1
|
He J, Cui X, Pang H, Xin X, Zhong Y, Duan S, Liu Y, Zhao Y. Effect of thermal hydrolysis pretreatment on the occurrence of N-acyl homoserine lactone during anaerobic digestion of waste activated sludge. CHEMOSPHERE 2023; 341:139931. [PMID: 37669717 DOI: 10.1016/j.chemosphere.2023.139931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
This study sought to investigate the relationship between N-acyl homoserine lactones (AHLs) and methanogenic microorganisms, focusing on endogenous AHLs in the anaerobic digestion (AD) process. By analyzing waste activated sludge (WAS) samples, we examine the changes in microbial communities and the AHLs-methanogens connection. The Mantel test and Spearman correlation analysis were conducted to gain novel insights into the AD process. Our findings demonstrate that thermal hydrolysis pretreatment (THP) modifies AHL concentrations during AD, thereby enhancing methanogenic bacteria activity and regulating social interactions among microorganisms. In the Eth group (AD of THP samples labeled Eth), Methanobacterium and Methanosarcina accounted for over 80% of the methanogenic bacteria, with correlation coefficients greater than 0.5 between these bacterial taxa and N-hexyl-l-homoserine lactone (C6-HSL) and N-enanthyl-l-homoserine lactone (C7-HSL).
Collapse
Affiliation(s)
- Junguo He
- School of Civil Engineering, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| | - Xinxin Cui
- School of Civil Engineering, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China.
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi 'an University of Architecture and Technology, 13 Yanta Road middle section, Xi 'an, 710055, China.
| | - Xiaodong Xin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, 1 Daxue Road, Dongguan, 523808, China
| | - Yijie Zhong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China
| | - Shengye Duan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China
| | - Yunlong Liu
- School of Civil Engineering, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| | - Yuanyi Zhao
- School of Civil Engineering, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| |
Collapse
|
2
|
Zhang D, Wei Y, Zhang M, Wu S, Zhou L. A collaborative strategy for enhanced anaerobic co-digestion of food waste and waste activated sludge by using zero valent iron and ferrous sulfide. BIORESOURCE TECHNOLOGY 2022; 347:126420. [PMID: 34838971 DOI: 10.1016/j.biortech.2021.126420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
The application of sulfidated zero-valent iron as an alternative used in coupled anaerobic systems to improve methane production is usually restricted by its high production costs and toxic gasses and wastewater generation. In this study, a collaborative strategy for coupling zero-valent iron (ZVI) and ferrous sulfide (FeS) together into anaerobic systems was used to evaluate the enhancement of methanogenesis during the co-digestion of food waste and waste activated sludge, with the microbial evolution and metabolic pathway revealed. Results showed that the enhanced hydrolysis and acidogenesis process of co-digestion in this coupled anaerobic system could be attributed to synergistic interactions among ZVI, FeS, and microorganisms. Furthermore, both acetoclastic and hydrogenotrophic pathways could be promoted by coupling ZVI and FeS. This study demonstrated that coupling ZVI and FeS together into anaerobic systems would be a promising method for improving the methanogenic performance for municipal solid waste treatment.
