1
|
Kankariya RA, Jape PV, Patil RP, Chaudhari AB, Dandi ND. Bioprospecting of multi-stress tolerant Pseudomonas sp. antagonistic to Rhizoctonia solani for enhanced wheat growth promotion. Int Microbiol 2025; 28:17-35. [PMID: 38581482 DOI: 10.1007/s10123-024-00517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
Salt affected cotton rhizospheric soil was explored for multi-stress resistance microbes to obtain 46 rhizobacteria. Of these, seven strains strongly inhibited the growth of phytopathogenic fungus Rhizoctonia solani by virtue of antifungal compound 2,4-diacetylphloroglucinol (DAPG) production. These seven strains demonstrated an array of plant growth-promoting activities as follows: (i) production of indole-3-acetic acid, ammonia, siderophore; (ii) solubilisation of phosphate, while two isolates showed Zn solubilisation. The phenetic and 16S ribotyping revealed affiliation of all the isolates to Pseudomonas guariconensis and presence of phlD gene marker for DAPG production. Among the seven isolates, strain VDA8 showed the highest DAPG production (0.16 μg ml-1) in liquid synthetic medium under aerobic conditions at 28 °C. Furthermore, sucrose, peptone, sodium hydrogen phosphate, ZnSO4, pH 8.0, and NaCl (1%) were observed as the best carbon, nitrogen, phosphate, trace element, pH, and salt concentration, respectively for maximum production of DAPG by strain VDA8 (3.62 ± 0.04 μg ml-1). The strain VDA8 was further assessed for wheat (Triticum aestivum) growth promotion by seed biopriming under laboratory (plate assay) and field condition in alkaline saline soil with pH 8.5. The field scale (324 m2) trials demonstrated 28.6% enhanced grain production compared to control demonstrating the newly isolated Pseudomonas sp. as multi-potent bioinoculant.
Collapse
Affiliation(s)
- Raksha A Kankariya
- Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, Maharashtra, India
| | - Prasad V Jape
- Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, Maharashtra, India
| | - Rajkamal P Patil
- Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, Maharashtra, India
| | - Ambalal B Chaudhari
- Drs. Kiran &, Pallavi Patel Global University (KPGU), Vadodara, Gujarat, India
| | - Navin D Dandi
- Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, Maharashtra, India.
| |
Collapse
|
2
|
Krismawati A, Yustisia Y, Arifin Z, Purbiati T, Rachmawati D, Latifah E, Putra NR, Irianto I, Qomariyah L. A bibliometric analysis of biopesticides in corn pest management: Current trends and future prospects. Heliyon 2024; 10:e40196. [PMID: 39748967 PMCID: PMC11693921 DOI: 10.1016/j.heliyon.2024.e40196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025] Open
Abstract
This bibliographic review paper presents a comprehensive analysis of the scholarly literature on biopesticides utilized in corn pest management, employing a bibliometric approach to identify current trends and prospects in the field. The growing demand for sustainable agricultural practices has fueled interest in biopesticides as effective alternatives to conventional chemical pesticides. By systematically examining relevant publications, this review synthesizes the collective knowledge on biopesticide applications in corn production, encompassing various types of biopesticides, their modes of action, efficacy against key corn pests, and environmental considerations. The study synthesizes recent advances in microbial, botanical, and biochemical biopesticides such as Bacillus thuringiensis, neem extracts, and linalool, highlighting their specificity, minimal environmental impact, and potential to reduce pest resistance. It delves into the modes of action, including insecticidal activity, feeding disruption, and pest reproduction inhibition. The review also outlines an integrated pest management (IPM) strategy that combines biopesticides with agronomic practices, including crop rotation, biological control agents, and resistant crop varieties. This combined approach aims to enhance pest suppression, improve yield sustainability, and reduce chemical pesticide reliance. The findings provide valuable insights into sustainable corn pest management practices, promoting environmental conservation and agricultural productivity. Ultimately, this review aims to provide researchers, policymakers, and practitioners with a valuable resource for understanding the current landscape of biopesticides in corn pest management and guiding future research directions toward sustainable crop protection strategies.
