1
|
Malik WA, Javed S. Enhancement of cellulase production by cellulolytic bacteria SB125 in submerged fermentation medium and biochemical characterization of the enzyme. Int J Biol Macromol 2024; 263:130415. [PMID: 38403232 DOI: 10.1016/j.ijbiomac.2024.130415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Microbial diversity from indigenous cultures has the potential to accelerate lignocellulose degradation through enzymes and make composting economically feasible. Therefore, this study is designed to boost cellulase output from a bacterial strain obtained from soil using a one-variable-at-a-time approach and response surface methodology. The bacteria recognized as Bacillus tequilensis (ON754229) produced the maximum cellulase at a temperature of 37 °C, pH -7.0, and incubation time of 72 h. A major contribution was anticipated by glucose (17 %) and ammonium sulfate (11 %) with cellulase activity of 0.56 U/mL in the optimized medium. The enzyme possessed activity of CMCase, FPase, and amylase of 0.589 μmol/min, 1.22 μmol/min, and 0.92 μmol/min respectively. SDS-PAGE showed a 65 kDa molecular weight of the enzyme capable of degrading cellulose, as confirmed by zymogram analysis. The enzyme showed relatively moderate thermo-stability towards neutral pH conditions possessing optimum conditions at pH 6.5 and temperature of 50 °C. The Km and Vmax values were 11.44 mM and 0.643 μmol/min respectively. The presence of MgSO4, ZnSO4, and Triton X- 100 increased the enzymatic reaction however AgNO3, EDTA, and HgCl2 altered the activation process. These results showed cellulase from B. tequilensis SB125 would be suitable for conventional industrial processes that convert biomass into biofuels.
Collapse
Affiliation(s)
- Waseem Ayoub Malik
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
2
|
Sukweenadhi J, Theda JA, Artadana IBM, Kang SC. Isolation and in vitro Screening of Plant Growth Promoting Rhizospheric Bacteria from Corn (Zea mays var. indentata). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s000368382206014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
3
|
Three-Step Purification and Characterization of Organic Solvent-Tolerant and Alkali-Thermo-Tolerant Xylanase from Bacillus paramycoides T4 [MN370035]. Catalysts 2022. [DOI: 10.3390/catal12070749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In the present study, an extracellular alkali-thermo-tolerant xylanase from Bacillus paramycoides was produced in the presence of an organic solvent. The enzyme was purified by ammonium sulphate precipitation, gel filtration, and ion exchange chromatography, with an overall recovery of 25.9%. The purified enzyme hada 70 kDa molecular weight (MW) confirmed by SDS-PAGE gel analysis. The maximum enzyme activity was reported at 55 °C and pH 7.0. Xylanase activity and stability were improved in the presence of 30% (v/v) n-dodecane, iso-octane, n-decane, and cyclohexane (7 days). The enzyme activity was improved by Co2+, EDTA, and Triton-X-100 while vigorously repressed by Hg2+ and Cu2+. The purified enzyme showed 1.473 mg/mL Km and 654.017 µg/mL/min Vmax values. The distinctive assets of the isolate verified the potential application in the field of biomass conversion into fuel and other industrial processes. Organic solvent-tolerant xylanases can be used for concurrent saccharification and bioethanol production, the amplification of intoxicating beverages, and the fermenting industry.