Collapse
Affiliation(s)
- Dejin Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yidan Wei
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingjiang Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuyue Wu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Zhang ZF, Pan J, Pan YP, Li M. Biogeography, Assembly Patterns, Driving Factors, and Interactions of Archaeal Community in Mangrove Sediments. mSystems 2021; 6:e0138120. [PMID: 34128692 PMCID: PMC8269266 DOI: 10.1128/msystems.01381-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Archaea are a major part of Earth's life. They are believed to play important roles in nutrient biogeochemical cycling in the mangrove. However, only a few studies on the archaeal community in mangroves have been reported. In particular, the assembly processes and interaction patterns that impact the archaeal communities in mangroves have not been investigated to date. Here, the biogeography, assembly patterns, and driving factors of archaeal communities in seven representative mangroves across southeastern China were systematically analyzed. The analysis revealed that the archaeal community is more diverse in surface sediments than in subsurface sediments, and more diverse in mangroves at low latitudes than at high latitudes, with Woesearchaeota and Bathyarchaeota as the most diverse and most abundant phyla, respectively. Beta nearest-taxon index analysis suggested a determinant role of homogeneous selection on the overall archaeon community in all mangroves and in each individual mangrove. In addition, the conditionally rare taxon community was strongly shaped by homogeneous selection, while stochastic processes shaped the dominant taxon and always-rare taxon communities. Further, a moderate effect of environmental selection on the archaeal community was noted, with the smallest effect on the always-rare taxon community. Mangrove location, mean annual temperature, and salinity were the major factors that greatly affected the community composition. Finally, network analysis revealed comprehensive cooccurrence relationships in the archaeal community, with a crucial role of Bathyarchaeota. This study expands the understanding of the biogeography, assembly patterns, driving factors, and cooccurrence relationships of the mangrove archaeal community and inspires functional exploration of archaeal resources in mangrove sediments. IMPORTANCE As a key microbial community component with important ecological roles, archaea merit the attention of biologists and ecologists. The mechanisms controlling microbial community diversity, composition, and biogeography are central to microbial ecology but poorly understood. Mangroves are located at the land-ocean interface and are an ideal environment for examining the above questions. We here provided the first-ever overview of archaeal community structure and biogeography in mangroves located along an over-9,000-km coastline of southeastern China. We observed that archaeal diversity in low-latitude mangroves was higher than that in high-latitude mangroves. Furthermore, our data indicated that homogeneous selection strongly controlled the assembly of the overall and conditionally rare taxon communities in mangrove sediments, while the dominant taxon and always-rare taxon communities were mainly controlled by dispersal limitation.
Collapse
Affiliation(s)
- Zhi-Feng Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yue-Ping Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Yuan T, Wang Y, Nuramkhaan M, Wang X, Zhang Z, Lei Z, Shimizu K, Utsumi M, Adachi Y, Lee DJ. Coupling biogas recirculation with FeCl 3 addition in anaerobic digestion system for simultaneous biogas upgrading, phosphorus conservation and sludge conditioning. BIORESOURCE TECHNOLOGY 2020; 315:123811. [PMID: 32673981 DOI: 10.1016/j.biortech.2020.123811] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The high costs involved in sewage sludge treatment and disposal in wastewater treatment plants (WWTPs) not only bring about improper sludge disposal and thus environmental pollutions, but also limit the investment on construction of WWTPs, especially in rural areas or low-income regions. This comparative study examined the effect of biogas recirculation coupled with chemical addition in a semi-continuous anaerobic digester for sludge treatment, which was proven to achieve biogas upgrading, phosphorus conservation and sludge conditioning simultaneously, largely reducing the sludge treatment cost. Results show that FeCl3 addition coupling biogas recirculation can improve sludge dewaterability by 94% in comparison to 75% by equivalent MgCl2 addition, and 97% phosphorus in digestate can be conserved in solid with formation of vivianite-like crystals. Biogas recirculation can enhance CH4 yield and content by 13% and 11%, respectively, likely attributable to the increased relative abundances of both hydrogenotrophic Methanomicrobiales and acetoclastic Methanosarcinales.
Collapse
Affiliation(s)
- Tian Yuan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yinxin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Marjangul Nuramkhaan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xuezhi Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Motoo Utsumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yasuhisa Adachi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
5
|
Zhang Y, Jiang Q, Gong L, Liu H, Cui M, Zhang J. In-situ mineral CO 2 sequestration in a methane producing microbial electrolysis cell treating sludge hydrolysate. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122519. [PMID: 32200240 DOI: 10.1016/j.jhazmat.2020.122519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Microbial electrolysis cell (MEC) has excellent CH4 production performance, however, CO2 still remains in the produced biogas at high content. For achieving in-situ CO2 sequestration and thus upgrading biogas, mineral carbonation was integrated into a MEC treating sludge hydrolysate. With 19 g/L wollastonite addition, in-situ mineral CO2 sequestration was achieved by formation of calcite precipitates. CH4 content in the biogas was increased by 5.1 % and reached 95.9 %, with CH4 production improved by 16.9 %. In addition, the removals of polysaccharide, protein, and chemical oxygen demand (COD) of the MEC were increased by 4.4 %, 6.7 %, and 8.4 %, respectively. The generated precipitates rarely accumulated on bio-cathode, and did not significantly affect the morphology of cathode biofilm. However, integrating mineral carbonation resulted in a higher relative abundance of Methanosarcina on anode and slightly decreased the ratio of Methanobacterium to Methanosaeta on cathode, which should be noticed. In conclusion, integrating mineral carbonation is an attractive way to improve the performance of MEC by achieving in-situ CO2 sequestration, accompanied with CH4 production enhancement.
