1
|
Venkataraman S, Athilakshmi JK, Rajendran DS, Bharathi P, Kumar VV. A comprehensive review of eclectic approaches to the biological synthesis of vanillin and their application towards the food sector. Food Sci Biotechnol 2024; 33:1019-1036. [PMID: 38440686 PMCID: PMC10908958 DOI: 10.1007/s10068-023-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 03/06/2024] Open
Abstract
Vanillin, a highly regarded flavor compound, has earned widespread recognition for its natural and aromatic qualities, piquing substantial interest in the scientific community. This comprehensive review delves deeply into the intricate world of vanillin synthesis, encompassing a wide spectrum of methodologies, including enzymatic, microbial, and immobilized systems. This investigation provides a thorough analysis of the precursors of vanillin and also offers a comprehensive overview of its transformation through these diverse processes, making it an invaluable resource for researchers and enthusiasts alike. The elucidation of different substrates such as ferulic acid, eugenol, veratraldehyde, vanillic acid, glucovanillin, and C6-C3 phenylpropanoids adds a layer of depth and insight to the understanding of vanillin synthesis. Moreover, this comprehensive review explores the multifaceted applications of vanillin within the food industry. While commonly known as a flavoring agent, vanillin transcends this role by finding extensive use in food preservation and food packaging. The review meticulously examines the remarkable preservative properties of vanillin, providing a profound understanding of its crucial role in the culinary and food science sectors, thus making it an indispensable reference for professionals and researchers in these domains. Graphical abstract
Collapse
Affiliation(s)
- Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Jothyswarupha Krishnakumar Athilakshmi
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Priyadharshini Bharathi
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| |
Collapse
|
2
|
Anticancer Secondary Metabolites: From Ethnopharmacology and Identification in Native Complexes to Biotechnological Studies in Species of Genus Astragalus L. and Gloriosa L. Curr Issues Mol Biol 2022; 44:3884-3904. [PMID: 36135179 PMCID: PMC9498292 DOI: 10.3390/cimb44090267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 08/21/2022] [Indexed: 11/24/2022] Open
Abstract
Some of the most effective anticancer compounds are still derived from plants since the chemical synthesis of chiral molecules is not economically efficient. Rapid discovery of lead compounds with pronounced biological activity is essential for the successful development of novel drug candidates. This work aims to present the chemical diversity of antitumor bioactive compounds and biotechnological approaches as alternative production and sustainable plant biodiversity conservation. Astragalus spp., (Fabaceae) and Gloriosa spp. (Liliaceae) are selected as research objects within this review because they are known for their anticancer activity, because they represent two of the largest families respectively in dicots and monocots, and also because many of the medicinally important plants are rare and endangered. We summarized the ethnobotanical data concerning their anticancer application, highlighted the diversity of their secondary metabolites possessing anticancer properties such as saponins, flavonoids, and alkaloids, and revealed the potential of the in vitro cultures as an alternative way of their production. Since the natural supply is limited, it is important to explore the possibility of employing plant cell or organ in vitro cultures for the biotechnological production of these compounds as an alternative.
Collapse
|
3
|
Zhang Y, Qi G, Yao L, Huang L, Wang J, Gao W. Effects of Metal Nanoparticles and Other Preparative Materials in the Environment on Plants: From the Perspective of Improving Secondary Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:916-933. [PMID: 35073067 DOI: 10.1021/acs.jafc.1c05152] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The influence of preparation material residues in wastewater and soil on plants has been paid more and more attention by researchers. Secondary metabolites play an important role in the application of plants. It was found that nanomaterials can increase the content of plant secondary metabolites in addition to their role in pharmaceutical preparations. For example, 800 mg/kg copper oxide nanoparticles (NPs) increased the content of p-coumaric acid in cucumber by 225 times. Nanoparticles can cause oxidative stress in plants, increase signal molecule, and upregulate the synthase gene expression, increasing the content of secondary metabolites. The increase of components such as polyphenols and total flavonoids may be related to oxidative stress. This paper reviews the application and mechanism of metal nanomaterials (Ag-NP, ZnO-NP, CeO2-NP, Cds-NP, Mn-NP, CuO-NP) in promoting the synthesis of secondary metabolites from plants. In addition, the effects of some other preparative materials (cyclodextrins and immobilized molds) on plant secondary metabolites are also involved. Finally, possible future research is discussed.
