feed industries. However, the insufficient supply of precursors caused by the imbalance of intracellular metabolic flow limits the riboflavin synthesis by industrial strains. Here, we increase riboflavin production by tuning multiple gene expression to balance intracellular metabolic flow. First, we tuned the expression of mCherry and egfp genes within operons by generating libraries of tunable intergenic regions (TIGRs) and confirmed the relative expression of the two reporter genes. The TIGR library can coordinate the expression ratio of reporter genes more than 180 times in Escherichia coli and more than 70 times in Bacillus subtilis. Next, we used this strategy to tune the expression of zwf, ribBA, and ywlf genes within operons through the TIGR library to increase the intracellular precursor pool for riboflavin biosynthesis. Based on the fluorescence characteristics of riboflavin, 96-well plates were used to screen the optimal combination mutants quickly. The best-engineered strain was selected from the library, which produced 2.7 g/L riboflavin, increasing by 64.35% in the shake flask. Finally, the riboflavin titer increased by 59.27% to 11.77 g/L in fed-batch fermentation. The strategy described here will contribute to the industrial production of riboflavin and related products by B. subtilis.
Collapse
Affiliation(s)
- Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuxuan Du
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Hrubša M, Siatka T, Nejmanová I, Vopršalová M, Kujovská Krčmová L, Matoušová K, Javorská L, Macáková K, Mercolini L, Remião F, Máťuš M, Mladěnka P. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B 1, B 2, B 3, and B 5. Nutrients 2022; 14:484. [PMID: 35276844 PMCID: PMC8839250 DOI: 10.3390/nu14030484] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
Collapse
Affiliation(s)
- Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Tomáš Siatka
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUINTE, Toxicology Laboratory, Biological Sciences Department Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marek Máťuš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | | |
Collapse
|
8
|
You J, Pan X, Yang C, Du Y, Osire T, Yang T, Zhang X, Xu M, Xu G, Rao Z. Microbial production of riboflavin: Biotechnological advances and perspectives. Metab Eng 2021; 68:46-58. [PMID: 34481976 DOI: 10.1016/j.ymben.2021.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 10/24/2022]
Abstract
Riboflavin is an essential nutrient for humans and animals, and its derivatives flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are cofactors in the cells. Therefore, riboflavin and its derivatives are widely used in the food, pharmaceutical, nutraceutical and cosmetic industries. Advances in biotechnology have led to a complete shift in the commercial production of riboflavin from chemical synthesis to microbial fermentation. In this review, we provide a comprehensive review of biotechnologies that enhance riboflavin production in microorganisms, as well as representative examples. Firstly, the synthesis pathways and metabolic regulatory processes of riboflavin in microorganisms; and the current strategies and methods of metabolic engineering for riboflavin production are systematically summarized and compared. Secondly, the using of systematic metabolic engineering strategies to enhance riboflavin production is discussed, including laboratory evolution, histological analysis and high-throughput screening. Finally, the challenges for efficient microbial production of riboflavin and the strategies to overcome these challenges are prospected.
Collapse
Affiliation(s)
- Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chen Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yuxuan Du
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Tolbert Osire
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guoqiang Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
9
|
You J, Yang C, Pan X, Hu M, Du Y, Osire T, Yang T, Rao Z. Metabolic engineering of Bacillus subtilis for enhancing riboflavin production by alleviating dissolved oxygen limitation. BIORESOURCE TECHNOLOGY 2021; 333:125228. [PMID: 33957462 DOI: 10.1016/j.biortech.2021.125228] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Riboflavin, an essential vitamin for animals, is used widely in the pharmaceutical industry and as a food and feed additive. The microbial synthesis of riboflavin requires a large amount of oxygen, which limits the industrial-scale production of the vitamin. In this study, a metabolic engineering strategy based on transcriptome analysis was identified as effective in increasing riboflavin production. First, transcriptional profiling revealed that hypoxia affects purine, and nitrogen metabolism. Next, the precursor supply pool was increased by purR knockout and tnrA and glnR knockdown to balance intracellular nitrogen metabolism. Finally, increased oxygen utilization was achieved by dynamically regulating vgb. Fed-batch fermentation of the engineered strain in a 5-liter bioreactor produced 10.71 g/l riboflavin, a 45.51% higher yield than that obtained with Bacillus subtilis RF1. The metabolic engineering strategy described herein is useful for alleviating the oxygen limitation of bacterial strains used for the industrial production of riboflavin and related products.
