1
|
Jin L, Ding L, Zhang Y, Li T, Liu Q. Profiling heavy metals distribution in surface sediments from the perspective of coastal industrial structure and their impacts on bacterial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118098. [PMID: 40154221 DOI: 10.1016/j.ecoenv.2025.118098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/29/2024] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Heavy metal pollution of marine sediments along the coastal industrial parks have always received extensive attention due to their persistent hazard to local marine ecosystem. Despite this, our knowledge about the influence of geography and coastal industrial structures on heavy metal distributions remains little. In this study, surface sediment samples were collected from the coastal zone of the industrial park in Ningbo. The physicochemical properties, heavy metals with ecological risk levels and bacterial structures as well as their relationships in these sediments were comprehensively analyzed. We found that: heavy metal concentrations of surface sediment revealed wide variation between this study sea area and other coastal economic areas; increasing attention should be paid to the Cu, Hg, Cd and As pollution due to their high contamination degree and environment risk; the distribution of heavy metals is closely related to the geographic location and nearshore industrial structures; the physicochemical features (e.g., TN, PHCs and pH) of sediments could better explain the occurrence characteristics of heavy metals present; individual metals (Cu and Cr) significantly affected the bacterial α-diversity; Cr inhibits multiple functional pathways associated with energy metabolism and pollutant degradation; RDA analysis and co-occurrence network confirmed that several heavy metals (especially Zn, Cr, Cu and Cd) exhibited large effects on bacterial community structure; moreover, genera Idiomarina Sulfurovum and Sulfurimonas could be used as biological indicators for specific heavy metals contamination in our study. Our findings provide a novel insight to understand the heavy metal distribution and bacterial variation associated with industrial activities.
Collapse
Affiliation(s)
- Lei Jin
- Zhejiang Marine Fisheries Research Institute, Zhoushan, Zhejiang Province 316021, China; Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan, Zhejiang Province 316021, China
| | - Lei Ding
- Zhejiang Marine Fisheries Research Institute, Zhoushan, Zhejiang Province 316021, China; Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yao Zhang
- Zhejiang Marine Fisheries Research Institute, Zhoushan, Zhejiang Province 316021, China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, Zhoushan, Zhejiang Province 316021, China
| | - Qin Liu
- Zhejiang Marine Fisheries Research Institute, Zhoushan, Zhejiang Province 316021, China.
| |
Collapse
|
2
|
Li Q, Pei L, Huang Z, Shu W, Li Q, Song Y, Zhao H, Schäfer M, Nordhaus I. Ecological risk assessment of heavy metals in the sediments and their impacts on bacterial community structure: A case study of Bamen Bay in China. MARINE POLLUTION BULLETIN 2023; 186:114482. [PMID: 36565579 DOI: 10.1016/j.marpolbul.2022.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal pollution associated with human activity is of big concern in tropical bays. Microorganisms may be highly sensitive to heavy metals. Nonetheless, little is known about effects of heavy metals on microbial structure in tropical bay sediments. In this study, 16S rRNA gene sequencing and potential ecological risk index analysis were used to analyze the relationships between nine metals (arsenic, lead, cadmium, cobalt, chromium, copper, zinc, manganese, and nickel) and bacterial communities in the sediments of Bamen Bay, China. Our results showed that Bamen Bay was under a considerable ecological risk and cadmium had the highest monomial potential ecological risk. In addition, individual metal contamination correlated with bacterial community composition but not with bacterial α-diversity. Arsenic was the metal influencing bacterial community structure the most. Our findings provide a novel insight into the monitoring and remediation of heavy metal pollution in tropical bays.
Collapse
Affiliation(s)
- Qipei Li
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Lixin Pei
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Zanhui Huang
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Wei Shu
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Qiuli Li
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yanwei Song
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China.