Collapse
Affiliation(s)
- Amik Krismawati
- Research Center for Horticulture, National Research and Innovation Agency (BRIN), Complex Cibinong Science Center–BRIN, Cibinong, 16911, West Java, Indonesia
| | - Yustisia Yustisia
- Research Center for Food Crop, National Research and Innovation Agency (BRIN), Complex Cibinong Science Center–BRIN, Cibinong, 16911, West Java, Indonesia
| | - Zainal Arifin
- Research Center for Horticulture, National Research and Innovation Agency (BRIN), Complex Cibinong Science Center–BRIN, Cibinong, 16911, West Java, Indonesia
| | - Titik Purbiati
- Research Center for Horticulture, National Research and Innovation Agency (BRIN), Complex Cibinong Science Center–BRIN, Cibinong, 16911, West Java, Indonesia
| | - Diding Rachmawati
- Research Center for Horticulture, National Research and Innovation Agency (BRIN), Complex Cibinong Science Center–BRIN, Cibinong, 16911, West Java, Indonesia
| | - Evy Latifah
- Research Center for Horticulture, National Research and Innovation Agency (BRIN), Complex Cibinong Science Center–BRIN, Cibinong, 16911, West Java, Indonesia
| | - Nicky Rahmana Putra
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Complex Cibinong Science Center–BRIN, Cibinong, 16911, West Java, Indonesia
| | - Irianto Irianto
- Department General Education, Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Lailatul Qomariyah
- Department of Industrial Chemical Engineering, Institut Teknologi Sepuluh Nopember, 60111, Surabaya, Indonesia
| |
Collapse
|
3
|
Huang W, Wan Y, Zhang S, Wang C, Zhang Z, Su H, Xiong P, Hou F. Recent Advances in Phenazine Natural Products: Chemical Structures and Biological Activities. Molecules 2024; 29:4771. [PMID: 39407699 PMCID: PMC11477647 DOI: 10.3390/molecules29194771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Phenazine natural products are a class of colored nitrogen-containing heterocycles produced by various microorganisms mainly originating from marine and terrestrial sources. The tricyclic ring molecules show various chemical structures and the decorating groups dedicate extensive pharmacological activities, including antimicrobial, anticancer, antiparasitic, anti-inflammatory, and insecticidal. These secondary metabolites provide natural materials for screening and developing medicinal compounds in the field of medicine and agriculture due to biological activities. The review presents a systematic summary of the literature on natural phenazines in the past decade, including over 150 compounds, such as hydroxylated, O-methylated, N-methylated, N-oxide, terpenoid, halogenated, glycosylated phenazines, saphenic acid derivatives, and other phenazine derivatives, along with their characterized antimicrobial and anticancer activities. This review may provide guidance for the investigation of phenazines in the future.
Collapse
Affiliation(s)
- Wei Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
- Shandong Freda Biotech Co., Ltd., Jinan 250101, China;
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.W.); (Z.Z.)
| | - Yupeng Wan
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.W.); (Z.Z.)
| | - Shuo Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Chaozhi Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
| | - Zhe Zhang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.W.); (Z.Z.)
| | - Huai Su
- Shandong Freda Biotech Co., Ltd., Jinan 250101, China;
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
| | - Feifei Hou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
| |
Collapse
|
4
|
Lu J, Huang Y, Liu R, Liang Y, Zhang H, Shen N, Yang D, Jiang M. Antimicrobial mechanisms and antifungal activity of compounds generated by banana rhizosphere Pseudomonas aeruginosa Gxun-2 against fusarium oxysporum f. sp. cubense. Front Microbiol 2024; 15:1456847. [PMID: 39386368 PMCID: PMC11461210 DOI: 10.3389/fmicb.2024.1456847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Fusarium wilt of banana, also recognized as Panama disease, is caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (FOC TR4). In recent years, strategies utilizing biocontrol agents, comprising antifungal microorganisms and their associated bioactive compounds from various environments, have been implemented to control this destructive disease. Our previous study showed that Pseudomonas aeruginosa Gxun-2 had significant antifungal effects against FOC TR4. However, there has been