1
|
Neidhöfer C, Rathore K, Parčina M, Sieber MA. ESKAPEE Pathogen Biofilm Control on Surfaces with Probiotic Lactobacillaceae and Bacillus species. Antibiotics (Basel) 2023; 12:871. [PMID: 37237774 PMCID: PMC10215598 DOI: 10.3390/antibiotics12050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Combatting the rapidly growing threat of antimicrobial resistance and reducing prevalence and transmission of ESKAPEE pathogens in healthcare settings requires innovative strategies, one of which is displacing these pathogens using beneficial microorganisms. Our review comprehensively examines the evidence of probiotic bacteria displacing ESKAPEE pathogens, with a focus on inanimate surfaces. A systematic search was conducted using the PubMed and Web of Science databases on 21 December 2021, and 143 studies were identified examining the effects of Lactobacillaceae and Bacillus spp. cells and products on the growth, colonization, and survival of ESKAPEE pathogens. While the diversity of study methods limits evidence analysis, results presented by narrative synthesis demonstrate that several species have the potential as cells or their products or supernatants to displace nosocomial infection-causing organisms in a variety of in vitro and in vivo settings. Our review aims to aid the development of new promising approaches to control pathogen biofilms in medical settings by informing researchers and policymakers about the potential of probiotics to combat nosocomial infections. More targeted studies are needed to assess safety and efficacy of different probiotic formulations, followed by large-scale studies to assess utility in infection control and medical practice.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kamni Rathore
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin A. Sieber
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| |
Collapse
|
2
|
Devi S, Chhibber S, Harjai K. Optimization of cultural conditions for enhancement of anti-quorum sensing potential in the probiotic strain Lactobacillus rhamnosus GG against Pseudomonas aeruginosa. 3 Biotech 2022; 12:133. [PMID: 35615747 DOI: 10.1007/s13205-022-03187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/26/2022] [Indexed: 11/01/2022] Open
Abstract
Disruption of quorum sensing (QS) system, which is a central regulator for pathogenesis of Pseudomonas aeruginosa, is referring to as quorum quenching (QQ). This study was undertaken to evaluate and enhance the anti-quorum sensing (AQS) potential of probiotic strain Lactobacillus rhamnosus GG. The cell-free supernatant (CFS) of this probiotic strain showed anti-quorum sensing activity against Pseudomonas aeruginosa, which was determined using well-diffusion agar-plate assay. Anti-quorum sensing potential of L. rhamnosus GG was enhanced by optimization of various cultural conditions using classical and statistical optimization approaches. Six variables were optimized using one-variable-at-a-time (OVAT) method. Four significant variables, viz., temperature, pH, incubation time, metal ion, and its concentration, were chosen for further optimization by response surface methodology (RSM) using central composite design (CCD). Analysis of variance (ANOVA) demonstrated that the regression model is highly significant, as indicated by F test with a low probability value (p < 0.0002) and high value of coefficient of determination (0.8738) and also had significant influence on the generation of anti-quorum sensing effector molecules. Maximum production of anti-quorum sensing activity, in terms of zones of inhibition, was achieved under the following optimized conditions such as 37 °C temperature, pH 6.5, incubation time 24 h, and 2.5 mM concentration of zinc sulfate (ZnSO4). The quadratic model predicted 1.3-fold increase anti-quorum sensing activity production over un-optimized cultural conditions. The present research is the first report representing the enhancement of anti-quorum sensing potential of L. rhamnosus GG. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03187-2.
Collapse
|
3
|
Disrupting the quorum sensing mediated virulence in soft rot causing Pectobacterium carotovorum by marine sponge associated Bacillus sp. OA10. World J Microbiol Biotechnol 2021; 37:5. [PMID: 33392779 DOI: 10.1007/s11274-020-02982-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
Strains of genus Pectobacterium are major cause of soft rot diseases in fruits and vegetables worldwide. Traditional control methods have not been very successful in combating the pathogenesis. As a result there has been an emerging need for developing an alternative ecofriendly and economical strategy. The pathogenesis of Pectobacterium sp. is mediated by quorum sensing (QS) and approaches based on inhibition of QS system to shut down the virulence genes without affecting growth of the pathogen may serve the purpose. Bacillus sp. OA10 associated with purple sponge Haliclona sp. was found to possess extracellular quorum quenching activity. The OA10 extract inhibited QS dependent virulence of Pectobacterium carotovorum subsp. carotovorum BR1 (PccBR1) at low concentrations (0.2 mg) as evident from 77.56 ± 6.17% reduction in potato maceration with complete inhibition by 0.8 mg. Inhibition of plant cell wall degrading enzymes (PCWDE) and carbapenem production by PccBR1 in presence of OA10 extract indicated disruption of the two QS pathways ExpI/ExpR and CarI/CarR in PccBR1. Bacillus sp. OA10 was not found to degrade acyl homoserine lactone (AHL), instead exhibited QSI activity by probably inhibiting AHL synthesis in PccBR1. Absence of enzymatic principle in quorum sensing inhibitor (QSI) is beneficial as enzymes may get inhibited by various factors during their application. OA10 extract did not affect growth of PccBR1, thereby reducing the chance of developing resistance against the QSI. Thus, Bacillus sp. OA10 can prove to be a good prospective candidate for QSI based novel biocontrol formulations.