Collapse
|
4
|
Malik WA, Javed S. Biochemical Characterization of Cellulase From Bacillus subtilis Strain and its Effect on Digestibility and Structural Modifications of Lignocellulose Rich Biomass. Front Bioeng Biotechnol 2022; 9:800265. [PMID: 34988069 PMCID: PMC8721162 DOI: 10.3389/fbioe.2021.800265] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial cellulases have become the mainstream biocatalysts due to their complex nature and widespread industrial applications. The present study reports the partial purification and characterization of cellulase from Bacillus subtilis CD001 and its application in biomass saccharification. Out of four different substrates, carboxymethyl cellulose, when amended as fermentation substrate, induced the highest cellulase production from B. subtilis CD001. The optimum activity of CMCase, FPase, and amylase was 2.4 U/ml, 1.5 U/ml, and 1.45 U/ml, respectively. The enzyme was partially purified by (NH4)2SO4 precipitation and sequenced through LC-MS/MS. The cellulase was found to be approximately 55 kDa by SDS-PAGE and capable of hydrolyzing cellulose, as confirmed by zymogram analysis. The enzyme was assigned an accession number AOR98335.1 and displayed 46% sequence homology with 14 peptide-spectrum matches having 12 unique peptide sequences. Characterization of the enzyme revealed it to be an acidothermophilic cellulase, having an optimum activity at pH 5 and a temperature of 60°C. Kinetic analysis of partially purified enzyme showed the Km and Vmax values of 0.996 mM and 1.647 U/ml, respectively. The enzyme activity was accelerated by ZnSO4, MnSO4, and MgSO4, whereas inhibited significantly by EDTA and moderately by β-mercaptoethanol and urea. Further, characterization of the enzyme saccharified sugarcane bagasse, wheat straw, and filter paper by SEM, ATR-FTIR, and XRD revealed efficient hydrolysis and structural modifications of cellulosic materials, indicating the potential industrial application of the B. subtilis CD001 cellulase. The findings demonstrated the potential suitability of cellulase from B. subtilis CD001 for use in current mainstream biomass conversion into fuels and other industrial processes.
Collapse
Affiliation(s)
- Waseem Ayoub Malik
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
5
|
Production and Optimization of Xylanase and α-Amylase from Non-Saccharomyces Yeasts (Pichia membranifaciens). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The xylanolytic and amylolytic yeasts were qualitatively determined by Cong red xylan agar and soluble starch agar plates, respectively. The most xylanase and α-amylase inducible strain (AUN-02) was selected and identified using PCR amplification of 26S rRNA gene and sequence analysis. The comparison of the alignment results and phylogenetic analysis of the sequences of the isolated yeast to published rRNA gene sequences in GenBank, confirmed the identification of the isolate as Pichia membranifaciens. Xylanase and α-amylase production by isolated P. membranifaciens were investigated at different pH values (4-8), temperature degrees (20-45°C), incubation time (1-7 days) and various substrates.A higher production of xylanase (38.8 U/mL) and a-amylase (28.7 U/mL) was obtained after 4 days of fermentation of P. membranifaciens. Higher activity of xylanase (36.83 U/mL) and a-amylase (27.7 U/mL) was obtained in the fermentation of P. membranifaciens in a culture medium adjusted to pH 7.0. The optimum temperature showed maximum xylanase and a-amylase activity (42.6 and 32.5 units/mL, respectively) was estimated at 35 °C. The xylanase and a-amylase activities of P. membranifaciens were estimated and compared for the different substrates tested. The strain revealed 100% relative activity of xylanase and a-amylase on beechwood and potato starch, respectively. The affinity of enzymes towards substrate was estimated using Km values. The Km values of xylanase and α-amylase increased in the order of pH’s 7.0, 6.0 and 4.5 (0.85, 1.6 and 3.4 mg xylan/mL and 0.22, 0.43 and 2.8 mg starch/mL, respectively). the yeast P. membranifaciensis is suitable for produce neutral xylanase and α-amylase enzymes. So, it could be used as a promising strain for production of these enzymes in industrial field.