little scientific investigation of the antibacterial or antifungal activity. The aim of this study was to isolate, identify and evaluate the inhibition strength of active compounds in P. aeruginosa Gxun-2, so as to explain the mechanism of the strain inhibition on FOC TR4 from the perspective of compounds. Methods The main antibacterial compounds of strain Gxun-2 were isolated, purified and identified using by fermentation extraction, silica gel column chromatography, thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and nuclear magnetic resonance (NMR) techniques. The effect of the compounds on the mycelial growth, morphology and spore germination of strain FOC TR4 was observed by 96-well plate method and AGAR diffusion method. Results Among the metabolites produced by the strain, four antifungal compounds which were identified phenazine (C12H8N2), phenazine-1-carboxylic acid (PCA) (C13H8N2O2), 2-acetamidophenol (C8H9NO2) and aeruginaldehyde (C10H7NO2S) were identified through HPLC and NMR. Of these compounds, phenazine and PCA exhibited the most pronounced inhibitory effects on the spore germination and mycelial growth of FOC TR4. Phenazine demonstrated potent antifungal activity against FOC TR4 with a minimum inhibitory concentration (MIC) of 6.25 mg/L. The half-maximal effective concentration (EC50) was calculated to be 26.24 mg/L using the toxicity regression equation. PCA exhibited antifungal activity against FOC TR4 with an MIC of 25 mg/L and an EC50 of 89.63 mg/L. Furthermore, phenazine and PCA triggered substantial morphological transformations in the mycelia of FOC TR4, encompassing folding, bending, fracturing, and diminished spore formation. Discussion These findings indicate that strain Gxun-2 plays a crucial role in controlling FOC TR4 pathogenesis, predominantly through producing the antifungal compounds phenazine and PCA, and possesses potential as a cost-efficient and sustainable biocontrol agent against Fusarium wilt of banana in forthcoming times.
Collapse
Affiliation(s)
- Junming Lu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Yanbing Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Rui Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Ying Liang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
5
|
He Y, Jin Z, Cui Y, Song K, Chen B, Zhou L. RsaL is a self-regulatory switch that controls alternative biosynthesis of two AHL-type quorum sensing signals in Pseudomonas aeruginosa PA1201. MLIFE 2024; 3:74-86. [PMID: 38827515 PMCID: PMC11139201 DOI: 10.1002/mlf2.12113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 06/04/2024]
Abstract
Pseudomonas aeruginosa is a ubiquitous and metabolically versatile microorganism naturally found in soil and water. It is also an opportunistic pathogen in plants, insects, animals, and humans. In response to increasing cell density, P. aeruginosa uses two acyl-homoserine lactone (AHL) quorum-sensing (QS) signals (i.e., N-3-oxo-dodecanoyl homoserine lactone [3-oxo-C12-HSL] and N-butanoyl-homoserine lactone [C4-HSL]), which regulate the expression of hundreds of genes. However, how the biosynthesis of these two QS signals is coordinated remains unknown. We studied the regulation of these two QS signals in the rhizosphere strain PA1201. PA1201 sequentially produced 3-oxo-C12-HSL and C4-HSL at the early and late growth stages, respectively. The highest 3-oxo-C12-HSL-dependent elastase activity was observed at the early stage, while the highest C4-HSL-dependent rhamnolipid production was observed at the late stage. The atypical regulator RsaL played a pivotal role in coordinating 3-oxo-C12-HSL and C4-HSL biosynthesis and QS-associated virulence. RsaL repressed lasI transcription by binding the -10 and -35 boxes of the lasI promoter. In contrast, RsaL activated rhlI transcription by binding the region encoding the 5'-untranslated region of the rhlI mRNA. Further, RsaL repressed its own expression by binding a nucleotide motif located in the -35 box of the rsaL promoter. Thus, RsaL acts as a molecular switch that coordinates the sequential biosynthesis of AHL QS signals and differential virulence in PA1201. Finally, C4-HSL activation by RsaL was independent of the Las and Pseudomonas quinolone signal (PQS) QS signaling systems. Therefore, we propose a new model of the QS regulatory network in PA1201, in which RsaL represents a superior player acting at the top of the hierarchy.