Collapse
Affiliation(s)
- Yanan Zhang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - GeYuan Qi
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Lu Yao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Juan Wang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wenyuan Gao
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Singhvi MS, Zinjarde SS. Production of pharmaceutically important genistein and daidzein from soybean flour extract by using β-glucosidase derived from Penicillium janthinellum NCIM 1171. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Saito T, Aono R, Furuya T, Kino K. Efficient and long-term vanillin production from 4-vinylguaiacol using immobilized whole cells expressing Cso2 protein. J Biosci Bioeng 2020; 130:260-264. [PMID: 32456985 DOI: 10.1016/j.jbiosc.2020.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 11/17/2022]
Abstract
Vanillin is a well-known fragrant, flavoring compound. Previously, we established a method of coenzyme-independent vanillin production via an oxygenase from Caulobacter segnis ATCC 21756, called Cso2, that converts 4-vinylguaiacol to vanillin and formaldehyde using oxygen. In this study, we found that reactive oxygen species inhibited the catalytic activity of Cso2, and the addition of catalase increased vanillin production. Since Escherichia coli harbors catalases, we used E. coli cells expressing Cso2 to produce vanillin. Cell immobilization in calcium alginate enabled the long-term use of the E. coli cells for vanillin production. Thus, we demonstrate the possibility of using immobilized E. coli cells for both continuous and repeated batch vanillin production without any coenzymes.
Collapse
Affiliation(s)
- Tsubasa Saito
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Riku Aono
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Toshiki Furuya
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kuniki Kino
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
6
|
A Biotransformation Process for Production of Genistein from Sophoricoside by a Strain of Rhizopus oryza. Sci Rep 2019; 9:6564. [PMID: 31024087 PMCID: PMC6484079 DOI: 10.1038/s41598-019-42996-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/12/2019] [Indexed: 11/08/2022] Open
Abstract
Genistein is known to have multiple biological activities and has great potential for use as a preventative medicine and in disease treatment. Genistein can be extracted from plants, but also can be obtained from its glycoside form, sophoricoside, which is more abundant in some plants. Biotransformation by unpurified microbial enzymes has the advantage of low cost and is a preferred method for production of natural compounds. This study isolated a strain of Rhizopus oryzae that could produce β-glucosidase, which efficiently hydrolyzes sophoricoside into genistein, from an enrichment culture of the dried fruits of Sophora japonica. After the composition of enzyme-producing medium and biotransformation conditions were optimized, a genistein yield of 85.6% was obtained after 24 h in a shake-flask biotransformation at pH 7.0 using an initial substrate concentration of 1 g/L. The developed process provides an alternative method for production of genistein, and would be suitable for scale-up production in the pharmaceutical industry.
Collapse
|
7
|
Zhang Y, Zhao Y, Lu Y, Cao Q, Chen W, Chen Y. Bioconversion of fructus sophorae into 5,7,8,4'-tetrahydroxyis oflavone with Aspergillus aculeatus. PLoS One 2019; 14:e0211613. [PMID: 30840625 PMCID: PMC6402652 DOI: 10.1371/journal.pone.0211613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 01/17/2019] [Indexed: 11/25/2022] Open
Abstract
A fungus identified as Aspergillus aculeatus was used to biotransform genistein and glycosides to polyhydroxylated isoflavones. The strain was identified on the basis of colony morphology features and ITS rDNA sequence analysis. Phylogenetic tree was constructed to determine its taxonomic status. Genistein and glycosides were transformed by Aspergillus aculeatus to 5,7,8,4’- tetrahydroxyisoflavone. The chemical structure of the product was identified by high performance liquid chromatography(HPLC), liquid chromatography-mass spectrometry(LC/MS), Infrared spectroscopy (IR) and NMR spectrometer methods. The ITS rDNA sequence of the strain had 100% similarity with Aspergillus. Furthermore, it was ultimately identified as Aspergillus aculeatus. The metabolite of genistein and glycosides was identified as 5,7,8,4’-tetrahydroxyisoflavone. 120 mg 5,7,8,4’-tetrahydroxyisoflavone was made from 20 g fructus sophorae, which was bioconverted unconditionally by Aspergillus aculeatus for 96 h, and the purity was 96%. On the basis of the findings, Aspergillus aculeatus was a novel strain with specific ability to convert genistein and glycosides into 5,7,8,4’-tetrahydroxyisoflavone which had potential applications.