Collapse
|
6
|
Seemakram W, Boonrung S, Aimi T, Ekprasert J, Lumyong S, Boonlue S. Purification, characterization and partial amino acid sequences of thermo-alkali-stable and mercury ion-tolerant xylanase from Thermomyces dupontii KKU-CLD-E2-3. Sci Rep 2020; 10:21663. [PMID: 33303944 PMCID: PMC7730141 DOI: 10.1038/s41598-020-78670-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/23/2020] [Indexed: 01/23/2023] Open
Abstract
We investigated the properties of the low molecular weight thermo-alkali-stable and mercury ion-tolerant xylanase production from Thermomyces dupontii KKU-CLD-E2-3. The xylanase was purified to homogeneity by ammonium sulfate, Sephadex G-100 and DEAE-cellulose column chromatography which resulted 27.92-fold purification specific activity of 56.19 U/mg protein and a recovery yield of 2.01%. The purified xylanase showed a molecular weight of 25 kDa by SDS-PAGE and the partial peptide sequence showed maximum sequence homology to the endo-1,4-β-xylanase. The optimum temperature and pH for its activity were 80 °C and pH 9.0, respectively. Furthermore, the purified xylanase can maintain more than 75% of the original activity in pH range of 7.0-10.0 after incubation at 4 °C for 24 h, and can still maintain more than 70% of original activity after incubating at 70 °C for 90 min. Our purified xylanase was activated by Cu2+ and Hg2+ up to 277% and 235% of initial activity, respectively but inhibited by Co2+, Ag+ and SDS at a concentration of 5 mM. The Km and Vmax values of beechwood xylan were 3.38 mg/mL and 625 µmol/min/mg, respectively. Furthermore, our xylanase had activity specifically to xylan-containing substrates and hydrolyzed beechwood xylan, and the end products mainly were xylotetraose and xylobiose. The results suggested that our purified xylanase has potential to use for pulp bleaching in the pulp and paper industry.
Collapse
Affiliation(s)
- Wasan Seemakram
- Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Santhaya Boonrung
- Biology Program, Faculty of Science, Buriram Rajabhat University, Buriram, 31000, Thailand
| | - Tadanori Aimi
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan
| | - Jindarat Ekprasert
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai Univertity, Chiang Mai, 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300, Thailand
| | - Sophon Boonlue
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
7
|
Chen S, Feng H, Li X, Chao HJ, Wu J, Liu J, Zhu WJ, Yan DZ. The Complete Genome Sequence of a Bacterial Strain with High Alkalic Xylanase Activity Isolated from the Sludge Near a Papermill. Curr Microbiol 2020; 77:3945-3952. [PMID: 33011835 DOI: 10.1007/s00284-020-02227-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/23/2020] [Indexed: 11/28/2022]
Abstract
Many organisms secrete xylanase, an import group of proteins hydrolyzing xylan, and thus are able to use xylan as their carbon source. In this study, we sequenced the whole genome of a bacterial strain, YD01, which was isolated from the sludge near the sewage discharge outlet of a papermill and showed high alkalic xylanase activity. Its genome consists of a chromosome and two plasmids. Six rRNA genes, 46 tRNA genes, 3136 CDSs as well as 955 repetitive sequences were predicted. 3046 CDSs were functionally annotated. Phylogenetic analysis on 16S rRNA shows that YD01 is a new species in Microbacterium genus and is taxonomically close to M. jejuense THG-C31T and M. kyungheense THG-C26T. A comparative study on phylogenetic trees of 16S rRNA and xylanase genes suggests that xylanase genes in YD01 may originate from horizontal gene transfer instead of ancestral gene duplication.
Collapse
Affiliation(s)
- Si Chen
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hao Feng
- Jiangsu Yanghe Brewery Joint-Stock Co., Ltd., Suqian, 223800, Jiangsu, China
| | - Xin Li
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hong-Jun Chao
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jing Wu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jun Liu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Wen-Jun Zhu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Da-Zhong Yan
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
8
|
Somboon C, Boonrung S, Katekaew S, Ekprasert J, Aimi T, Boonlue S. Purification and characterization of low molecular weight alkali stable xylanase from Neosartorya spinosa UZ-2-11. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2020.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Bhardwaj N, Kumar B, Verma P. A detailed overview of xylanases: an emerging biomolecule for current and future prospective. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0276-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Xylan is the second most abundant naturally occurring renewable polysaccharide available on earth. It is a complex heteropolysaccharide consisting of different monosaccharides such as l-arabinose, d-galactose, d-mannoses and organic acids such as acetic acid, ferulic acid, glucuronic acid interwoven together with help of glycosidic and ester bonds. The breakdown of xylan is restricted due to its heterogeneous nature and it can be overcome by xylanases which are capable of cleaving the heterogeneous β-1,4-glycoside linkage. Xylanases are abundantly present in nature (e.g., molluscs, insects and microorganisms) and several microorganisms such as bacteria, fungi, yeast, and algae are used extensively for its production. Microbial xylanases show varying substrate specificities and biochemical properties which makes it suitable for various applications in industrial and biotechnological sectors. The suitability of xylanases for its application in food and feed, paper and pulp, textile, pharmaceuticals, and lignocellulosic biorefinery has led to an increase in demand of xylanases globally. The present review gives an insight of using microbial xylanases as an “Emerging Green Tool” along with its current status and future prospective.
