1
|
New Insights into the Mechanism of Trichoderma virens-Induced Developmental Effects on Agrostis stolonifera Disease Resistance against Dollar Spot Infection. J Fungi (Basel) 2022; 8:jof8111186. [DOI: 10.3390/jof8111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
Trichoderma is internationally recognized as a biocontrol fungus for its broad-spectrum antimicrobial activity. Intriguingly, the crosstalk mechanism between the plant and Trichoderma is dynamic, depending on the Trichoderma strains and the plant species. In our previous study, the Trichoderma virens 192-45 strain showed better pathogen inhibition through the secretive non-volatile and volatile substrates. Therefore, we studied transcriptional and metabolic responses altered in creeping bentgrass (Agrostis stolonifera L.) with T. virens colonization prior to a challenge with Clarireedia homoeocarpa. This fungal pathogen causes dollar spot on various turfgrasses. When the pathogen is deficient, the importance of T. virens to the enhancement of plant growth can be seen in hormonal production and microbe signaling, such as indole-3-acrylic acid. Therefore, these substrates secreted by T. virens and induced genes related to plant growth can be the ‘pre-defense’ for ensuing pathogen attacks. During C. homoeocarpa infection, the Trichoderma–plant interaction activates defense responses through the SA- and/or JA-dependent pathway, induced by T. virens and its respective exudates, such as oleic, citric, and stearic acid. Thus, we will anticipate a combination of genetic engineering and exogenous application targeting these genes and metabolites, which could make creeping bentgrass more resistant to dollar spot and other pathogens.
Collapse
|
2
|
Yuan L, Jiang H, Jiang X, Li T, Lu P, Yin X, Wei Y. Comparative genomic and functional analyses of Paenibacillus peoriae ZBSF16 with biocontrol potential against grapevine diseases, provide insights into its genes related to plant growth-promoting and biocontrol mechanisms. Front Microbiol 2022; 13:975344. [PMID: 36160187 PMCID: PMC9492885 DOI: 10.3389/fmicb.2022.975344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Paenibacillus peoriae is a plant growth-promoting rhizobacteria (PGPR) widely distributed in various environments. P. peoriae ZBFS16 was isolated from the wheat rhizosphere and significantly suppressed grape white rot disease caused by Coniella vitis. Here, we present the complete genome sequence of P. peoriae ZBFS16, which consists of a 5.83 Mb circular chromosome with an average G + C content of 45.62%. Phylogenetic analyses showed that ZBFS16 belongs to the genus P. peoriae and was similar to P. peoriae ZF390, P. peoriae HS311 and P. peoriae HJ-2. Comparative analysis with three closely related sequenced strains of P. peoriae identified the conservation of genes involved in indole-3-acetic acid production, phosphate solubilization, nitrogen fixation, biofilm formation, flagella and chemotaxis, quorum-sensing systems, two-component systems, antimicrobial substances and resistance inducers. Meanwhile, in vitro experiments were also performed to confirm these functions. In addition, the strong colonization ability of P. peoriae ZBFS16 was observed in soil, which provides it with great potential for use in agriculture as a PGPR. This study will be helpful for further studies of P. peoriae on the mechanisms of plant growth promotion and biocontrol.
Collapse
Affiliation(s)
- Lifang Yuan
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Hang Jiang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xilong Jiang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Tinggang Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Ping Lu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xiangtian Yin
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Xiangtian Yin,
| | - Yanfeng Wei
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- *Correspondence: Yanfeng Wei,
| |
Collapse
|
3
|
Dormatey R, Sun C, Ali K, Fiaz S, Xu D, Calderón-Urrea A, Bi Z, Zhang J, Bai J. ptxD/Phi as alternative selectable marker system for genetic transformation for bio-safety concerns: a review. PeerJ 2021; 9:e11809. [PMID: 34395075 PMCID: PMC8323600 DOI: 10.7717/peerj.11809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/27/2021] [Indexed: 12/14/2022] Open
Abstract
Antibiotic and herbicide resistance genes are the most common marker genes for plant transformation to improve crop yield and food quality. However, there is public concern about the use of resistance marker genes in food crops due to the risk of potential gene flow from transgenic plants to compatible weedy relatives, leading to the possible development of “superweeds” and antibiotic resistance. Several selectable marker genes such as aph, nptII, aaC3, aadA, pat, bar, epsp and gat, which have been synthesized to generate transgenic plants by genetic transformation, have shown some limitations. These marker genes, which confer antibiotic or herbicide resistance and are introduced into crops along with economically valuable genes, have three main problems: selective agents have negative effects on plant cell proliferation and differentiation, uncertainty about the environmental effects of many selectable marker genes, and difficulty in performing recurrent transformations with the same selectable marker to pyramid desired genes. Recently, a simple, novel, and affordable method was presented for plant cells to convert non-metabolizable phosphite (Phi) to an important phosphate (Pi) for developing cells by gene expression encoding a phosphite oxidoreductase (PTXD) enzyme. The ptxD gene, in combination with a selection medium containing Phi as the sole phosphorus (P) source, can serve as an effective and efficient system for selecting transformed cells. The selection system adds nutrients to transgenic plants without potential risks to the environment. The ptxD/Phi system has been shown to be a promising transgenic selection system with several advantages in cost and safety compared to other antibiotic-based selection systems. In this review, we have summarized the development of selection markers for genetic transformation and the potential use of the ptxD/Phi scheme as an alternative selection marker system to minimize the future use of antibiotic and herbicide marker genes.
