1
|
Slater SL, Mavridou DAI. Harnessing the potential of bacterial oxidative folding to aid protein production. Mol Microbiol 2021; 116:16-28. [PMID: 33576091 DOI: 10.1111/mmi.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Indexed: 11/30/2022]
Abstract
Protein folding is central to both biological function and recombinant protein production. In bacterial expression systems, which are easy to use and offer high protein yields, production of the protein of interest in its native fold can be hampered by the limitations of endogenous posttranslational modification systems. Disulfide bond formation, entailing the covalent linkage of proximal cysteine amino acids, is a fundamental posttranslational modification reaction that often underpins protein stability, especially in extracytoplasmic environments. When these bonds are not formed correctly, the yield and activity of the resultant protein are dramatically decreased. Although the mechanism of oxidative protein folding is well understood, unwanted or incorrect disulfide bond formation often presents a stumbling block for the expression of cysteine-containing proteins in bacteria. It is therefore important to consider the biochemistry of prokaryotic disulfide bond formation systems in the context of protein production, in order to take advantage of the full potential of such pathways in biotechnology applications. Here, we provide a critical overview of the use of bacterial oxidative folding in protein production so far, and propose a practical decision-making workflow for exploiting disulfide bond formation for the expression of any given protein of interest.
Collapse
Affiliation(s)
- Sabrina L Slater
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Rai K, Chu X, Zhou D, Li F, Yang J, Lin J, Shen S, Song H, Sun Y, Nian R. Development of a protein-solubilizing expression method based on the synergistic action of intein ΔI-CM and the solubility enhancer elastin-like polypeptide. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Sandomenico A, Sivaccumar JP, Ruvo M. Evolution of Escherichia coli Expression System in Producing Antibody Recombinant Fragments. Int J Mol Sci 2020; 21:ijms21176324. [PMID: 32878291 PMCID: PMC7504322 DOI: 10.3390/ijms21176324] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Antibodies and antibody-derived molecules are continuously developed as both therapeutic agents and key reagents for advanced diagnostic investigations. Their application in these fields has indeed greatly expanded the demand of these molecules and the need for their production in high yield and purity. While full-length antibodies require mammalian expression systems due to the occurrence of functionally and structurally important glycosylations, most antibody fragments and antibody-like molecules are non-glycosylated and can be more conveniently prepared in E. coli-based expression platforms. We propose here an updated survey of the most effective and appropriate methods of preparation of antibody fragments that exploit E. coli as an expression background and review the pros and cons of the different platforms available today. Around 250 references accompany and complete the review together with some lists of the most important new antibody-like molecules that are on the market or are being developed as new biotherapeutics or diagnostic agents.
Collapse
|
4
|
Yi DD, Wang XY, Zhang WL, Wang M, Zhang JH, Wang TY. Construction of an expression vector mediated by the dual promoter for prokaryotic and mammalian cell expression system. Mol Biol Rep 2020; 47:5185-5190. [PMID: 32564228 DOI: 10.1007/s11033-020-05593-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022]
Abstract
The aim of this study was to construct an expression vector mediated by the dual promoter that can simultaneously drive the recombinant protein production in eukaryotic and prokaryotic cells. The prokaryotic T7 promoter and ribosome binding site (RBS) was cloned downstream of CMV promoter in the eukaryotic expression vector pIRES-neo, and T7 termination sequence was inserted upstream of neomycin phosphotransferase gene to generate the dual promoter vector. The enhanced green fluorescent protein (eGFP) gene was used as reporter gene. Then, the resultant vector was transfected into Chinese hamster ovary (CHO) cells and transformed into Escherichia coli (E. coli) BL21, and the eGFP expression levels were analyzed by fluorescence microscopy, flow cytometry and Western blot, respectively. Fluorescence microscopy revealed that the eGFP was expressed in both CHO cells and E. coli BL21. Flow cytometry showed that the eGFP expression level had no significant difference between the dual promoter vector and control vector in transfected CHO cells. Western blot analysis indicated the eGFP expressed in transformed E. coli. In conclusion, a prokaryotic-eukaryotic double expression vector was successfully constructed, which has potential applications in rapid cloning and expression of recombinant proteins in both prokaryotic and eukaryotic expression systems.