Collapse
|
10
|
|
11
|
Kambourova M. Thermostable enzymes and polysaccharides produced by thermophilic bacteria isolated from Bulgarian hot springs. Eng Life Sci 2018; 18:758-767. [PMID: 32624870 DOI: 10.1002/elsc.201800022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 11/07/2022] Open
Abstract
Thermostable enzymes (thermozymes) have been recognized as extremophilic compounds with a greatest biotechnological importance in different industrial areas. Quite recently exopolysaccharides (EPSs) synthesized by thermophiles became an object of increased research interest due to their unique properties appropriate for some specific industrial needs. Thermophilic producers of biotechnologically valuable enzymes and novel EPS were isolated by our group from Bulgarian thermal springs with a diverse geotectonic origin and different water properties. Laboratory reactor processes for their production were developed in batch and continuous cultures. Some of the synthesized thermostable enzymes were among the first described in their groups, for example, the single known thermostable gellan lyase that demonstrated specific activity higher than that of the mesophilic enzymes. Isolated by us thermostable xylanase was able to degrade more than 60% of beechwood xylan in a coprocess with an archaeal β-xylosidase. Lipase purified by us was active between 55 and 90°C with an optimum at 75-80°C in a large pH range. It was able to degrade a broad range of substrates. Isolates from Bulgarian hot springs synthesized EPS with novel composition and high thermostability. Thus, Bulgarian hot springs harbor a wide set of thermophilic producers of novel enzymes and EPS with potential for a large number of biotechnological applications.
Collapse
|
12
|
Sorghum husk biomass as a potential substrate for production of cellulolytic and xylanolytic enzymes by Nocardiopsis sp. KNU. 3 Biotech 2017; 7:163. [PMID: 28660456 DOI: 10.1007/s13205-017-0800-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
Nocardiopsis sp. KNU was found to degrade various lignocellulosic waste materials, namely, sorghum husk, sugarcane tops and leaves, wheat straw, and rice husk very efficiently. The strain was found to produce high amounts of cellulase and hemicellulase. Augmentation of cotton seed cake as an organic nitrogen source revealed inductions in activities of endoglucanase, glucoamylase, and xylanase up to 70.03, 447.89, and 275.10 U/ml, respectively. Nonionic surfactant Tween-80 addition was found to enhance the activity of endoglucanase enzyme. Cellulase produced by Nocardiopsis sp. KNU utilizing sorghum husk as a substrate was found to retain its stability in various surfactants up to 90%. The produced enzyme was further tested for saccharification of mild alkali pretreated rice husk. The changes in morphology and functional group were analyzed using scanning electron microscopy and Fourier transform infrared spectroscopy. Enzymatic saccharification confirmed the hydrolytic potential of crude cellulase. The hydrolysate products were analyzed by high-performance thin layer chromatography.