Collapse
Affiliation(s)
- Ya‐Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU‐NLBP Joint R&D Centre for Biopesticides and Biofertilizers, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zi‐Jing Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU‐NLBP Joint R&D Centre for Biopesticides and Biofertilizers, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ying Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU‐NLBP Joint R&D Centre for Biopesticides and Biofertilizers, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Kai Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU‐NLBP Joint R&D Centre for Biopesticides and Biofertilizers, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Bo Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU‐NLBP Joint R&D Centre for Biopesticides and Biofertilizers, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Lian Zhou
- Zhiyuan Innovative Research Centre, Student Innovation Centre, Zhiyuan CollegeShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
6
|
Shrestha A, Limay-Rios V, Brettingham DJL, Raizada MN. Maize pollen carry bacteria that suppress a fungal pathogen that enters through the male gamete fertilization route. FRONTIERS IN PLANT SCIENCE 2024; 14:1286199. [PMID: 38269134 PMCID: PMC10806238 DOI: 10.3389/fpls.2023.1286199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
In flowering plants, after being released from pollen grains, the male gametes use the style channel to migrate towards the ovary where they fertilize awaiting eggs. Environmental pathogens exploit the style passage, resulting in diseased progeny seed. The belief is that pollen also transmits pathogens into the style. By contrast, we hypothesized that pollen carries beneficial microbes that suppress environmental pathogens on the style passage. No prior studies have reported pollen-associated bacterial functions in any plant species. Here, bacteria were cultured from maize (corn) pollen encompassing wild ancestors and farmer-selected landraces from across the Americas, grown in a common field in Canada for one season. In total, 298 bacterial isolates were cultured, spanning 45 genera, 103 species, and 88 OTUs, dominated by Pantoea, Bacillus, Pseudomonas, Erwinia, and Microbacterium. Full-length 16S DNA-based taxonomic profiling showed that 78% of bacterial taxa from the major wild ancestor of maize (Parviglumis teosinte) were present in at least one cultivated landrace. The species names of the bacterial isolates were used to search the pathogen literature systematically; this preliminary evidence predicted that the vast majority of the pollen-associated bacteria analyzed are not maize pathogens. The pollen-associated bacteria were tested in vitro against a style-invading Fusarium pathogen shown to cause Gibberella ear rot (GER): 14 isolates inhibited this pathogen. Genome mining showed that all the anti-Fusarium bacterial species encode phzF, associated with biosynthesis of the natural fungicide, phenazine. To mimic the male gamete migration route, three pollen-associated bacterial strains were sprayed onto styles (silks), followed by Fusarium inoculation; these bacteria reduced GER symptoms and mycotoxin accumulation in progeny seed. Confocal microscopy was used to search for direct evidence that pollen-associated bacteria can defend living silks against Fusarium graminearum (Fg); bacterial strain AS541 (Kluyvera intermedia), isolated from pollen of ancestral Parviglumis, was observed to colonize the susceptible style/silk entry points of Fg (silk epidermis, trichomes, wounds). Furthermore, on style/silk tissue, AS541 colonized/aggregated on Fg hyphae, and was associated with Fg hyphal breaks. These results suggest that pollen has the potential to carry bacteria that can defend the style/silk passage against an environmental pathogen - a novel observation.
Collapse
Affiliation(s)
- Anuja Shrestha
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Victor Limay-Rios
- Department of Plant Agriculture, University of Guelph, Ridgetown, ON, Canada
| | | | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Cui Y, Song K, Jin ZJ, Lee LH, Thawai C, He YW. Fructose promotes pyoluteorin biosynthesis via the CbrAB-CrcZ-Hfq/Crc pathway in the biocontrol strain Pseudomonas PA1201. Synth Syst Biotechnol 2023; 8:618-628. [PMID: 37823038 PMCID: PMC10562864 DOI: 10.1016/j.synbio.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Biocontrol strain Pseudomonas PA1201 produces pyoluteorin (Plt), which is an antimicrobial secondary metabolite. Plt represents a promising candidate pesticide due to its broad-spectrum antifungal and antibacterial activity. Although PA1201 contains a complete genetic cluster for Plt biosynthesis, it fails to produce detectable level of Plt when grown in media typically used for Pseudomonas strains. In this study, minimum medium (MM) was found to favor Plt biosynthesis. Using the medium M, which contains all the salts of MM medium except for mannitol, as a basal medium, we compared 10 carbon sources for their ability to promote Plt biosynthesis. Fructose, mannitol, and glycerol promoted Plt biosynthesis, with fructose being the most effective carbon source. Glucose or succinic acid had no significant effect on Plt biosynthesis, but effectively antagonized fructose-dependent synthesis of Plt. Promoter-lacZ fusion reporter strains demonstrated that fructose acted through activation of the pltLABCDEFG (pltL) operon but had no effect on other genes of plt gene cluster; glucose or succinic acid antagonized fructose-dependent pltL induction. Mechanistically, fructose-mediated Plt synthesis involved carbon catabolism repression. The two-component system CbrA/CbrB and small RNA catabolite repression control Z (crcZ) were essential for fructose-induced Plt synthesis. The small RNA binding protein Hfq and Crc negatively regulated fructose-induced Plt. Taken together, this study provides a new model of fructose-dependent Plt production in PA1201 that can help improve Plt yield by biosynthetic approaches.