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China.
| | - Marvin Schäfer
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen 28359, Germany
| | - Inga Nordhaus
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen 28359, Germany
| |
Collapse
|
3
|
Gao W, Liu P, Ye Z, Zhou J, Wang X, Huang X, Deng X, Ma L. Divergent prokaryotic microbial assembly, co-existence patterns and functions in surrounding river sediments of a Cu-polymetallic deposit in Tibet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158192. [PMID: 35988602 DOI: 10.1016/j.scitotenv.2022.158192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The exploitation of polymetallic deposits produces large amounts of mine drainage, which poses great challenges to the surrounding aquatic ecosystem. However, the prokaryotic microbial community assembly and co-existence patterns in the polluted area are poorly understood, especially in high-altitude localities. Herein, we investigated the prokaryotic microbial assembly, co-existence patterns and their potential functional responses in surrounding river sediments of a Cu-polymetallic deposit in Tibet. The sediments from mine drainage and surrounding tributaries exhibited distinct geochemical gradients, especially the changes in Cu content. The microbial community structure changed significantly, accompanied by decreased richness and diversity with increased Cu content. Interestingly, the relative abundances of some potential functional bacteria (e.g., Planctomycetota) actually increased as the Cu levels raised. In low contaminated area, ecological drift was the most important assembly process, whereas deterministic processes gained importance with pollution levels. Meanwhile, negative interactions in co-occurrence networks were more frequent with higher modularity and reduced keystone taxa in high contaminated area. Notably, the functions related to ABC transporters and quorum sensing (QS) were more abundant with high Cu content, which helped bacteria work together to cope with the stressful environment. Taken together, the physicochemical gradients dominated by Cu content drove the distribution, assembly and co-existence patterns of microbial communities in surrounding river sediments of a Cu-polymetallic deposit. These findings provide new insights into the maintenance mechanisms of prokaryotic microbial communities in response to heavy metal stress at high altitudes.
Collapse
Affiliation(s)
- Weikang Gao
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Peng Liu
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Zhihang Ye
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Jianwei Zhou
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xingjie Wang
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xinping Huang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xiaoyu Deng
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Liyuan Ma
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, Hubei, China.
| |
Collapse
|
4
|
Xia L, You H, Liu J, Wu W, Lin L. Characteristics and origin of clogging-functional bacteria during managed aquifer recharge: A laboratory study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114880. [PMID: 35305358 DOI: 10.1016/j.jenvman.2022.114880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/29/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Owing to serious influences on well performance, bacteria-induced clogging has become a dilemma for managed aquifer recharge (MAR). During MAR, surface river water is inoculated into aquifer and mixed with groundwater. Therefore, the clogging-functional bacteria may originate from the river water or the groundwater. However, the origin of the clogging-functional bacteria in the aquifer has not yet been well understood. This study conducted a series of laboratory-scale column experiments involving different recharge modes (using river water, groundwater) to simulate the processes of bacteria-induced clogging and used the high-throughput sequencing technology, aiming to elucidate the community characteristics and the origin of the clogging-functional bacteria involved in MAR bioclogging. Analyses of the bacterial-community characteristics showed significant differences between the river water and groundwater. The bacterial-community characteristics of the clogging aquifer in the different recharge modes were similar to each other and have common genera, namely, Acinetobacter, Brevundimonas, Exiguobacterium, Porphyrobacter, Cloacibacterium, and Sphingobium, which suggests that MAR activity could promote bacterial communities to become identical during surface water infiltration into aquifers, despite differences in the bacterial communities present in the subsurface- and surface systems. This knowledge will assist greatly in targeted treatment and prophylaxis of clogging-functional bacteria during managed aquifer recharge.