Collapse
|
13
|
Walia A, Guleria S, Mehta P, Chauhan A, Parkash J. Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech 2017; 7:11. [PMID: 28391477 PMCID: PMC5385172 DOI: 10.1007/s13205-016-0584-6] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/02/2016] [Indexed: 10/25/2022] Open
Abstract
Xylanases are hydrolytic enzymes which cleave the β-1, 4 backbone of the complex plant cell wall polysaccharide xylan. Xylan is the major hemicellulosic constituent found in soft and hard food. It is the next most abundant renewable polysaccharide after cellulose. Xylanases and associated debranching enzymes produced by a variety of microorganisms including bacteria, actinomycetes, yeast and fungi bring hydrolysis of hemicelluloses. Despite thorough knowledge of microbial xylanolytic systems, further studies are required to achieve a complete understanding of the mechanism of xylan degradation by xylanases produced by microorganisms and their promising use in pulp biobleaching. Cellulase-free xylanases are important in pulp biobleaching as alternatives to the use of toxic chlorinated compounds because of the environmental hazards and diseases caused by the release of the adsorbable organic halogens. In this review, we have focused on the studies of structural composition of xylan in plants, their classification, sources of xylanases, extremophilic xylanases, modes of fermentation for the production of xylanases, factors affecting xylanase production, statistical approaches such as Plackett Burman, Response Surface Methodology to enhance xylanase production, purification, characterization, molecular cloning and expression. Besides this, review has focused on the microbial enzyme complex involved in the complete breakdown of xylan and the studies on xylanase regulation and their potential industrial applications with special reference to pulp biobleaching, which is directly related to increasing pulp brightness and reduction in environmental pollution.
Collapse
Affiliation(s)
- Abhishek Walia
- Department of Microbiology, DAV University, Jalandhar, Punjab 144012 India
| | - Shiwani Guleria
- Department of Microbiology, DAV University, Jalandhar, Punjab 144012 India
| | - Preeti Mehta
- Centre for Advance Bioenergy Research, Research and Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Anjali Chauhan
- Department of Microbiology, Dr. YSPUHF, Nauni, Solan, 173230 India
| | - Jyoti Parkash
- School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151001 India
| |
Collapse
|
14
|
Bagewadi ZK, Mulla SI, Shouche Y, Ninnekar HZ. Xylanase production from Penicillium citrinum isolate HZN13 using response surface methodology and characterization of immobilized xylanase on glutaraldehyde-activated calcium-alginate beads. 3 Biotech 2016; 6:164. [PMID: 28330236 PMCID: PMC4980835 DOI: 10.1007/s13205-016-0484-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 08/01/2016] [Indexed: 01/28/2023] Open
Abstract
The present study reports the production of high-level cellulase-free xylanase from Penicillium citrinum isolate HZN13. The variability in xylanase titers was assessed under both solid-state (SSF) and submerged (SmF) fermentation. SSF was initially optimized with different agro-waste residues, among them sweet sorghum bagasse was found to be the best substrate that favored maximum xylanase production (9643 U/g). Plackett–Burman and response surface methodology employing central composite design were used to optimize the process parameters for the production of xylanase under SSF. A second-order quadratic model and response surface method revealed the optimum conditions for xylanase production (sweet sorghum bagasse 25 g/50 ml; ammonium sulphate 0.36 %; yeast extract 0.6 %; pH 4; temperature 40 °C) yielding 30,144 U/g. Analysis of variance (ANOVA) showed a high correlation coefficient (R2 = 97.63 %). Glutaraldehyde-activated calcium-alginate-immobilized purified xylanase showed recycling stability (87 %) up to seven cycles. Immobilized purified xylanase showed enhanced thermo-stability in comparison to immobilized crude xylanase. Immobilization kinetics of crude and purified xylanase revealed an increase in Km (12.5 and 11.11 mg/ml) and Vmax (12,500 and 10,000 U/mg), respectively. Immobilized (crude) enzymatic hydrolysis of sweet sorghum bagasse released 8.1 g/g (48 h) of reducing sugars. Xylose and other oligosaccharides produced during hydrolysis were detected by High-Performance Liquid Chromatography. The biomass was characterized by Scanning Electron Microscopy, Energy Dispersive X-ray and Fourier Transformation Infrared Spectroscopy. However, this is one of the few reports on high-level cellulase-free xylanase from P. citrinum isolate using sweet sorghum bagasse.