Collapse
Affiliation(s)
- Yuqian Zhang
- College of Food and pharmaceutical engineering, Nanjing Normal University, Nanjing, P. R. China
- School of Biotechnology and Chemical Engineering, Taizhou College, Nanjing Normal University, Taizhou, P. R. China
| | - Yunchen Zhao
- School of Agriculture and Biotechnology, Hexi University, Gansu Zhangye, P. R. China
| | - Yaoying Lu
- School of Natural Sciences, Griffith University, Nathan, Queensland, Australia
| | - Qiming Cao
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Wenzhong Chen
- Nanjing Luye Sike Pharmaceutical Co., Ltd, Nanjing, P. R. China
| | - Yuru Chen
- College of Food and pharmaceutical engineering, Nanjing Normal University, Nanjing, P. R. China
- School of Natural Sciences, Griffith University, Nathan, Queensland, Australia
- * E-mail:
| |
Collapse
|
8
|
Gai Q, Jiao J, Luo M, Wang W, Yao L, Fu Y. Deacetylation biocatalysis and elicitation by immobilized Penicillium canescens in Astragalus membranaceus hairy root cultures: towards the enhanced and sustainable production of astragaloside IV. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:297-305. [PMID: 27518481 PMCID: PMC5316919 DOI: 10.1111/pbi.12612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/27/2016] [Accepted: 08/09/2016] [Indexed: 05/24/2023]
Abstract
A novel biotechnology approach by combining deacetylation biocatalysis with elicitation of immobilized Penicillium canescens (IPC) in Astragalus membranaceus hairy root cultures (AMHRCs) was proposed for the elevated production of astragaloside IV (AG IV). The highest AG IV accumulation was achieved in 36-day-old AMHRCs co-cultured with IPC for 60 h, which resulted in the enhanced production of AG IV by 14.59-fold in comparison with that in control (0.193 ± 0.007 mg/g DW). Meanwhile, AG IV precursors were almost transformed to AG IV by IPC deacetylation. Moreover, expression of genes involved in AG IV biosynthetic pathway was significantly up-regulated in response to IPC elicitation. Also, FTIR and SEM showed that cell wall lignification was enhanced following IPC treatment and root surface was likely to be IPC deacetylation site. Overall, dual roles of IPC (biocatalyst and elicitor) offered an effective and sustainable way for the mass production of AG IV in AMHRCs.
Collapse
Affiliation(s)
- Qing‐Yan Gai
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- Engineering Research Center of Forest Bio‐PreparationMinistry of EducationNortheast Forestry UniversityHarbinChina
- Collaborative Innovation Center for Development and Utilization of Forest ResourcesHarbinHeilongjiangChina
| | - Jiao Jiao
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- Engineering Research Center of Forest Bio‐PreparationMinistry of EducationNortheast Forestry UniversityHarbinChina
- Collaborative Innovation Center for Development and Utilization of Forest ResourcesHarbinHeilongjiangChina
| | - Meng Luo
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- Engineering Research Center of Forest Bio‐PreparationMinistry of EducationNortheast Forestry UniversityHarbinChina
- Collaborative Innovation Center for Development and Utilization of Forest ResourcesHarbinHeilongjiangChina
| | - Wei Wang
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- Engineering Research Center of Forest Bio‐PreparationMinistry of EducationNortheast Forestry UniversityHarbinChina
- Collaborative Innovation Center for Development and Utilization of Forest ResourcesHarbinHeilongjiangChina
| | - Li‐Ping Yao
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- Engineering Research Center of Forest Bio‐PreparationMinistry of EducationNortheast Forestry UniversityHarbinChina
- Collaborative Innovation Center for Development and Utilization of Forest ResourcesHarbinHeilongjiangChina
| | - Yu‐Jie Fu
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- Engineering Research Center of Forest Bio‐PreparationMinistry of EducationNortheast Forestry UniversityHarbinChina
- Collaborative Innovation Center for Development and Utilization of Forest ResourcesHarbinHeilongjiangChina
| |
Collapse
|
9
|
Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermentors. Sci Rep 2016; 6:34644. [PMID: 27708366 PMCID: PMC5052561 DOI: 10.1038/srep34644] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 09/14/2016] [Indexed: 11/26/2022] Open
Abstract
We performed the biotransformation of ferulic acid to vanillin using Bacillus subtilis (B. subtilis) in the stirring packed-bed reactors filled with carbon fiber textiles (CFT). Scanning electron microscope (SEM), HPLC, qRT-PCR and ATP assay indicated that vanillin biotransformation is tightly related to cell growth, cellar activity and the extent of biofilm formation. The biotransformation was affected by hydraulic retention time (HRT), temperature, initial pH, stirring speed and ferulic acid concentration, and the maximum vanillin production was obtained at 20 h, 35 °C, 9.0, 200 rpm, 1.5 g/L, respectively. Repeated batch biotransformation performed under this optimized condition showed that the maximum productivity (0.047 g/L/h) and molar yield (60.43%) achieved in immobilized cell system were 1.84 and 3.61 folds higher than those achieved in free cell system. Therefore, the stirring reactor packed with CFT carrier biofilm formed by B. subtilis represented a valid biocatalytic system for the production of vanillin.