Collapse
Affiliation(s)
- Lu Xia
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Haichi You
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jinhui Liu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Wenli Wu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Lei Lin
- College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
5
|
Wang H, Guo L, Ren X, Gao M, Jin C, Zhao Y, Ji J, She Z. Enhanced aerobic granular sludge by static magnetic field to treat saline wastewater via simultaneous partial nitrification and denitrification (SPND) process. BIORESOURCE TECHNOLOGY 2022; 350:126891. [PMID: 35217165 DOI: 10.1016/j.biortech.2022.126891] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 05/12/2023]
Abstract
Saline wastewater poses a threat to biological nitrogen removal. This study investigated whether and how static magnetic field (SMF) can improve the salt-tolerance of aerobic granular sludge (AGS) in two simultaneous partial nitrification and denitrification (SPND) reactors. Results confirmed that the SMF improved the mean size and settleability of granules, stimulated secretion of extracellular polymeric substances with high protein content, in turn enhancing the aerobic granulation. Although high salt stress inhibited functional microorganisms, the SMF maintained better SPND performance with average COD removal, TN removal and nitrite accumulation ratio finally recovering to 100%, 72.9% and 91.1% respectively. High throughput sequencing revealed that functional bacteria evolved from Paracoccus to halotolerant genera Xanthomarina, Thauera, Pseudofulvimonas and Azoarcus with stepwise increasing salinity. The enhanced salt-tolerance may be because the SMF promoted the activity of these halotolerant bacteria. Therefore, this study proposes an economic, effective and environmental biotechnology for saline wastewater treatment.
Collapse
Affiliation(s)
- Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Xiaomin Ren
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Junyuan Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
6
|
Mupindu P, Zhao YG, Wang X, Hu Y. Effect of sulfamethoxazole on nitrate removal by simultaneous heterotrophic aerobic denitrification. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10716. [PMID: 35415858 DOI: 10.1002/wer.10716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
The increase in mariculture activities worldwide has not only led to a rise of nitrogen compounds in the ecosystem but has also intensified the accumulation of antibiotics in both terrestrial and marine environments. This study focused on the effect of typical antibiotics, specifically sulfamethoxazole (SMX) on nitrate removal from mariculture wastewater by aerobic denitrification process; an aerobic denitrification system feeding with 148.2 mg/L COD, 8.59 mg/L nitrate, 0.72 mg/L nitrite, and 4.75 mg/L ammonium was set up. The hydraulic retention time (HRT) was 8 h. As the aerobic bioreactor started up successfully without SMX dosage, an excellent removal of ammonium, nitrite, and nitrate was achieved at 91.35%, 93.33%, and 88.51%, respectively; the corresponding effluent concentrations were 0.41 mg/L, 0.048 mg/L, and 0.96 mg/L. At the influent SMX doses of 0, 1, 5, and 10 mg/L, the COD removal reached 96.91%, 96.27%, 88.69%, and 85.89%, resulting in effluent concentrations of 4.53, 5.45, 17.38, and 20.6 mg/L, respectively. Nitrification was not inhibited by SMX dosage. However, aerobic denitrification was inhibited by 10 mg/L SMX. Proteobacteria was the most abundant phylum, and surprisingly its abundance increased with the increase in SMX concentration. An excellent SMX degradation was noted at initial SMX dosages of 1, 5, and 10 mg/L; the removal rate was 100%,100%, and 99.8%, respectively. The SMX degrading genera Comamonas sp., Acinetobacter sp., and Thauera sp. are of great validity to wastewater engineers because they have demonstrated efficiency in simultaneous heterotrophic aerobic denitrification and antibiotic degradation as well as COD removal. PRACTITIONER POINTS: Nitrification was not inhibited by increase in SMX dosage. An increase in SMX dosage inhibited aerobic denitrification. COD removal was not affected by increased SMX dosage. Comamonas, Acinetobacter, and Thauera had high efficiency in COD removal and SMX degradation.