Collapse
Affiliation(s)
- Ying Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zi-Jing Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Chitti Thawai
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
8
|
Liu K, Li Z, Liang X, Xu Y, Cao Y, Wang R, Li P, Li L. Biosynthesis and genetic engineering of phenazine-1-carboxylic acid in Pseudomonas chlororaphis Lzh-T5. Front Microbiol 2023; 14:1186052. [PMID: 37168109 PMCID: PMC10165110 DOI: 10.3389/fmicb.2023.1186052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 05/13/2023] Open
Abstract
Phenazine-1-carboxylic acid (PCA) is a biologically active substance with the ability to prevent and control crop diseases. It was certified as a pesticide by the Ministry of Agriculture of China in 2011 and was named "Shenzimycin." Lzh-T5 is a Pseudomonas chlororaphis strain found in the rhizosphere of tomatoes. This strain can produce only 230 mg/L of PCA. We used LDA-4, which produces the phenazine synthetic intermediate trans-2,3-dihydro-3-hydroxyanthranilic acid in high amounts, as the starting strain. By restoring phzF and knocking out phzO, we achieved PCA accumulation. Moreover, PCA production was enhanced after knocking out negative regulators, enhancing the shikimate pathway, and performing fed-batch fermentation, thus resulting in the production of 10,653 mg/L of PCA. It suggested that P. chlororaphis Lzh-T5 has the potential to become an efficiency cell factory of biologically active substances.
Collapse
Affiliation(s)
- Kaiquan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhenghua Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Xiaoli Liang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanpeng Xu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yufei Cao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ling Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- *Correspondence: Ling Li,
| |
Collapse
|
9
|
Wu J, Teng Q, Mao Y, Duan Y, Pan X, Xu S, Cai Y, Pan Y, Zhou M, Zhang Y. Cytochrome bc1 Complex: Potential Breach to Improve the Activity of Phenazines on Xanthomonas. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10158-10169. [PMID: 35948060 DOI: 10.1021/acs.jafc.2c03317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The effects of the natural pesticides, phenazines, were reported to be limited by some tolerant metabolism processes within Xanthomonas. Our previous studies suggested that the functional cytochrome bc1 complex, the indispensable component of the respiration chain, might participate in tolerating phenazines in Xanthomonas. In this study, the cytochrome bc1 mutants of Xanthomonas campestris pv. campestris (Xcc) and Xanthomonas oryzae pv. oryzae (Xoo), which exhibit different tolerance abilities to phenazines, were constructed, and the cytochrome bc1 complex was proven to partake a critical and conserved role in tolerating phenazines in Xanthomonas. In addition, results of the cytochrome c mutants suggested the different functions of the various cytochrome c proteins in Xanthomonas and that the electron channeled by the cytochrome bc1 complex to cytochrome C4 is the key to reveal the tolerance mechanism. In conclusion, the study of the cytochrome bc1 complex provides a potential strategy to improve the activity of phenazines against Xanthomonas.
Collapse
Affiliation(s)
- Jian Wu
- Institute of Plant Protection and Agro Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingzhu Teng
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yushuai Mao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiayan Pan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Xu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqiang Cai
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuemin Pan
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mingguo Zhou
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Zhang
- Institute of Plant Protection and Agro Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
10
|
Enhanced Phenazine-1-Carboxamide Production in Pseudomonas chlororaphis H5△fleQ△relA through Fermentation Optimization. FERMENTATION 2022. [DOI: 10.3390/fermentation8040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Phenazine-1-carboxamide (PCN) is effective to control many plant pathogens, and improving PCN production would be of great significance in promoting its development as a biopesticide. This study was conducted to improve the PCN production of Pseudomonas chlororaphis H5△fleQ△relA through fermentation optimization in both shake flask and bioreactor. The PCN production of H5△fleQ△relA was improved from 2.75 ± 0.23 g/L to 5.51 ± 0.17 g/L by medium optimization in shake flask using Plackett-Burman design, the path of steepest ascent experiment and central composite design. Then, PCN production reached 8.58 ± 0.25 g/L through optimizing pH in 1 L bioreactor. After pH optimization, the transcriptional levels of ccoO_2 and ccoQ_2 genes related to microbial aerobic respiration were significantly upregulated, and the relative abundance of 3-oxo-C14-HSL was significantly enhanced 15-fold, and these changes were vital for cell activity and metabolites production. Furthermore, the PCN production reached 9.58 ± 0.57 g/L after optimization of the fed-batch fermentation strategy in 1 L bioreactor. Finally, the fermentation scale-up of the optimal medium and optimal feeding strategy were conducted in 30 L bioreactor at the optimal pH, and their PCN production reached 9.17 g/L and 9.62 g/L respectively, which were comparable to that in 1 L bioreactor. In this study, the high PCN production was achieved from the shake-flask fermentation to 30 L bioreactor, and the optimal feeding strategy improved PCN production in bioreactor without increasing total glycerol compared with in shake flask. It provides promising pathways for the optimization of processes for the production of other phenazines.