Collapse
Affiliation(s)
- Dan-Dan Yi
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, China
| | - Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Wei-Li Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, China
| | - Meng Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jun-He Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
5
|
Banaś AM, Bocian-Ostrzycka KM, Jagusztyn-Krynicka EK. Engineering of the Dsb (disulfide bond) proteins - contribution towards understanding their mechanism of action and their applications in biotechnology and medicine. Crit Rev Microbiol 2019; 45:433-450. [PMID: 31190593 DOI: 10.1080/1040841x.2019.1622509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Dsb protein family in prokaryotes catalyzes the generation of disulfide bonds between thiol groups of cysteine residues in nascent proteins, ensuring their proper three-dimensional structure; these bonds are crucial for protein stability and function. The first Dsb protein, Escherichia coli DsbA, was described in 1991. Since then, many details of the bond-formation process have been described through microbiological, biochemical, biophysical and bioinformatics strategies. Research with the model microorganism E. coli and many other bacterial species revealed an enormous diversity of bond-formation mechanisms. Research using Dsb protein engineering has significantly helped to reveal details of the disulfide bond formation. The first part of this review presents the research that led to understanding the mechanism of action of DsbA proteins, which directly transfer their own disulfide into target proteins. The second part concentrates on the mechanism of electron transport through the cell cytoplasmic membrane. Third and lastly, the review discusses the contribution of this research towards new antibacterial agents.
Collapse
Affiliation(s)
- Anna Marta Banaś
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw , Miecznikowa 1 , Warsaw , Poland
| | - Katarzyna Marta Bocian-Ostrzycka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw , Miecznikowa 1 , Warsaw , Poland
| | | |
Collapse
|
6
|
Horga LG, Halliwell S, Castiñeiras TS, Wyre C, Matos CFRO, Yovcheva DS, Kent R, Morra R, Williams SG, Smith DC, Dixon N. Tuning recombinant protein expression to match secretion capacity. Microb Cell Fact 2018; 17:199. [PMID: 30577801 PMCID: PMC6303999 DOI: 10.1186/s12934-018-1047-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/14/2018] [Indexed: 03/08/2023] Open
Abstract
Background The secretion of recombinant disulfide-bond containing proteins into the periplasm of Gram-negative bacterial hosts, such as E. coli, has many advantages that can facilitate product isolation, quality and activity. However, the secretion machinery of E. coli has a limited capacity and can become overloaded, leading to cytoplasmic retention of product; which can negatively impact cell viability and biomass accumulation. Fine control over recombinant gene expression offers the potential to avoid this overload by matching expression levels to the host secretion capacity. Results Here we report the application of the RiboTite gene expression control system to achieve this by finely controlling cellular expression levels. The level of control afforded by this system allows cell viability to be maintained, permitting production of high-quality, active product with enhanced volumetric titres. Conclusions The methods and systems reported expand the tools available for the production of disulfide-bond containing proteins, including antibody fragments, in bacterial hosts. Electronic supplementary material The online version of this article (10.1186/s12934-018-1047-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luminita Gabriela Horga
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Samantha Halliwell
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | | | | | | | | | - Ross Kent
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Rosa Morra
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | | | | | - Neil Dixon
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
7
|
Niu J, Xie J, Guo K, Zhang X, Xia F, Zhao X, Song L, Zhuge D, Li X, Zhao Y, Huang Z. Efficient treatment of Parkinson's disease using ultrasonography-guided rhFGF20 proteoliposomes. Drug Deliv 2018; 25:1560-1569. [PMID: 30043675 PMCID: PMC6060384 DOI: 10.1080/10717544.2018.1482972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor-20 (FGF20) is a paracrine member of the FGF family that is preferentially expressed in the substantia nigra pars compacta (SNpc). Previous studies have demonstrated that FGF20 enhances the survival of dopaminergic neurons suggesting the potential use of FGF20 to treat Parkinson's disease (PD). However, the reduced solubility of the bacterial recombinant human FGF20 (rhFGF20) and the absence of efficient strategies to transport rhFGF20 across the blood-brain barrier (BBB) have halted its clinical application. In the present study, we have examined the efficiency of fuzing a small ubiquitin-related modifier (SUMO) to rhFGF20 to enhance its soluble expression and further investigated the efficacy of FUS-guided, rhFGF20-liposome transport across the BBB. We also examined the bioavailability and behavioral improvement in a 6-hydroxydopamine-lesioned rat model of PD following 2 weeks' FUS-liposomal combinatorial treatment. Our results showed that, in contrast with rhFGF20 or LIP-FGF20, the FUS-LIP-rhFGF20 treatment could significantly improve the apomorphine-induced rotations by protecting against the loss of dopaminergic neurons in the SNpc. Our Results suggest that our combinatorial method would help overcome key challenges that hinder the currently available methods for the use of rhFGF20 in PD treatment.