Collapse
Affiliation(s)
- Progress Mupindu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiao Wang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Yubo Hu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
7
|
Kiaghadi A, Rifai HS, Crum M, Willson RC. Longitudinal patterns in sediment type and quality during daily flow regimes and following natural hazards in an urban estuary: a Hurricane Harvey retrospective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7514-7531. [PMID: 34476713 DOI: 10.1007/s11356-021-15912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Understanding the transport of sediments in urban estuaries and their effects on water quality and microorganisms is a convergent challenge that has yet to be addressed especially as a result of natural hazards that affect the hydrodynamics of estuarine systems. This study provides a holistic view of the longitudinal nature and character of sediment in an urban estuary, the Galveston Bay Estuary System (GBES), under daily and extreme flow regimes and presents the results of water and sediment sampling after Hurricane Harvey. The sediment sampling quantified total suspended sediment (TSS) concentrations, metal concentrations, and the diversity of microbial communities. The results revealed the impact of the substantial sediment loads that were transported into the GBES in terms of sediment grain type, the spatial distribution of trace metals, and the diversity of microbial communities. A measurable shift in the percentage of silt relative to historical norms was noted in the GBES after Hurricane Harvey. Not only did sediment metal data confirms this shift and its ensuing impact on metal concentrations; microbial data provided ample evidence of the effect of leaks and spills from wastewater treatment plants, superfund sites, and industrial runoff on microbial diversity. The research demonstrates the importance of understanding longitudinal sediment transport and deposition in estuarine systems under daily flow regimes but more critically, following natural hazard events to ensure sustainability and resilience of systems such as the GBES that encounter numerous acute and chronic stresses.
Collapse
Affiliation(s)
- Amin Kiaghadi
- Civil and Environmental Engineering, University of Houston, Room N138, Engineering Building 1, 4726 Calhoun, Houston, TX, 77204-4003, USA
| | - Hanadi S Rifai
- Civil and Environmental Engineering, University of Houston, Room N138, Engineering Building 1, 4726 Calhoun, Houston, TX, 77204-4003, USA.
| | - Mary Crum
- Chemical and Biomolecular Engineering, University of Houston, Room S222, Engineering Building 1, 4726 Calhoun, Houston, TX, 77204-4004, USA
| | - Richard C Willson
- Chemical and Biomolecular Engineering, University of Houston, Room S222, Engineering Building 1, 4726 Calhoun, Houston, TX, 77204-4004, USA
| |
Collapse
|
8
|
Li Q, Bu C, Ahmad HA, Guimbaud C, Gao B, Qiao Z, Ding S, Ni SQ. The distribution of dissimilatory nitrate reduction to ammonium bacteria in multistage constructed wetland of Jining, Shandong, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4749-4761. [PMID: 32951167 DOI: 10.1007/s11356-020-10709-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) is an important process of nitrate reduction in the environment. The distribution of DNRA bacteria and the relationships with environmental factors in multistage constructed wetland were investigated in this study. The quantitative real-time polymerase chain reaction analysis showed that the abundance of DNRA bacteria at all sites ranged from 2.10 × 1010 to 1.10 × 1011 copies/g of dry sediments. The Anaeromyxobacter (belong to Deltaproteobacteria) was the most abundant DNRA bacteria at all sites. The Geobater known as DNRA bacteria was also identified in this study. The abundances of DNRA bacteria, denitrifying bacteria, and anammox bacteria were conspicuously negatively correlated with Eh and positively correlated with the NO3--N removal efficency by statistical analysis.