Collapse
|
4
|
Berríos P, Fuentes JA, Salas D, Carreño A, Aldea P, Fernández F, Trombert AN. Inhibitory effect of biofilm-forming Lactobacillus kunkeei strains against virulent Pseudomonas aeruginosa in vitro and in honeycomb moth (Galleria mellonella) infection model. Benef Microbes 2017; 9:257-268. [PMID: 29124967 DOI: 10.3920/bm2017.0048] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biofilms correspond to complex communities of microorganisms embedded in an extracellular polymeric matrix. Biofilm lifestyle predominates in Pseudomonas aeruginosa, an opportunistic Gram negative pathogen responsible for a wide spectrum of infections in humans, plants and animals. In this context, anti-biofilm can be considered a key strategy to control P. aeruginosa infections, thereby more research in the field is required. On the other hand, Lactobacillus species have been described as beneficial due to their anti-biofilm properties and their consequent effect against a wide spectrum of pathogens. In fact, biofilm-forming Lactobacilli seem to be more efficient than their planktonic counterpart to antagonise pathogenic bacteria. In this work, we demonstrated that Lactobacillus kunkeei, a novel Lactobacillus species isolated from honeybee guts, can form biofilms in vitro. In addition, the L. kunkeei biofilm can, in turn, inhibit the formation of P. aeruginosa biofilms. Finally, we found that L. kunkeei strains attenuate infection of P. aeruginosa in the Galleria mellonella model, presumably by affecting P. aeruginosa biofilm formation and/or their stability. Since L. kunkeei presents characteristics of a probiotic, this work provides evidence arguing that the use of this Lactobacillus species in both animals (including insects) and humans could contribute to impair P. aeruginosa biofilm formation.
Collapse
Affiliation(s)
- P Berríos
- 1 Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
| | - J A Fuentes
- 2 Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. República 217, Santiago 8370146, Chile
| | - D Salas
- 3 Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
| | - A Carreño
- 4 Center of Applied Nanosciences (CANS), Universidad Andres Bello, Ave. República 275, Santiago 8370146, Chile.,5 Núcleo Milenio de Ingeniería Molecular para Catálisis y Biosensores (MECB), ICM, Av. República 275, Santiago 8370146, Chile
| | - P Aldea
- 6 CEAPI Mayor, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
| | - F Fernández
- 3 Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
| | - A N Trombert
- 3 Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
| |
Collapse
|
5
|
Yang WT, Shi SH, Yang GL, Jiang YL, Zhao L, Li Y, Wang CF. Cross-protective efficacy of dendritic cells targeting conserved influenza virus antigen expressed by Lactobacillus plantarum. Sci Rep 2016; 6:39665. [PMID: 28004787 PMCID: PMC5177883 DOI: 10.1038/srep39665] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 10/10/2016] [Indexed: 11/16/2022] Open
Abstract
Avian influenza virus (AIV) can infect birds and mammals, including humans, and are thus a serious threat to public health. Vaccination is vital for controlling AIV circulation. In this study, we generated a recombinant lactobacillus expressing the NP-M1-DCpep of H9N2 avian influenza virus and evaluated the activation effect of NC8-pSIP409-NP-M1-DCpep on dendritic cells (DCs) in a mouse model. The specific mucosal antibody responses and B and T cell responses in lymphoid tissues were also characterized. Importantly, we confirmed that specific CD8 T cells presented in vitro and antigen-specific cytotoxicity (activated the expression of CD107a) and in vivo antigen-specific cytotoxicity after vaccination. The adoptive transfer of NC8-pSIP409-NP-M1-DCpep-primed CD8+ T cells into NOD-SCID mice resulted in effective protection against mouse-adapted AIV infection. In addition, we observed protection in immunized mice challenged with mouse-adapted H9N2 AIV and H1N1 influenza virus, as evidenced by reductions in the lung virus titers, improvements in lung pathology, and weight loss and complete survival. Our data are promising for the generation of effective, non-traditional influenza vaccines against AIVs.