Collapse
Affiliation(s)
- Yan Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - Qianqian Jiang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Linlin Gong
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - He Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China.
| | - Minhua Cui
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - Jie Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Zhang D, Li Y, Sun A, Tong S, Jiang X, Mu Y, Li J, Han W, Sun X, Wang L, Shen J. Optimization ofS/Fe ratio for enhanced nitrobenzene biological removal in anaerobicSystem amended withSulfide-modified nanoscale zerovalent iron. CHEMOSPHERE 2020; 247:125832. [PMID: 31931312 DOI: 10.1016/j.chemosphere.2020.125832] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Anaerobic reduction of nitrobenzene (NB) can be efficiently enhanced bySupplementing withSulfide-modified nanoscale zerovalent iron (S-nZVI). In thisStudy,S/Fe ratio ofS-nZVI was further optimized for enhancing biological NB removal in anaerobicSystem amended withS-nZVI and inoculated by anaerobicSludge. The results indicated that the performance andStability of the coupled anaerobicSystem for NB reduction and aniline formation were remarkably improved byS-nZVI atS/Fe molar ratio of 0.3 (0.3S-nZVI). TheSecretion of extracellular polymericSubstances (EPS), transformation of volatile fatty acids (VFAs), yield of methane and activity ofSeveral key enzymes could be efficiently improved by 0.3S-nZVI. Furthermore,Species related to NB reduction, fermentation, electroactivity and methanogenesis could be enriched in 0.3S-nZVI coupled anaerobicSystem, with remarkable improvement in the biodiversity observed. ThisStudy demonstrated thatSulfidation would be a promising method to improve the performance of nZVI in coupled anaerobicSystems for the removal of recalcitrant nitroaromatic compounds from wastewater.
Collapse
Affiliation(s)
- Dejin Zhang
- Department of Environmental Engineering, College of Resources and EnvironmentalSciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Yang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Aiwu Sun
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaiyin, 223001, Jiangsu Province, China
| | - Siqi Tong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China.
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University ofScience and Technology of China, Hefei, 230026, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China.
| |
Collapse
|
7
|
Progressive Microbial Community Networks with Incremental Organic Loading Rates Underlie Higher Anaerobic Digestion Performance. mSystems 2020; 5:5/1/e00357-19. [PMID: 31911462 PMCID: PMC6946792 DOI: 10.1128/msystems.00357-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although biotic interactions among members of microbial communities have been conceived to be crucial for community assembly, it remains unclear how changes in environmental conditions affect microbial interaction and consequently system performance. Here, we adopted a random matrix theory-based network analysis to explore microbial interactions in triplicate anaerobic digestion (AD) systems, which is widely applied for organic pollutant treatments. The digesters were operated with incremental organic loading rates (OLRs) from 1.0 g volatile solids (VS)/liter/day to 1.3 g VS/liter/day and then to 1.5 g VS/liter/day, which increased VS removal and methane production proportionally. Higher resource availability led to networks with higher connectivity and shorter harmonic geodesic distance, suggestive of more intense microbial interactions and quicker responses to environmental changes. Strikingly, a number of topological properties of microbial network showed significant (P < 0.05) correlation with AD performance (i.e., methane production, biogas production, and VS removal). When controlling for environmental parameters (e.g., total ammonia, pH, and the VS load), node connectivity, especially that of the methanogenic archaeal network, still correlated with AD performance. Last, we identified the Methanothermus, Methanobacterium, Chlorobium, and Haloarcula taxa and an unclassified Thaumarchaeota taxon as keystone nodes of the network.IMPORTANCE AD is a biological process widely used for effective waste treatment throughout the world. Biotic interactions among microbes are critical to the assembly and functioning of the microbial community, but the response of microbial interactions to environmental changes and their influence on AD performance are still poorly understood. Using well-replicated time series data of 16S rRNA gene amplicons and functional gene arrays, we constructed random matrix theory-based association networks to characterize potential microbial interactions with incremental OLRs. We demonstrated striking linkage between network topological features of methanogenic archaea and AD functioning independent of environmental parameters. As the intricate balance of multiple microbial functional groups is responsible for methane production, our results suggest that microbial interaction may be an important, previously unrecognized mechanism in determining AD performance.