Collapse
Affiliation(s)
- Qianxia Li
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, People's Republic of China
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, No. 72 Binhai Road, Qingdao, 266237, Shandong, People's Republic of China
| | - Cuina Bu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, No. 72 Binhai Road, Qingdao, 266237, Shandong, People's Republic of China
| | - Hafz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, No. 72 Binhai Road, Qingdao, 266237, Shandong, People's Republic of China
| | - Christophe Guimbaud
- Laboratoire de Physique et de Chimie de l'Environnement et de l'Espace (LPC2E), CNRS et Université d'Orléans (UMR 7328), 45071, Orléans Cedex 2, France
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, No. 72 Binhai Road, Qingdao, 266237, Shandong, People's Republic of China
| | - Zhuangming Qiao
- Shandong Meiquan Environmental Protection Technology Co., Ltd., Jinan, People's Republic of China
| | - Shaowu Ding
- Shandong Wanhao Fertilizer Co., Ltd., Jinan, People's Republic of China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, No. 72 Binhai Road, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Mahamoud Ahmed A, Tardy V, Bonnineau C, Billard P, Pesce S, Lyautey E. Changes in sediment microbial diversity following chronic copper-exposure induce community copper-tolerance without increasing sensitivity to arsenic. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122197. [PMID: 32058227 DOI: 10.1016/j.jhazmat.2020.122197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Sediment microbial communities were exposed for 21 days to an environmental concentration of copper to assess Cu-induced composition changes and resulting effects on microbial sensitivity to acute Cu and As toxicity. Chronic Cu exposure reduced the diversity of the bacterial and archaeal communities from Day 0 to Day 21. The pollution-induced community tolerance concept (PICT) predicts that loss of the most sensitive taxa and gain of more tolerant ones should increase the capacity of Cu-exposed communities to tolerate acute Cu toxicity. Although diversity loss and functional costs of adaptation could have increased their sensitivity to subsequent toxic stress, no increased sensitivity to As was observed. PICT responses varied according to heterotrophic activity, selected as the functional endpoint for toxicity testing, with different results for Cu and As. This suggests that induced tolerance to Cu and As was supported by different species with different metabolic capacities. Ecological risk assessment of contaminants would gain accuracy from further research on the relative contribution of tolerance acquisition and co-tolerance processes on the functional response of microbial communities.
Collapse
Affiliation(s)
- Ayanleh Mahamoud Ahmed
- INRAE, UR RiverLy, 69625 Villeurbanne, France; Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France; Centre de Recherche, Université de Djibouti, BP 1904 Djibouti Ville, Djibouti
| | - Vincent Tardy
- INRAE, UR RiverLy, 69625 Villeurbanne, France; Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France
| | | | - Patrick Billard
- Université de Lorraine, LIEC, UMR7360, Vandoeuvre-lès-Nancy, 54501, France
| | | | - Emilie Lyautey
- INRAE, UR RiverLy, 69625 Villeurbanne, France; Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France.
| |
Collapse
|
10
|
Hou R, Chen X, Li K, Gao H, Zhao Y. Microcosm experiments reveal Asian dust deposition stimulates growth and reduces diversity in bacterioplankton of the China Seas. ECOSCIENCE 2020. [DOI: 10.1080/11956860.2019.1681090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rui Hou
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, China
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Xi Chen
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Kuiran Li
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Huiwang Gao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Yangguo Zhao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
11
|
Ren X, Chen Y, Guo L, She Z, Gao M, Zhao Y, Shao M. The influence of Fe 2+, Fe 3+ and magnet powder (Fe 3O 4) on aerobic granulation and their mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:1-11. [PMID: 30092387 DOI: 10.1016/j.ecoenv.2018.07.072] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to develop an aerobic granular sludge and understand the granulation process of the multi-iron ions. Four sequencing batch reactors (SBRs) were applied to elucidate the effect of Fe2+, Fe3+ and Fe3O4 addition on aerobic granulation. The results confirmed that the start-up time of aerobic granulation with Fe3O4 addition (11 days) was notably less than that with Fe2+ (16 days) and Fe3+ (27 days) addition. Larger granules achieved with Fe3O4 addition with a sludge volume index (SVI30) of 28.50 mL/g and settling velocity of 49.68 m/h. Scanning electron microscope (SEM) analysis further revealed that the presence of mineral crystal in the granule core with Fe2+ and Fe3O4 addition accelerated the granule formation and maintained the stability of the structure. Extracellular polymeric substances (EPS) were studied using three-dimensional-excitation emission matrix (3D-EEM) fluorescence spectra technology to gain a comprehensive view of the interactions between EPS and Fe2+, Fe3+ and Fe3O4. Around 94.76% and 97.68% removal rate was noted for COD and ammonia in the granulation process. Finally, the dominant functional species involved in biological nutrients removal and granule formation were identified by high throughput sequencing technology to assess the effects of Fe2+, Fe3+ and Fe3O4 to granule at the molecular level.