Collapse
Affiliation(s)
- Richard Dormatey
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China
| | - Chao Sun
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China
| | - Kazim Ali
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China.,National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Derong Xu
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China
| | - Alejandro Calderón-Urrea
- Department of Biology, College of Science and Mathematics, California State University, Fresno, CA, USA
| | - Zhenzhen Bi
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China
| | - Junlian Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China
| | - Jiangping Bai
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China
| |
Collapse
|
4
|
Singh P, Singh J, Ray S, Rajput RS, Vaishnav A, Singh RK, Singh HB. Seed biopriming with antagonistic microbes and ascorbic acid induce resistance in tomato against Fusarium wilt. Microbiol Res 2020; 237:126482. [PMID: 32353683 DOI: 10.1016/j.micres.2020.126482] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/22/2020] [Accepted: 03/28/2020] [Indexed: 12/20/2022]
Abstract
Seed biopriming is an emerging technique to enhance seed germination under stress conditions. An integrated approach of tomato seed biopriming with ascorbic acid, Trichoderma asperellum BHU P-1 and Ochrobactrum sp. BHU PB-1 was applied to observe the response against wilt pathogen of tomato Fusarium oxysporum f. sp. lycopersici (FOL). Tomato seeds bioprimed with the aforementioned application expressed augmented seed germination and activated of defense response. Seed germination was recorded higher (80 %) at low concentration (1 pM) of ascorbic acid as compared to high concentration of 1 mM (41 %). Combination of both ascorbic acid and antagonistic microbe treatments (T5 & T6) significantly reduced disease incidence (up to 28 %) in tomato plants at 10 days. T5 and T6 treated plants exhibited higher accumulation of total phenol content and increased activity of Phenylammonia lyase (PAL), Peroxidase (PO), Chitinase (Chi) and Polyphenol oxidase (PPO) as compared to control (T1) plants. ROS formation in the form of H2O2 was also found to be reduced in combined treatment. Histochemical analysis revealed that phenylpropanoid pathway (lignin deposition) was more activated in combined priming treatment plants as compared to individual treatment upon challenge inoculation with FOL. Transcript expression analysis of defense genes confirmed the up-regulation of PAL (2.1 fold), Chi (0.92 fold), Pathogenesis related proteins (PR) (1.58 fold) and Lipoxygenase (Lox) (0.72 fold) in T6 treatment as compared to T1 treatment plants at 96 h. This study reveals that ascorbic acid treatment with antagonistic microbes through seed priming effectively induced seed germination and elicited defense mechanism to control wilt disease in tomato plants.
Collapse
Affiliation(s)
- Prachi Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Jyoti Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shatrupa Ray
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Singh Rajput
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Anukool Vaishnav
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India.
| | - Rakesh Kumar Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; Somvanshi Research Foundation13/21 Vikas Nagar, Lucknow-226022, India.
| |
Collapse
|
5
|
Li Q, Liao S, Zhi H, Xing D, Xiao Y, Yang Q. Characterization and sequence analysis of potential biofertilizer and biocontrol agent Bacillus subtilis strain SEM-9 from silkworm excrement. Can J Microbiol 2019; 65:45-58. [DOI: 10.1139/cjm-2018-0350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fusarium wilt is a devastating soil-borne disease caused mainly by highly host-specific formae speciales of Fusarium oxysporum. Antagonistic microorganisms play a very important role in Fusarium wilt control, and the isolation of potential biocontrol strains is becoming more and more important. We isolated a bacterial strain (SEM-9) from the high-temperature stage of silkworm excrement composting, which had a marked ability to solubilize phosphorus, promote the growth and increase the yield of the small Chinese cabbage, and which also exhibited considerable antagonistic effect towards Fusarium sambucinum and other fungi. The result of physiological and biochemical analyses, as well as genome sequencing, showed that SEM-9 was a strain of Bacillus subtilis. Through genome annotation and analysis, it was found that SEM-9 contained genes related to the regulation of biofilm formation, which may play an important role in colonization, and gene clusters encoding the biosynthesis of antimicrobials, such as surfactin, bacilysin, fengycin, and subtilosin-A. The production of such antifungal compounds may constitute the basis of the mode-of-action of SEM-9 against Fusarium spp. These data suggested that the SEM-9 strain has potential as both a biofertilizer and a biocontrol agent, with the potential to manage Fusarium wilt disease in crops.