Collapse
|
8
|
Liu Y, Yuan Y, Wang W, Wachemo AC, Zou D. Effects of adding osmoprotectant on anaerobic digestion of kitchen waste with high level of salinity. J Biosci Bioeng 2019; 128:723-732. [DOI: 10.1016/j.jbiosc.2019.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/12/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022]
|
9
|
Zhang D, Shen J, Shi H, Su G, Jiang X, Li J, Liu X, Mu Y, Wang L. Substantially enhanced anaerobic reduction of nitrobenzene by biochar stabilized sulfide-modified nanoscale zero-valent iron: Process and mechanisms. ENVIRONMENT INTERNATIONAL 2019; 131:105020. [PMID: 31325713 DOI: 10.1016/j.envint.2019.105020] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/14/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Nanoscale zero-valent iron (nZVI), although being increasingly used in anaerobic systems for strengthening the removal of various refractory pollutants, is limited by various inherent drawbacks, such as easy precipitation, passivation, poor mass and electron transfer. To address the above issues, biochar stabilized sulfide-modified nZVI (S-nZVI@BC) was added into an up-flow anaerobic sludge blanket (UASB) to investigate the enhancement of anaerobic biodegradation of nitrobenzene (NB) and its impacts on microbial community structure. The results demonstrated that both NB reduction and aniline formation could be substantially facilitated in S-nZVI@BC coupled system compared to other anaerobic ones coupled with nZVI or S-nZVI. The dosage of S-nZVI@BC resulted in the formation of densely packed aggregates, evidently increased the extracellular polymeric substances content, promoted the volatile fatty acids transformation and stimulated the methane yield. Furthermore, species related to fermentation (Bacteroides and Longilinea), methanogenesis (Methanosarcina and Methanomethylovorans), electroactivity (Pelobacter, Thiobacillus and Phaselicystis) as well as reduction (Desulfovibrio) were considerably enriched in S-nZVI@BC coupled system. The activities of electron transport, total adenosine triphosphate, nitroreductase and NAD(P)H, which were closely related to microbial activity and NB transformation, were increased noticeably in S-nZVI@BC coupled anaerobic system. This study demonstrated the promising potential for long-term operation and full-scale application of S-nZVI@BC coupled system for the treatment of NB containing wastewater.
Collapse
Affiliation(s)
- Dejin Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Hefei Shi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaodong Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
10
|
Zhou J, Richlen ML, Sehein TR, Kulis DM, Anderson DM, Cai Z. Microbial Community Structure and Associations During a Marine Dinoflagellate Bloom. Front Microbiol 2018; 9:1201. [PMID: 29928265 PMCID: PMC5998739 DOI: 10.3389/fmicb.2018.01201] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/16/2018] [Indexed: 11/13/2022] Open
Abstract
Interactions between microorganisms and algae during bloom events significantly impacts their physiology, alters ambient chemistry, and shapes ecosystem diversity. The potential role these interactions have in bloom development and decline are also of particular interest given the ecosystem impacts of algal blooms. We hypothesized that microbial community structure and succession is linked to specific bloom stages, and reflects complex interactions among taxa comprising the phycosphere environment. This investigation used pyrosequencing and correlation approaches to assess patterns and associations among bacteria, archaea, and microeukaryotes during a spring bloom of the dinoflagellate Alexandrium catenella. Within the bacterial community, Gammaproteobacteria and Bacteroidetes were predominant during the initial bloom stage, while Alphaproteobacteria, Cyanobacteria, and Actinobacteria were the most abundant taxa present during bloom onset and termination. In the archaea biosphere, methanogenic members were present during the early bloom period while the majority of species identified in the late bloom stage were ammonia-oxidizing archaea and Halobacteriales. Dinoflagellates were the major eukaryotic group present during most stages of the bloom, whereas a mixed assemblage comprising diatoms, green-algae, rotifera, and other microzooplankton were present during bloom termination. Temperature and salinity were key environmental factors associated with changes in bacterial and archaeal community structure, respectively, whereas inorganic nitrogen and inorganic phosphate were associated with eukaryotic variation. The relative contribution of environmental parameters measured during the bloom to variability among samples was 35.3%. Interaction analysis showed that Maxillopoda, Spirotrichea, Dinoflagellata, and Halobacteria were keystone taxa within the positive-correlation network, while Halobacteria, Dictyochophyceae, Mamiellophyceae, and Gammaproteobacteria were the main contributors to the negative-correlation network. The positive and negative relationships were the primary drivers of mutualist and competitive interactions that impacted algal bloom fate, respectively. Functional predictions showed that blooms enhance microbial carbohydrate and energy metabolism, and alter the sulfur cycle. Our results suggest that microbial community structure is strongly linked to bloom progression, although specific drivers of community interactions and responses are not well understood. The importance of considering biotic interactions (e.g., competition, symbiosis, and predation) when investigating the link between microbial ecological behavior and an algal bloom's trajectory is also highlighted.