Collapse
Affiliation(s)
- Xiaomin Ren
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yue Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengyu Shao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
12
|
Mahamoud Ahmed A, Lyautey E, Bonnineau C, Dabrin A, Pesce S. Environmental Concentrations of Copper, Alone or in Mixture With Arsenic, Can Impact River Sediment Microbial Community Structure and Functions. Front Microbiol 2018; 9:1852. [PMID: 30158909 PMCID: PMC6104476 DOI: 10.3389/fmicb.2018.01852] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/24/2018] [Indexed: 12/03/2022] Open
Abstract
In many aquatic ecosystems, sediments are an essential compartment, which supports high levels of specific and functional biodiversity thus contributing to ecological functioning. Sediments are exposed to inputs from ground or surface waters and from surrounding watershed that can lead to the accumulation of toxic and persistent contaminants potentially harmful for benthic sediment-living communities, including microbial assemblages. As benthic microbial communities play crucial roles in ecological processes such as organic matter recycling and biomass production, we performed a 21-day laboratory channel experiment to assess the structural and functional impact of metals on natural microbial communities chronically exposed to sediments spiked with copper (Cu) and/or arsenic (As) alone or mixed at environmentally relevant concentrations (40 mg kg-1 for each metal). Heterotrophic microbial community responses to metals were evaluated both in terms of genetic structure (using ARISA analysis) and functional potential (using exoenzymatic, metabolic and functional genes analyses). Exposure to Cu had rapid marked effects on the structure and most of the functions of the exposed communities. Exposure to As had almost undetectable effects, possibly due to both lack of As bioavailability or toxicity toward the exposed communities. However, when the two metals were combined, certain functional responses suggested a possible interaction between Cu and As toxicity on heterotrophic communities. We also observed temporal dynamics in the functional response of sediment communities to chronic Cu exposure, alone or in mixture, with some functions being resilient and others being impacted throughout the experiment or only after several weeks of exposure. Taken together, these findings reveal that metal contamination of sediment could impact both the genetic structure and the functional potential of chronically exposed microbial communities. Given their functional role in aquatic ecosystems, it poses an ecological risk as it may impact ecosystem functioning.
Collapse
Affiliation(s)
- Ayanleh Mahamoud Ahmed
- Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
- CARRTEL, Univ. Savoie Mont Blanc, INRA, Chambéry, France
- Centre de Recherche, Université de Djibouti, Djibouti, Djibouti
| | - Emilie Lyautey
- CARRTEL, Univ. Savoie Mont Blanc, INRA, Chambéry, France
| | - Chloé Bonnineau
- Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
| | - Aymeric Dabrin
- Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
| | - Stéphane Pesce
- Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
| |
Collapse
|
13
|
Su Z, Dai T, Tang Y, Tao Y, Huang B, Mu Q, Wen D. Sediment bacterial community structures and their predicted functions implied the impacts from natural processes and anthropogenic activities in coastal area. MARINE POLLUTION BULLETIN 2018; 131:481-495. [PMID: 29886974 DOI: 10.1016/j.marpolbul.2018.04.052] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Coastal ecosystem structures and functions are changing under natural and anthropogenic influences. In this study, surface sediment samples were collected from disturbed zone (DZ), near estuary zone (NEZ), and far estuary zone (FEZ) of Hangzhou Bay, one of the most seriously polluted bays in China. The bacterial community structures and predicted functions varied significantly in different zones. Firmicutes were found most abundantly in DZ, highlighting the impacts of anthropogenic activities. Sediment total phosphorus was most influential on the bacterial community structures. Predicted by PICRUSt analysis, DZ significantly exceeded FEZ and NEZ in the subcategory of Xenobiotics Biodegradation and Metabolism; and DZ enriched all the nitrate reduction related genes, except nrfA gene. Seawater salinity and inorganic nitrogen, respectively as the representative natural and anthropogenic factor, performed exact-oppositely in nitrogen metabolism functions. The changes of bacterial community compositions and predicted functions provide a new insight into human-induced pollution impacts on coastal ecosystem.