Collapse
Affiliation(s)
- Qingrong Li
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| | - Sentai Liao
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
| | - Huyu Zhi
- Guangdong Geolong Biotechnology Co. Ltd., ZhuHai 519000, P.R. China
| | - Dongxu Xing
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| | - Yang Xiao
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| | - Qiong Yang
- The Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, P.R. China
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou 510610, P.R. China
| |
Collapse
|
6
|
Siegel-Hertz K, Edel-Hermann V, Chapelle E, Terrat S, Raaijmakers JM, Steinberg C. Comparative Microbiome Analysis of a Fusarium Wilt Suppressive Soil and a Fusarium Wilt Conducive Soil From the Châteaurenard Region. Front Microbiol 2018; 9:568. [PMID: 29670584 PMCID: PMC5893819 DOI: 10.3389/fmicb.2018.00568] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/13/2018] [Indexed: 12/30/2022] Open
Abstract
Disease-suppressive soils are soils in which specific soil-borne plant pathogens cause only limited disease although the pathogen and susceptible host plants are both present. Suppressiveness is in most cases of microbial origin. We conducted a comparative metabarcoding analysis of the taxonomic diversity of fungal and bacterial communities from suppressive and non-suppressive (conducive) soils as regards Fusarium wilts sampled from the Châteaurenard region (France). Bioassays based on Fusarium wilt of flax confirmed that disease incidence was significantly lower in the suppressive soil than in the conducive soil. Furthermore, we succeeded in partly transferring Fusarium wilt-suppressiveness to the conducive soil by mixing 10% (w/w) of the suppressive soil into the conducive soil. Fungal diversity differed significantly between the suppressive and conducive soils. Among dominant fungal operational taxonomic units (OTUs) affiliated to known genera, 17 OTUs were detected exclusively in the suppressive soil. These OTUs were assigned to the Acremonium, Chaetomium, Cladosporium, Clonostachys, Fusarium, Ceratobasidium, Mortierella, Penicillium, Scytalidium, and Verticillium genera. Additionally, the relative abundance of specific members of the bacterial community was significantly higher in the suppressive and mixed soils than in the conducive soil. OTUs found more abundant in Fusarium wilt-suppressive soils were affiliated to the bacterial genera Adhaeribacter, Massilia, Microvirga, Rhizobium, Rhizobacter, Arthrobacter, Amycolatopsis, Rubrobacter, Paenibacillus, Stenotrophomonas, and Geobacter. Several of the fungal and bacterial genera detected exclusively or more abundantly in the Fusarium wilt-suppressive soil included genera known for their activity against F. oxysporum. Overall, this study supports the potential role of known fungal and bacterial genera in Fusarium wilt suppressive soils from Châteaurenard and pinpoints new bacterial and fungal genera for their putative role in Fusarium wilt suppressiveness.
Collapse
Affiliation(s)
- Katarzyna Siegel-Hertz
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Véronique Edel-Hermann
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Emilie Chapelle
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Sébastien Terrat
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| | - Jos M Raaijmakers
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands.,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Christian Steinberg
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
7
|
Díaz Herrera S, Grossi C, Zawoznik M, Groppa MD. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol Res 2016; 186-187:37-43. [PMID: 27242141 DOI: 10.1016/j.micres.2016.03.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 10/22/2022]
Abstract
The role of endophytic communities of seeds is still poorly characterised. The purpose of this work was to survey the presence of bacterial endophytes in the seeds of a commercial wheat cultivar widely sown in Argentina and to look for plant growth promotion features and biocontrol abilities against Fusarium graminearum among them. Six isolates were obtained from wheat seeds following a culture-dependent protocol. Four isolates were assignated to Paenibacillus genus according to their 16S rRNA sequencing. The only gammaproteobacteria isolated, presumably an Enterobactereaceae of Pantoea genus, was particularly active as IAA and siderophore producer, and also solubilised phosphate and was the only one that grew on N-free medium. Several of these isolates demonstrated ability to restrain F. graminearum growth on dual culture and in a bioassay using barley and wheat kernels. An outstanding ability to form biofilm on an inert surface was corroborated for those Paenibacillus which displayed greater biocontrol of F. graminearum, and the inoculation with one of these isolates in combination with the Pantoea isolate resulted in greater chlorophyll content in barley seedlings. Our results show a significant ecological potential of some components of the wheat seed endophytic community.
Collapse
Affiliation(s)
- Silvana Díaz Herrera
- Cátedra de Química Biológica Vegetal, Departamento de Química Biológica, Universidad de Buenos Aires, Junín 956, Buenos Aires, Argentina; IQUIFIB, CONICET, Universidad de Buenos Aires, Junín 956, Buenos Aires, Argentina
| | - Cecilia Grossi
- Cátedra de Química Biológica Vegetal, Departamento de Química Biológica, Universidad de Buenos Aires, Junín 956, Buenos Aires, Argentina
| | - Myriam Zawoznik
- Cátedra de Química Biológica Vegetal, Departamento de Química Biológica, Universidad de Buenos Aires, Junín 956, Buenos Aires, Argentina.
| | - María Daniela Groppa
- Cátedra de Química Biológica Vegetal, Departamento de Química Biológica, Universidad de Buenos Aires, Junín 956, Buenos Aires, Argentina; IQUIFIB, CONICET, Universidad de Buenos Aires, Junín 956, Buenos Aires, Argentina
| |
Collapse
|