Collapse
|
10
|
Ma YC, Mani A, Cai Y, Thomson J, Ma J, Peudru F, Chen S, Luo M, Zhang J, Chapman RG, Shi ZT. An effective identification and quantification method for Ginkgo biloba flavonol glycosides with targeted evaluation of adulterated products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:377-387. [PMID: 27002408 DOI: 10.1016/j.phymed.2016.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Ginkgo biloba L. (Ginkgoaceae) leaf extract is one of the most popular herbal products on the market, as it contains flavone glycosides (≥ 24%) and terpene lactones (≥ 6%), which are proposed to have significant physiological effects. Unfortunately, the challenging financial climate has resulted in a natural health product market containing adulterated ginkgo products. PURPOSE 42 ginkgo samples were analyzed to establish an HPLC profile for authentic ginkgo and common ginkgo adulterants, and to develop a method capable of easily detecting adulteration in ginkgo commercial products. METHOD In this study an efficient and targeted HPLC analysis method was established that is capable of distinguishing flavonol glycosides and aglycones simultaneously for the evaluation of ginkgo powdered extracts (PEs) and finished products in a single, 13 min run. Thirteen ginkgo leaf samples, fifteen standardized powdered extracts, and fourteen commercially available ginkgo products have been analyzed using this new HPLC method. Chromatograms were compared to six standard reference materials: one flavonol glycoside (rutin), three aglycones (quercetin, kaempferol and isorhamnetin), and two isoflavones (genestin and genistein). The quantitative chromatographic data was interpreted by principal component analysis (PCA), which assisted in the detection of unexpected chromatographic features in various adulterated botanical products. RESULTS Only three of the commercially available ginkgo finished products tested in this study were determined to be authentic, with flavonol glycoside rutin, and aglycones quercetin, kaempferol, and isorhamnetin found to be common adulterants in the ginkgo powdered extract and finished product samples. CONCLUSION Despite evidence of adulteration in most of the samples, each of the samples discussed herein met most of the current pharmacopeial standards. It is therefore critical that a preliminary evaluation be utilized to detect adulteration in commercial ginkgo products, prior to the acid hydrolysis procedure utilized in the current testing methods.
Collapse
Affiliation(s)
- Yuan-Chun Ma
- Canadian Phytopharmaceuticals Corp., 12233 Riverside Way, Richmond, BC V6W 1K8, Canada; Canadian Institute of Medicinal Plants, 12233 Riverside Way, Richmond, BC V6W 1K8, Canada; Hubei University of Chinese Medicine, Wuhan 430000, PR China.
| | - Ana Mani
- Canadian Phytopharmaceuticals Corp., 12233 Riverside Way, Richmond, BC V6W 1K8, Canada.
| | - Yaling Cai
- Canadian Phytopharmaceuticals Corp., 12233 Riverside Way, Richmond, BC V6W 1K8, Canada; Canadian Institute of Medicinal Plants, 12233 Riverside Way, Richmond, BC V6W 1K8, Canada
| | - Jaclyn Thomson
- Canadian Phytopharmaceuticals Corp., 12233 Riverside Way, Richmond, BC V6W 1K8, Canada
| | - Jie Ma
- Canadian Phytopharmaceuticals Corp., 12233 Riverside Way, Richmond, BC V6W 1K8, Canada; Canadian Institute of Medicinal Plants, 12233 Riverside Way, Richmond, BC V6W 1K8, Canada
| | - Flavie Peudru
- Canadian Phytopharmaceuticals Corp., 12233 Riverside Way, Richmond, BC V6W 1K8, Canada
| | - Sarah Chen
- Canadian Phytopharmaceuticals Corp., 12233 Riverside Way, Richmond, BC V6W 1K8, Canada
| | - Mai Luo
- Canadian Phytopharmaceuticals Corp., 12233 Riverside Way, Richmond, BC V6W 1K8, Canada; Canadian Institute of Medicinal Plants, 12233 Riverside Way, Richmond, BC V6W 1K8, Canada
| | - Junzeng Zhang
- Natural Health Products Program, Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Robert G Chapman
- Natural Health Products Program, Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Zhen-Tuo Shi
- Hubei Nuokete Pharmaceutical Co., Ltd., Xiaochang, Hubei 432900, PR China
| |
Collapse
|