Collapse
Affiliation(s)
- Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Mindy L. Richlen
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Taylor R. Sehein
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - David M. Kulis
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Donald M. Anderson
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| |
Collapse
|
11
|
Mahajan R, Nikitina A, Nozhevnikova A, Goel G. Microbial diversity in an anaerobic digester with biogeographical proximity to geothermally active region. ENVIRONMENTAL TECHNOLOGY 2016; 37:2694-2702. [PMID: 26934210 DOI: 10.1080/09593330.2016.1159733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Anaerobic digestion of agricultural biomass or wastes can offer renewable energy, to help meet the rise in energy demands. The performance of an anaerobic digester considerably depends upon the complex interactions between bacterial and archaeal microbiome, which is greatly influenced by environmental factors. In the present study, we evaluate a microbial community of digester located at two different geographical locations, to understand whether the biogeographical proximity of a digester to a geothermally active region has any influence on microbial composition. The comparative microbial community profiling, highlights coexistence of specific bacterial and archaeal representatives (especially, Prosthecochloris sp., Conexibacter sp., Crenarchaeota isolate (Caldivirga sp.), Metallosphaera sp., Pyrobaculum sp. and Acidianus sp.) in a digester with close proximity to geothermally active region (Site I) and their absence in a digester located far-off from geothermally active region (Site II). A Sörensen's index of similarity of 83.33% and 66.66% for bacterial and archaeal community was observed in both the reactors, respectively.
Collapse
Affiliation(s)
- Rishi Mahajan
- a Department of Biotechnology and Bioinformatics , Jaypee University of Information Technology , Waknaghat, Solan, India
| | - Anna Nikitina
- b Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences , 33,bld. 2, Leninsky ave., Moscow , Russia , 119071
| | - Alla Nozhevnikova
- b Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences , 33,bld. 2, Leninsky ave., Moscow , Russia , 119071
| | - Gunjan Goel
- a Department of Biotechnology and Bioinformatics , Jaypee University of Information Technology , Waknaghat, Solan, India
| |
Collapse
|
12
|
Ou C, Shen J, Zhang S, Mu Y, Han W, Sun X, Li J, Wang L. Coupling of iron shavings into the anaerobic system for enhanced 2,4-dinitroanisole reduction in wastewater. WATER RESEARCH 2016; 101:457-466. [PMID: 27295620 DOI: 10.1016/j.watres.2016.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Packing of iron powder into anaerobic system is attractive for enhancing removal of recalcitrant pollutants from wastewater, but is limited by various inherent drawbacks of iron powder, such as easy precipitation and poor mass transfer. To address the above issues, iron shavings were packed into an upflow anaerobic sludge blanket (UASB) for enhancing 2,4-dinitroanisole (DNAN) reduction in this study, with system stability and microbial biodiversity emphasized. The results showed that both DNAN reduction and 2,4-diaminoanisole (DAAN) formation could be notably improved in the iron shavings coupled UASB system. Moreover, the ability to resist environmental stress was also strengthened through the addition of iron shavings in the UASB reactor. Compared with a loose and rough surface of the sludge in the control UASB reactor, the sludge in the coupled system presented a compact, rigid and granular appearance under iron shavings simulation. Furthermore, high throughput sequencing analysis indicated that the diversity of microbial community in the iron shavings coupled UASB system was significantly higher than that of the control UASB reactor. Additionally, species related to DNAN reduction and methane production were enriched in the coupled system. The observed long-term stable performance highlights the full-scale application potential of iron shavings coupled anaerobic sludge process for the treatment of nitroaromatic compounds containing wastewater.