Collapse
Affiliation(s)
- Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tianjiao Dai
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yushi Tang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yile Tao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bei Huang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan 316021, China
| | - Qinglin Mu
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan 316021, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Gantt SE, López-Legentil S, Erwin PM. Stable microbial communities in the sponge Crambe crambe from inside and outside a polluted Mediterranean harbor. FEMS Microbiol Lett 2018; 364:3833132. [PMID: 28520957 DOI: 10.1093/femsle/fnx105] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/16/2017] [Indexed: 01/04/2023] Open
Abstract
Marine sponges have been shown to harbor diverse microbial symbiont communities that play key roles in host functioning, yet little is known about how anthropogenic disturbances impact sponge-microbe interactions. The Mediterranean sponge Crambe crambe is known to accumulate heavy metals in polluted harbors. In this study, we investigated whether the microbiome of C. crambe differed between sponges inhabiting a polluted harbor in Blanes (Spain) and a nearby (<1 km) natural environment. Triplicate sponge and ambient seawater samples were collected from each site and the microbial composition of each sample was determined by 16S rRNA gene sequence analysis (Illumina Hi-Seq platform). No significant differences in the diversity or structure of microbial communities in C. crambe were detected between habitats, while a significant difference in community structure was observed in ambient seawater inside and outside of the polluted harbor. The microbiome of C. crambe was clearly differentiated from free-living seawater microbes and dominated by Proteobacteria, specifically a single betaproteobacterium that accounted for >86% of all sequence reads. These results indicate that sponge microbiomes exhibit greater stability and pollution tolerance than their free-living microbial counterparts, potentially mitigating the effects of pollutants on coastal marine communities.
Collapse
Affiliation(s)
- Shelby E Gantt
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC 28409, USA
| | - Susanna López-Legentil
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC 28409, USA
| | - Patrick M Erwin
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC 28409, USA
| |
Collapse
|
15
|
Zhao YG, Zheng Y, Tian W, Bai J, Feng G, Guo L, Gao M. Enrichment and immobilization of sulfide removal microbiota applied for environmental biological remediation of aquaculture area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:307-313. [PMID: 27105167 DOI: 10.1016/j.envpol.2016.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
To remove sulfide in the deteriorating aquaculture sediment and water, sulfide-oxidizing microbiota was enriched from Jiaozhou Bay, China, by using sulfide-rich medium. Composition and structure of microbial communities in the enrichments were investigated by 16S rDNA molecular biotechniques. Results showed that microbial community structure continuously shifted and the abundance of sulfate reducing bacteria, i.e., Desulfobacterium, Desulfococcus and Desulfobacca apparently declined. Several halophile genera, Vibrio, Marinobacter, Pseudomonas, Prochlorococcus, Pediococcus and Thiobacillus predominated finally in the microbiota. The enriched microbiota was capable of removing a maximum of 1000 mg/L sulfide within 12 h with 10% inoculum at pH 7.0, 20-30 °C. After immobilized, the microbiota presented excellent resistance to impact and could completely remove 600 mg/L sulfide in 12 h. Moreover, the immobilized microbiota recovered well even recycled for five times. In conclusion, the immobilized sulfide-removing microbiota showed a quite promising application for biological restoring of sulfide-rich aquaculture environment.
Collapse
Affiliation(s)
- Yang-Guo Zhao
- Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yu Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Weijun Tian
- Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jie Bai
- Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Gong Feng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|