Collapse
Affiliation(s)
- Jianlou Niu
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junjun Xie
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kaiwen Guo
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaomin Zhang
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feng Xia
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Zhao
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lintao Song
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Deli Zhuge
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingzheng Zhao
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhifeng Huang
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Zhang W, Lu J, Zhang S, Liu L, Pang X, Lv J. Development an effective system to expression recombinant protein in E. coli via comparison and optimization of signal peptides: Expression of Pseudomonas fluorescens BJ-10 thermostable lipase as case study. Microb Cell Fact 2018; 17:50. [PMID: 29592803 PMCID: PMC5872382 DOI: 10.1186/s12934-018-0894-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/17/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thermostable lipases from microbial sources have been substantially overexpressed in E. coli, however, these enzymes are often produced with low-level enzymatic activity and mainly in the form of inclusion bodies. Several studies have reported that the secretory production of recombinant proteins fused their N-terminus to a signal peptide has been employed to resolve the problem. In general, the feasibility of this approach largely depends on the secretory pathway of signal peptide and the type of target protein to be secreted. This study was performed to compare and optimize signal peptides for efficient secretion of thermostable lipase lipBJ10 from Pseudomonas fluorescens BJ-10. Meanwhile, a comparative study between this method and cytoplasmic secretion was implemented in secreting soluble and active lipases. RESULTS Fusion expression using six signal peptides, i.e., PelB and five native E. coli signal peptides, as fusion partners produced more soluble and functional recombinant lipBJ10 than non-fusion expression. Recombinant lipBJ10, fused to these six diverse signal peptides, was secreted into the periplasm in E. coli. The total lipase activity in all cases of fusion expression was higher than those in non-fusion expression. The relative activity peaked when lipBJ10 was fused to DsbA, yielding a value 73.3 times greater than that of the non-fusion protein. When DsbA was used as the fusion partner, the highest activity (265.41 U/ml) was achieved with the least formation of inclusion bodies; the other four E. coli signal peptides, to some extent, led to low activity and insoluble inclusion bodies. Therefore, DsbA is the optimal signal peptide partner to fuse with lipBJ10 to efficiently produce soluble and functional protein. CONCLUSION We found that fusing to these signal peptides, especially that of DsbA, can significantly decrease the formation of inclusion bodies and enhance the function and solubility of lipBJ10 compared to non-fusion lipBJ10. Our results reported here can provide a reference for the high-level expression of other lipases with respect to a possible industrial application.
Collapse
Affiliation(s)
- Weiqing Zhang
- Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Jing Lu
- Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Shuwen Zhang
- Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Lu Liu
- Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Xiaoyang Pang
- Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Jiaping Lv
- Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| |
Collapse
|
9
|
Zhou Y, Lu Z, Wang X, Selvaraj JN, Zhang G. Genetic engineering modification and fermentation optimization for extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 2017; 102:1545-1556. [DOI: 10.1007/s00253-017-8700-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023]
|
10
|
Song YH, Sun XW, Jiang B, Liu JE, Su XH. Purification optimization for a recombinant single-chain variable fragment against type 1 insulin-like growth factor receptor (IGF-1R) by using design of experiment (DoE). Protein Expr Purif 2015; 116:98-104. [DOI: 10.1016/j.pep.2015.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
|
11
|
Sina M, Farajzadeh D, Dastmalchi S. Effects of Environmental Factors on Soluble Expression of a Humanized Anti-TNF-α scFv Antibody in Escherichia coli. Adv Pharm Bull 2015; 5:455-61. [PMID: 26819916 DOI: 10.15171/apb.2015.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The bacterial cultivation conditions for obtaining anti-TNF-α single chain variable fragment (scFv) antibody as the soluble product in E. coli was investigated. METHODS To avoid the production of inclusion bodies, the effects of lactose, IPTG, incubation time, temperature, shaking protocol, medium additives (Mg+2, sucrose), pH, osmotic and heat shocks were examined. Samples from bacterial growth conditions with promising results of soluble expression of GST-hD2 scFv were affinity purified and quantified by SDS-PAGE and image processing for further evaluation. RESULTS The results showed that cultivation in LB medium under induction by low concentrations of lactose and incubation at 10 °C led to partial solubilization of the expressed anti-TNF-α scFv (GST-hD2). Other variables which showed promising increase in soluble expression of GST-hD2 were osmotic shock and addition of magnesium chloride. Furthermore, addition of sucrose to medium suppressed the expression of scFv completely. The other finding was that the addition of sorbitol decreased the growth rate of bacteria. CONCLUSION It can be concluded that low cultivation temperature in the presence of low amount of inducer under a long incubation time or addition of magnesium chloride are the most effective environmental factors studied for obtaining the maximum solubilization of GST-hD2 recombinant protein.
Collapse
Affiliation(s)
- Mohammad Sina
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Farajzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|