Collapse
Affiliation(s)
- Changjin Ou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Shuai Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Jiangsu Changhuan Environmental Science Co. LTD, Changzhou 213022, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
13
|
De Vrieze J, Verstraete W. Perspectives for microbial community composition in anaerobic digestion: from abundance and activity to connectivity. Environ Microbiol 2016; 18:2797-809. [DOI: 10.1111/1462-2920.13437] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University; Coupure Links 653 Gent B-9000 Belgium
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Ghent University; Coupure Links 653 Gent B-9000 Belgium
- Avecom NV, Industrieweg 122P; Wondelgem 9032 Belgium
| |
Collapse
|
14
|
Kim J, Lee C. Response of a continuous anaerobic digester to temperature transitions: A critical range for restructuring the microbial community structure and function. WATER RESEARCH 2016; 89:241-51. [PMID: 26689661 DOI: 10.1016/j.watres.2015.11.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 05/03/2023]
Abstract
Temperature is a crucial factor that significantly influences the microbial activity and so the methanation performance of an anaerobic digestion (AD) process. Therefore, how to control the operating temperature for optimal activity of the microbes involved is a key to stable AD. This study examined the response of a continuous anaerobic reactor to a series of temperature shifts over a wide range of 35-65 °C using a dairy-processing byproduct as model wastewater. During the long-term experiment for approximately 16 months, the reactor was subjected to stepwise temperature increases by 5 °C at a fixed HRT of 15 days. The reactor showed stable performance within the temperature range of 35-45 °C, with the methane production rate and yield being maximum at 45 °C (18% and 26% greater, respectively, than at 35 °C). However, the subsequent increase to 50 °C induced a sudden performance deterioration with a complete cessation of methane recovery, indicating that the temperature range between 45 °C and 50 °C had a critical impact on the transition of the reactor's methanogenic activity from mesophilic to thermophilic. This serious process perturbation was associated with a severe restructuring of the reactor microbial community structure, particularly of methanogens, quantitatively as well as qualitatively. Once restored by interrupted feeding for about two months, the reactor maintained fairly stable performance under thermophilic conditions until it was upset again at 65 °C. Interestingly, in contrast to most previous reports, hydrogenotrophs largely dominated the methanogen community at mesophilic temperatures while acetotrophs emerged as a major group at thermophilic temperature. This implies that the primary methanogenesis route of the reactor shifted from hydrogen- to acetate-utilizing pathways with the temperature shifts from mesophilic to thermophilic temperatures. Our observations suggest that a mesophilic digester may not need to be cooled at up to 45 °C in case of undesired temperature rise, for example, by excessive self-heating, which offers a possibility to reduce operating costs.
Collapse
Affiliation(s)
- Jaai Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea
| | - Changsoo Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea.
| |
Collapse
|
15
|
Zhou J, Yan BH, Wang Y, Yong XY, Yang ZH, Jia HH, Jiang M, Wei P. Effect of steam explosion pretreatment on the anaerobic digestion of rice straw. RSC Adv 2016. [DOI: 10.1039/c6ra15330e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Steam explosion pretreatment on the anaerobic digestion of rice straw.
Collapse
Affiliation(s)
- J. Zhou
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- Bioenergy Research Institute
| | - B. H. Yan
- Lab of Waste Valorisation and Water Reuse
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Y. Wang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - X. Y. Yong
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- Bioenergy Research Institute
| | - Z. H. Yang
- Key Laboratory of Material and Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - H. H. Jia
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- Bioenergy Research Institute
| | - M. Jiang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - P. Wei
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|