Collapse
Affiliation(s)
- Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chen Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengkai Hu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuxuan Du
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tolbert Osire
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Zhao G, Dong F, Lao X, Zheng H. Strategies to Increase the Production of Biosynthetic Riboflavin. Mol Biotechnol 2021; 63:909-918. [PMID: 34156642 DOI: 10.1007/s12033-021-00318-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/20/2021] [Indexed: 12/29/2022]
Abstract
Riboflavin is widely regarded as an essential nutrient that is involved in biological oxidation in vivo. In addition to preventing and treating acyl-CoA dehydrogenase deficiency in patients with keratitis, stomatitis, and glossitis, riboflavin is also closely related to the treatment of radiation mucositis and cardiovascular disease. Chemical synthesis has been the dominant method for producing riboflavin for approximately 50 years. Nevertheless, due to the intricate synthesis process, relatively high cost, and high risk of pollution, alternative methods of chemical syntheses, such as the fermentation method, began to develop and eventually became the main methods for producing riboflavin. At present, there are three types of strains used in industrial riboflavin production: Ashbya gossypii, Candida famata, and Bacillus subtilis. Additionally, many recent studies have been conducted on Escherichia coli and Lactobacillus. Fermentation increases the yield of riboflavin using genetic engineering technology to modify and induce riboflavin production in the strain, as well as to regulate the metabolic flux of the purine pathway and pentose phosphate pathway (PP pathway), thereby optimizing the culture process. This article briefly introduces recent progress in the fermentation of riboflavin.
Collapse
Affiliation(s)
- Guiling Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Fanyi Dong
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
11
|
Averianova LA, Balabanova LA, Son OM, Podvolotskaya AB, Tekutyeva LA. Production of Vitamin B2 (Riboflavin) by Microorganisms: An Overview. Front Bioeng Biotechnol 2020; 8:570828. [PMID: 33304888 PMCID: PMC7693651 DOI: 10.3389/fbioe.2020.570828] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
Riboflavin is a crucial micronutrient that is a precursor to coenzymes flavin mononucleotide and flavin adenine dinucleotide, and it is required for biochemical reactions in all living cells. For decades, one of the most important applications of riboflavin has been its global use as an animal and human nutritional supplement. Being well-informed of the latest research on riboflavin production via the fermentation process is necessary for the development of new and improved microbial strains using biotechnology and metabolic engineering techniques to increase vitamin B2 yield. In this review, we describe well-known industrial microbial producers, namely, Ashbya gossypii, Bacillus subtilis, and Candida spp. and summarize their biosynthetic pathway optimizations through genetic and metabolic engineering, combined with random chemical mutagenesis and rational medium components to increase riboflavin production.