Collapse
|
11
|
Exogenous Alanine Reverses the Bacterial Resistance to Zhongshengmycin with the Promotion of the P Cycle in Xanthomonas oryzae. Antibiotics (Basel) 2022; 11:antibiotics11020245. [PMID: 35203847 PMCID: PMC8868265 DOI: 10.3390/antibiotics11020245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Microbial antibiotic resistance has become a worldwide concern, as it weakens the efficiency of the control of pathogenic microbes in both the fields of medicine and plant protection. A better understanding of antibiotic resistance mechanisms is helpful for the development of efficient approaches to settle this issue. In the present study, GC-MS-based metabolomic analysis was applied to explore the mechanisms of Zhongshengmycin (ZSM) resistance in Xanthomonas oryzae (Xoo), a bacterium that causes serious disease in rice. Our results show that the decline in the pyruvate cycle (the P cycle) was a feature for ZSM resistance in the metabolome of ZSM-resistant strain (Xoo-ZSM), which was further demonstrated as the expression level of genes involved in the P cycle and two enzyme activities were reduced. On the other hand, alanine was considered a crucial metabolite as it was significantly decreased in Xoo-ZSM. Exogenous alanine promoted the P cycle and enhanced the ZSM-mediated killing efficiency in Xoo-ZSM. Our study highlights that the depressed P cycle is a feature in Xoo-ZSM for the first time. Additionally, exogenous alanine is a candidate enhancer and can be applied with ZSM to improve the antibiotic-mediated killing efficiency in the control of infection caused by Xoo.
Collapse
|
12
|
Fang YL, Cui Y, Zhou L, Thawai C, Naqvi TA, Zhang HY, He YW. H-NS family protein MvaU downregulates phenazine-1-carboxylic acid (PCA) biosynthesis via binding to an AT-rich region within the promoter of the phz2 gene cluster in the rhizobacterium Pseudomonas strain PA1201. Synth Syst Biotechnol 2021; 6:262-271. [PMID: 34584994 PMCID: PMC8455314 DOI: 10.1016/j.synbio.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/06/2022] Open
Abstract
Histone-like nucleoid-structuring (H-NS) proteins are key regulators in gene expression silencing and in nucleoid compaction. The H-NS family member proteins MvaU in Pseudomonas aeruginosa are thought to bind the same AT-rich regions of chromosomes and function to coordinate the control of a common set of genes. Here, we explored the molecular mechanism by which MvaU controls PCA biosynthesis in P. aeruginosa PA1201. We present evidence suggesting that MvaU is self-regulated. Deletion of mvaU significantly increased PCA production, and PCA production sharply decreased when mvaU was over-expressed. MvaU transcriptionally repressed phz2 cluster expression and consequently reduced PCA biosynthesis. β-galactosidase assays confirmed that base pairing near the −35 box is required when MvaU regulates PCA production in PA1201. Electrophoretic mobility shift assays (EMSA) and additional point mutation analysis demonstrated that MvaU directly bound to an AT-rich motif within the promoter of the phz2 cluster. Chromatin immunoprecipitation (ChIP) analysis also indicated that MvaU directly bound to the P5 region of the phz2 cluster promoter. MvaU repression of PCA biosynthesis was independent of QscR and OxyR in PA1201 and neither PCA or H2O2 were the environmental signals that induced mvaU expression. These findings detail a new MvaU-dependent regulatory pathway of PCA biosynthesis in PA1201 and provide a foundation to increase PCA fermentation titer by genetic engineering.