Collapse
|
15
|
Purification and characterization of low molecular weight extreme alkaline xylanase from the thermophilic fungus Myceliophthora thermophila BF1-7. MYCOSCIENCE 2016. [DOI: 10.1016/j.myc.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Adigüzel AO, Tunçer M. Production, Characterization and Application of a Xylanase fromStreptomycessp. AOA40 in Fruit Juice and Bakery Industries. FOOD BIOTECHNOL 2016. [DOI: 10.1080/08905436.2016.1199383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA 4: suitability of taxonomic units notified to EFSA until March 2016. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
18
|
Walia A, Mehta P, Guleria S, Shirkot CK. Improvement for enhanced xylanase production by Cellulosimicrobium cellulans CKMX1 using central composite design of response surface methodology. 3 Biotech 2015; 5:1053-1066. [PMID: 28324413 PMCID: PMC4624141 DOI: 10.1007/s13205-015-0309-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/12/2015] [Indexed: 11/24/2022] Open
Abstract
The effects of yeast extract (X1), NH4NO3 (X2), peptone (X3), urea (X4), CMC (X5), Tween 20 (X6), MgSO4 (X7), and CaCO3 (X8) on production of xylanase from Cellulosimicrobium cellulans CKMX1 were optimized by statistical analysis using response surface methodology (RSM). The RSM was used to optimize xylanase production by implementing the Central composite design. Statistical analysis of the results showed that the linear, interaction and quadric terms of these variables had significant effects. However, only the linear effect of X4, X5, interaction effect of X1X7, X1X8, X2X3, X2X8, X3X6, X3X8, X4X6, X4X7, X5X7, X5X8 and quadratic effect of X 32 , X 52 and X 72 found to be insignificant terms in the quadratic model and had no response at significant level. The minimum and maximum xylanase production obtained was 331.50 U/g DBP and 1027.65 U/g DBP, respectively. The highest xylanase activity was obtained from Run No. 30, which consisted of yeast extract (X1), 1.00 g (%); NH4NO3 (X2), 0.20 g (%); peptone (X3), 1.00 g (%); urea (X4), 10 mg (%); CMC (X5), 1.00 g (%); Tween 20 (X6), 0.02 mL (%); CaCO3 (X7), 0.50 g (%) and MgSO4 (X8), 9.0 g (%). The optimization resulted in 3.1-fold increase of xylanase production, compared with the lowest xylanase production of 331.50 U/g DBP after 72 h of incubation in stationary flask experiment. Application of cellulase-free xylanase in pulp biobleaching from C. cellulans CKMX1 under C-EP-D sequence has been shown to bring about a 12.5 % reduction of chlorine, decrease of 0.8 kappa points (40 %), and gain in brightness was 1.42 % ISO points in 0.5 % enzyme treated pulp as compared to control.
Collapse
Affiliation(s)
- Abhishek Walia
- />Department of Microbiology, DAV University, Jalandhar, 144001 Punjab India
| | - Preeti Mehta
- />Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121 007 India
| | - Shiwani Guleria
- />Department of Basic Sciences, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, 173230 Himachal Pradesh India
| | - Chand Karan Shirkot
- />Department of Basic Sciences, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, 173230 Himachal Pradesh India
| |
Collapse
|
19
|
Guleria S, Walia A, Chauhan A, Shirkot CK. Purification and characterization of detergent stable alkaline protease from Bacillus amyloliquefaciens SP1 isolated from apple rhizosphere. J Basic Microbiol 2015; 56:138-52. [PMID: 26375163 DOI: 10.1002/jobm.201500341] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/09/2015] [Indexed: 11/06/2022]
Abstract
A thermostable extracellular alkaline protease producing Bacillus amyloliquefaciens SP1 was isolated from apple rhizosphere having multifarious plant growth promoting activities. Strain SP1 was purified to 6.48-fold using four-step purification protocol and characterized in detail for its robustness and ecofriendly application in leather and detergent industries. Structural analysis revealed that the protease was monomeric and had a molecular weight of 43 kDa. It exhibited optimum activity at 60°C in alkaline environment (pH 8.0) and stable in the presence of surfactants and oxidizing agents. Enzyme was thermostable at 50°C and retained more than 70% activity after 30 min incubation. It has shown stain removal property and dehairing of goat skin without chemical assistance and hydrolyzing fibrous proteins. This protease showed Km of 0.125 mg ml(-1) and V(max) of 12820 μg ml(-1) indicating its excellent affinity and catalytic role. Thermal inactivation of the pure enzyme followed first-order kinetics. The half life of the pure enzyme at 50, 60, and 65°C was 77, 19.80, and 13.33 min, respectively. The activation energy was 37.19 KJ mol(-1). The results suggest that the B. amyloliquefaciens SP1 has a potential application in different industries.