Collapse
Affiliation(s)
- Liudmila A. Averianova
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
| | - Larissa A. Balabanova
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Oksana M. Son
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, Primorsky Krai, Russia
| | - Anna B. Podvolotskaya
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, Primorsky Krai, Russia
| | - Liudmila A. Tekutyeva
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, Primorsky Krai, Russia
| |
Collapse
|
12
|
Wang H, Zhang X, Wang S, Xiao S, Ma H, Wang X. Multianalyte electrochemical electrode for the determination of vitamins B2 and B6 in complex biosystem. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Srivastava RK, Akhtar N, Verma M, Imandi SB. Primary metabolites from overproducing microbial system using sustainable substrates. Biotechnol Appl Biochem 2020; 67:852-874. [PMID: 32294277 DOI: 10.1002/bab.1927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/12/2020] [Indexed: 02/06/2023]
Abstract
Primary (or secondary) metabolites are produced by animals, plants, or microbial cell systems either intracellularly or extracellularly. Production capabilities of microbial cell systems for many types of primary metabolites have been exploited at a commercial scale. But the high production cost of metabolites is a big challenge for most of the bioprocess industries and commercial production needs to be achieved. This issue can be solved to some extent by screening and developing the engineered microbial systems via reconstruction of the genome-scale metabolic model. The predicted genetic modification is applied for an increased flux in biosynthesis pathways toward the desired product. Wherein the resulting microbial strain is capable of converting a large amount of carbon substrate to the expected product with minimum by-product formation in the optimal operating conditions. Metabolic engineering efforts have also resulted in significant improvement of metabolite yields, depending on the nature of the products, microbial cell factory modification, and the types of substrate used. The objective of this review is to comprehend the state of art for the production of various primary metabolites by microbial strains system, focusing on the selection of efficient strain and genetic or pathway modifications, applied during strain engineering.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| | - Nasim Akhtar
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| | - Malkhey Verma
- Departments of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, India
| | - Sarat Babu Imandi
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| |
Collapse
|
14
|
Liu S, Hu W, Wang Z, Chen T. Production of riboflavin and related cofactors by biotechnological processes. Microb Cell Fact 2020; 19:31. [PMID: 32054466 PMCID: PMC7017516 DOI: 10.1186/s12934-020-01302-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
Riboflavin (RF) and its active forms, the cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), have been extensively used in the food, feed and pharmaceutical industries. Modern commercial production of riboflavin is based on microbial fermentation, but the established genetically engineered production strains are facing new challenges due to safety concerns in the food and feed additives industry. High yields of flavin mononucleotide and flavin adenine dinucleotide have been obtained using whole-cell biocatalysis processes. However, the necessity of adding expensive precursors results in high production costs. Consequently, developing microbial cell factories that are capable of efficiently producing flavin nucleotides at low cost is an increasingly attractive approach. The biotechnological processes for the production of RF and its cognate cofactors are reviewed in this article.
Collapse
Affiliation(s)
- Shuang Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Wenya Hu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| |
Collapse
|
15
|
Abdallah II, Xue D, Pramastya H, van Merkerk R, Setroikromo R, Quax WJ. A regulated synthetic operon facilitates stable overexpression of multigene terpenoid pathway in Bacillus subtilis. ACTA ACUST UNITED AC 2020; 47:243-249. [DOI: 10.1007/s10295-019-02257-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/14/2019] [Indexed: 01/17/2023]
Abstract
Abstract
The creation of microbial cell factories for sustainable production of natural products is important for medical and industrial applications. This requires stable expression of biosynthetic pathways in a host organism with favorable fermentation properties such as Bacillus subtilis. The aim of this study is to construct B. subtilis strains that produce valuable terpenoid compounds by overexpressing the innate methylerythritol phosphate (MEP) pathway. A synthetic operon allowing the concerted and regulated expression of multiple genes was developed. Up to 8 genes have been combined in this operon and a stably inherited plasmid-based vector was constructed resulting in a high production of C30 carotenoids. For this, two vectors were examined, one with rolling circle replication and another with theta replication. Theta-replication constructs were clearly superior in structural and segregational stability compared to rolling circle constructs. A strain overexpressing all eight genes of the MEP pathway on a theta-replicating plasmid clearly produced the highest level of carotenoids. The level of transcription for each gene in the operon was similar as RT-qPCR analysis indicated. Hence, that corresponding strain can be used as a stable cell factory for production of terpenoids. This is the first report of merging and stably expressing this large-size operon (eight genes) from a plasmid-based system in B. subtilis enabling high C30 carotenoid production.