Collapse
Affiliation(s)
- Yun-Ling Fang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-Shanghai Nong Le Joint R&D Center on Biopesticides and Biofertilizers, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| | - Ying Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-Shanghai Nong Le Joint R&D Center on Biopesticides and Biofertilizers, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| | - Lian Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-Shanghai Nong Le Joint R&D Center on Biopesticides and Biofertilizers, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| | - Chitti Thawai
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Tatheer Alam Naqvi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Hong-Yan Zhang
- Shanghai Nong Le Biological Products Company Limited, Shanghai, 201419, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-Shanghai Nong Le Joint R&D Center on Biopesticides and Biofertilizers, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| |
Collapse
|
13
|
Korshunova TY, Bakaeva MD, Kuzina EV, Rafikova GF, Chetverikov SP, Chetverikova DV, Loginov ON. Role of Bacteria of the Genus Pseudomonas in the Sustainable Development of Agricultural Systems and Environmental Protection (Review). APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s000368382103008x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Sponge-associated sp . RM66 metabolome induction with N-acetylglucosamine: Antibacterial, antifungal and anti-trypanosomal activities. Saudi J Biol Sci 2021; 28:4691-4698. [PMID: 34354456 PMCID: PMC8324951 DOI: 10.1016/j.sjbs.2021.04.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022] Open
Abstract
The marine sponge Amphimedon sp., collected from Hurghada (Egypt) was investigated for its sponge-derived actinomycetes diversity. Nineteen actinomycetes were cultivated and phylogenetically identified using 16S rDNA gene sequencing were carried out. The strains belong to genera Kocuria, Dietzia, Micrococcus, Microbacterium and Streptomyces. Many silent biosynthetic genes clusters were investigated using genome sequencing of actinomycete strains and has revealed in particular the genus Streptomyces that has indicated their exceptional capacity for the secondary metabolites production that not observed under classical cultivation conditions. In this study, the effect of N-acetylglucosamine on the metabolome of Streptomyces sp. RM66 was investigated using three actinomycetes media (ISP2, M1 and MA). In total, twelve extracts were produced using solid and liquid fermentation approaches. Liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) data were analysed using metabolomics tools to compare natural product production across all crude extracts. Our study highlighted the elicitation effect of N-acetylglucosamine on the secondary metabolite profiles of Streptomyces sp. RM66. These results highlight the of N-acetylglucosamine application as an elicitor to induce the cryptic metabolites and for increasing the chemical diversity. All the twelve extracts were tested for their antibacterial activity was tested against Staphylococcus aureus NCTC 8325, antifungal activity against Candida albicans 5314 (ATCC 90028) and anti-trypanosomal activity against Trypanosoma brucei brucei. Extract St1 showed the most potent one with activities 2.3, 3.2 and 4.7 ug/ml as antibacterial, antifungal and anti-trypanosomal, respectively.
Collapse
|
15
|
Sun X, Xu Y, Chen L, Jin X, Ni H. The salt-tolerant phenazine-1-carboxamide-producing bacterium Pseudomonas aeruginosa NF011 isolated from wheat rhizosphere soil in dry farmland with antagonism against Fusarium graminearum. Microbiol Res 2020; 245:126673. [PMID: 33429287 DOI: 10.1016/j.micres.2020.126673] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/04/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022]
Abstract
Fusarium head blight (FHB) disease caused by Fusarium graminearum (Fg) seriously affects the yield and quality of wheat. In this study, after bacterial community analysis of two wheat rhizosphere soils, the genus Pseudomonas was shown to be enriched in normal dry farmland (maize-wheat rotation) compared to that observed nearby paddy farmland (rice-wheat rotation) with serious FHB disease. Subsequently, a P. aeruginosa strain, NF011 with the highest antagonistic activity against Fg and excellent tolerance to 8.0 % of NaCl was isolated from the wheat rhizosphere soil in the normal dry farmland. Dual culture assay results showed that NF011 is a broad-spectrum fungicide for controlling six wheat pathogenic fungi. The major antifungal compound produced by NF011 was identified as phenazine-1-carboxamide (PCN) by LC-MS and nuclear magnetic resonance. 1.0 × 108 CFU/mL of NF011 or 32 mg/L of PCN could completely inhibit Fg spore germination and resulted in the destruction of Fg hypha vacuoles. Mannitol, peanut meal, beef extract, metal ions (Mn2+, Ca2+, Fe2+, and Mg2+), and amino acids (Arg and Lys) could promote the production of PCN by NF011, moreover, the optimal pH and temperature was 6.0 and 20 °C. The PCN produced by NF011 under the optimized culture conditions reached 436.55 ± 11.06 mg/L, 4.90-fold higher than that observed under the basic culture conditions. Finally, infection experiment results showed that NF011 can effectively prevent Fg spores from infecting wheat spikes and wheat grains and suppress the production of deoxynivalenol (DON). Therefore, the salt-tolerant PCN-producing NF011 has the potential to control wheat fungal disease.