Collapse
Affiliation(s)
- Wen-Tao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Shao-Hua Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Gui-Lian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Yan-Long Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Liang Zhao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Yu Li
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
6
|
Yang WT, Yang GL, Wang Q, Huang HB, Jiang YL, Shi CW, Wang JZ, Huang KY, Jin YB, Wang CF. Protective efficacy of Fc targeting conserved influenza virus M2e antigen expressed by Lactobacillus plantarum. Antiviral Res 2016; 138:9-21. [PMID: 27908830 DOI: 10.1016/j.antiviral.2016.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 12/21/2022]
Abstract
The influenza A (H1N1) virus is a highly contagious acute respiratory disease affecting pigs and humans. This disease causes severe economic loss in many countries, and developing mucosal vaccines is an efficient strategy to control the influenza virus. The neonatal Fc receptor (FcRn) plays an important role in transferring IgG across polarized epithelial cells. In the present study, an oral vaccine was developed using Lactobacillus plantarum to deliver the internal influenza viral protein M2e fused to an IgG Fc fragment. Oral vaccination with recombinant L. plantarum expressing 3M2e-Fc elicited Peyer's patch (PP) DC activation, improved the number of gamma interferon (IFN-γ)-producing T cells and increased the frequency of CD8+IFN-γ+ cells in the mesenteric lymph nodes (MLNs). In addition, the recombinant L. plantarum can induce PP B220+IgA+ expression and enhance specific sIgA secretion and the shaping of growth centers (GCs) in PPs. Furthermore, the data demonstrated that immunization with recombinant L. plantarum expressing 3M2e-Fc markedly reduced the viral load in the lung and protected against H1N1 influenza virus and mouse-adapted H9N2 avian influenza virus (AIV) challenge in BALB/c mice. Collectively, the data also showed that this vaccine strategy provided effective protective immunity against infection with homologous and heterologous influenza viruses in a mouse model and may be useful for future influenza vaccine development.
Collapse
Affiliation(s)
- Wen-Tao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China
| | - Gui-Lian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China
| | - Qian Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China
| | - Hai-Bin Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China
| | - Yan-Long Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Wei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China
| | - Jian-Zhong Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China
| | - Ke-Yan Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Bei Jin
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
7
|
Castillo-Juárez I, Maeda T, Mandujano-Tinoco EA, Tomás M, Pérez-Eretza B, García-Contreras SJ, Wood TK, García-Contreras R. Role of quorum sensing in bacterial infections. World J Clin Cases 2015; 3:575-598. [PMID: 26244150 PMCID: PMC4517333 DOI: 10.12998/wjcc.v3.i7.575] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/30/2014] [Accepted: 04/20/2015] [Indexed: 02/05/2023] Open
Abstract
Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed.
Collapse
|
8
|
Padmavathi AR, Pandian SK. Antibiofilm activity of biosurfactant producing coral associated bacteria isolated from gulf of mannar. Indian J Microbiol 2014; 54:376-82. [PMID: 25320434 DOI: 10.1007/s12088-014-0474-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/15/2014] [Indexed: 12/28/2022] Open
Abstract
Coral Associated Bacteria (CAB) (N = 22) isolated from the mucus of the coral Acropora digitifera were screened for biosurfactants using classical screening methods; hemolysis test, lipase production, oil displacement, drop collapse test and emulsifying activity. Six CAB (U7, U9, U10, U13, U14, and U16) were found to produce biosurfactants and were identified by 16S ribosomal RNA gene sequencing as Providencia rettgeri, Psychrobacter sp., Bacillus flexus, Bacillus anthracis, Psychrobacter sp., and Bacillus pumilus respectively. Their cell surface hydrophobicity was determined by Microbial adhesion to hydrocarbon assay and the biosurfactants produced were extracted and characterized by Fourier Transform Infrared spectroscopy. Since the biosurfactants are known for their surface modifying capabilities, antibiofilm activity of positive isolates was evaluated against biofilm forming Pseudomonas aeruginosa ATCC10145. Stability of the active principle exhibiting antibiofilm activity was tested through various temperature treatments ranging from 60 to 100 °C and Proteinase K treatment. CAB isolates U7 and U9 exhibited stable antibiofilm activity even after exposure to higher temperatures which is promising for the development of novel antifouling agents for diverse industrial applications. Further, this is the first report on biosurfactant production by a coral symbiont.
Collapse
|