Collapse
Affiliation(s)
- Shiwani Guleria
- Department of Basic Sciences (Microbiology Section), Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, (H.P.), India
| | - Abhishek Walia
- Department of Microbiology, DAV University, Jalandhar, Punjab, India
| | - Anjali Chauhan
- Department of Basic Sciences (Microbiology Section), Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, (H.P.), India
| | - Chand Karan Shirkot
- Department of Basic Sciences (Microbiology Section), Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, (H.P.), India
| |
Collapse
|
20
|
Characterization of a Novel Xylanase Gene from Rumen Content of Hu Sheep. Appl Biochem Biotechnol 2015; 177:1424-36. [DOI: 10.1007/s12010-015-1823-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/18/2015] [Indexed: 01/10/2023]
|
21
|
Walia A, Mehta P, Guleria S, Shirkot CK. Modification in the properties of paper by using cellulase-free xylanase produced from alkalophilic Cellulosimicrobium cellulans CKMX1 in biobleaching of wheat straw pulp. Can J Microbiol 2015. [DOI: 10.1139/cjm-2015-0178] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost is an actinomycete that produces industrially important and environmentally safer thermostable cellulase-free xylanase, which is used in the pulp and paper industry as an alternative to the use of toxic chlorinated compounds. Strain CKMX1 was previously characterized by metabolic fingerprinting, whole-cell fatty acids methyl ester analysis, and 16S rDNA and was found to be C. cellulans CKMX1. Crude enzyme (1027.65 U/g DBP) produced by C. cellulans CKMX1, having pH and temperature optima of 8.0 and 60 °C, respectively, in solid state fermentation of apple pomace, was used in the production of bleached wheat straw pulp. Pretreatment with xylanase at a dose of 5 U/g after pulping decreased pulp kappa points by 1.4 as compared with the control. Prebleaching with a xylanase dose of 5 U/g pulp reduced the chlorine charge by 12.5%, increased the final brightness points by approximately 1.42% ISO, and improved the pulp strength properties. Xylanase could be substituted for alkali extraction in C–Ep–D sequence and used for treating chemically bleached pulp, resulting in bleached pulp with higher strength properties. Modification of bleached pulp with 5 U of enzyme/g increased pulp whiteness and breaking length by 1.03% and 60 m, respectively; decreased tear factor of pulp by 7.29%; increased bulk weight by 3.99%, as compared with the original pulp. Reducing sugars and UV-absorbing lignin-derived compound values were considerably higher in xylanase-treated samples. Cellulosimicrobium cellulans CKMX1 has a potential application in the pulp and paper industries.
Collapse
Affiliation(s)
- Abhishek Walia
- Department of Microbiology, DAV University, Jalandhar 144001, Punjab, India
| | - Preeti Mehta
- Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Shiwani Guleria
- Department of Basic Sciences, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan 173230, Himachal Pradesh, India
| | - Chand Karan Shirkot
- Department of Basic Sciences, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan 173230, Himachal Pradesh, India
| |
Collapse
|
22
|
Expression and characterization of a novel endo-1,4-β-xylanase produced by Streptomyces griseorubens JSD-1 isolated from compost-treated soil. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-1016-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|