Collapse
Affiliation(s)
- Ingy I Abdallah
- grid.4830.f 0000 0004 0407 1981 Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Dan Xue
- grid.4830.f 0000 0004 0407 1981 Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Hegar Pramastya
- grid.4830.f 0000 0004 0407 1981 Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
- grid.434933.a 0000 0004 1808 0563 Pharmaceutical Biology Research Group, School of Pharmacy Institut Teknologi Bandung 40132 Bandung Indonesia
| | - Ronald van Merkerk
- grid.4830.f 0000 0004 0407 1981 Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Rita Setroikromo
- grid.4830.f 0000 0004 0407 1981 Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Wim J Quax
- grid.4830.f 0000 0004 0407 1981 Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| |
Collapse
|
16
|
Li X, Xu S, Zhang X, Xu M, Yang T, Wang L, Zhang H, Fang H, Osire T, Yang S, Rao Z. Design of a high-efficiency synthetic system for l-asparaginase production in Bacillus subtilis. Eng Life Sci 2019; 19:229-239. [PMID: 32625005 DOI: 10.1002/elsc.201800166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/07/2018] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
l-asparaginase has high application value in medicine and food industry, but the low yield limits its application. In this study, we designed a synthetic system in Bacillus subtilis to produce l-asparaginase by improving gene expression and optimizing the fermentation agitation speed. Gene expression was improved by respectively increasing transcription levels and translation speeds through screening promoters and RBS sequences. With the optimal promoter, P43, and the synthetic RBS sequence, the yield obtained in a shake flask was 371.87 U/mL, which was 2.09 times that with the original strain. To further enhance production in a 5-L fermenter, a multistage agitation speed control strategy was adopted, involving agitation at 600 rpm for the first 12 h, followed by a gradual increase in speed to 900 rpm, which resulted in the highest yield of l-asparaginase, 5321 U/mL, after 42 h of fermentation.
Collapse
Affiliation(s)
- Xu Li
- The Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi P. R. China
| | - Shuqin Xu
- The Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi P. R. China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi P. R. China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi P. R. China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi P. R. China
| | - Li Wang
- School of Food Science and Technology Jiangnan University Wuxi P. R. China
| | - Huiling Zhang
- School of Agriculture Ningxia University Yinchuan P. R. China
| | - Haitian Fang
- School of Agriculture Ningxia University Yinchuan P. R. China
| | - Tolbert Osire
- The Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi P. R. China
| | - Shangtian Yang
- Department of Chemical and Biomolecular Engineering The Ohio State University Columbus OH USA
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi P. R. China
| |
Collapse
|
17
|
Xin F, Dong W, Jiang Y, Ma J, Zhang W, Wu H, Zhang M, Jiang M. Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts. Crit Rev Biotechnol 2017; 38:529-540. [PMID: 28911245 DOI: 10.1080/07388551.2017.1376309] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Butanol is an important bulk chemical and has been regarded as an advanced biofuel. Large-scale production of butanol has been applied for more than 100 years, but its production through acetone-butanol-ethanol (ABE) fermentation process by solventogenic Clostridium species is still not economically viable due to the low butanol titer and yield caused by the toxicity of butanol and a by-product, such as acetone. Renewed interest in biobutanol as a biofuel has spurred technological advances to strain modification and fermentation process design. Especially, with the development of interdisciplinary processes, the sole product or even the mixture of ABE produced through ABE fermentation process can be further used as platform chemicals for high value added product production through enzymatic or chemical catalysis. This review aims to comprehensively summarize the most recent advances on the conversion of acetone, butanol and ABE mixture into various products, such as isopropanol, butyl-butyrate and higher-molecular mass alkanes. Additionally, co-production of other value added products with ABE was also discussed.
Collapse
Affiliation(s)
- Fengxue Xin
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Weiliang Dong
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Yujia Jiang
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China
| | - Jiangfeng Ma
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Wenming Zhang
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Hao Wu
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Min Zhang
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Min Jiang
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| |
Collapse
|
18
|
ÿztürk S, ÿalık P, ÿzdamar TH. Fed-Batch Biomolecule Production by Bacillus subtilis : A State of the Art Review. Trends Biotechnol 2016; 34:329-345. [DOI: 10.1016/j.tibtech.2015.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/02/2015] [Accepted: 12/16/2015] [Indexed: 12/27/2022]
|
19
|
Biotechnology of riboflavin. Appl Microbiol Biotechnol 2016; 100:2107-19. [DOI: 10.1007/s00253-015-7256-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
|