Collapse
Affiliation(s)
- Xiaowen Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, 430062, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yin Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ling Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xinmeng Jin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hong Ni
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
16
|
Li L, Li Z, Yao W, Zhang X, Wang R, Li P, Yang K, Wang T, Liu K. Metabolic Engineering of Pseudomonas chlororaphis Qlu-1 for the Enhanced Production of Phenazine-1-carboxamide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14832-14840. [PMID: 33287542 DOI: 10.1021/acs.jafc.0c05746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phenazine-1-carboxylic acid (PCA), the primary active ingredient of Shenqinmycin, was awarded the China Pesticide Certificate in 2011 due to its excellent antibacterial action. Phenazine-1-carboxamide (PCN) is a derivative of PCA, which is modified by the phzH gene, and its anti-bacterial effect is better than that of PCA. At present, PCN can be produced via Pseudomonas fermentation using an opportunistic pathogen, Pseudomonas aeruginosa. Qlu-1 is an environmentally friendly strain of Pseudomonas chlororaphis that can produce phenazine derivatives. We replaced the phzO gene with the phzH gene from P. aeruginosa to achieve PCN accumulation. Different strategies were used to enhance PCN production: knocking out of negative regulatory factors, enhancing the shikimate pathway by gene overexpression and gene knocking, and using fed-batch fermentation. Finally, an engineered strain of P. chlororaphis was produced, which produced 11.45 g/L PCN. This achievement indicates that Qlu-1 could be modified as a potential microbial cell factory for PCN production by metabolic engineering.
Collapse
Affiliation(s)
- Ling Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250013, People's Republic of China
| | - Zhenghua Li
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, People's Republic of China
| | - Wentao Yao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
| | - Kai Yang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250013, People's Republic of China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
| | - Kaiquan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
17
|
Wu J, Pan X, Xu S, Duan Y, Wang J, Wang J, Gao T, Zhang Y, Zhou M. A Defect in the Twin-Arginine Translocation Pathway Decreases the Tolerance of Xanthomonas campestris pv. campestris to Phenazines. PHYTOPATHOLOGY 2020; 110:1897-1907. [PMID: 32689906 DOI: 10.1094/phyto-03-20-0065-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phenazine-1-carboxylic acid (PCA), a member of phenazines secreted by microorganisms, inhibits the growth of many bacteria and fungi. Xanthomonas campestris pv. campestris is the causal agent of black rot, the most important disease of cruciferous crops worldwide, and is more tolerant to PCA than other Xanthomonas species. Previous studies reported that reactive oxygen species (ROS) scavenging ability is involved in regulating the PCA tolerance of Xanthomonas species. Additionally, the cytochrome c maturation (CCM) system has been found to play a more important role in tolerance to phenazines than the ROS scavenging system. In this study, a highly PCA-sensitive insertion mutant of X. campestris pv. campestris, X-5, was identified and studied. The insertion site of X-5 was found to be in tatB gene (XC_4183), which encodes a subunit of the twin-arginine translocation (TAT) complex. Disruption of the three genes of TAT pathway resulted in decreased biological fitness and reduced tolerance to phenazines in comparison with the wild-type strain 8004. These results imply that the tolerance mechanism of the TAT pathway to phenazines is related to the CCM system, but not due to the ROS scavenging system. Furthermore, respiration-related characteristic tests and peptide analysis suggested that disruption of the TAT complex causes a defect in the cytochrome bc1 complex, which may be involved in the tolerance to phenazines. In summary, this study sheds new light on the critical role of the TAT pathway in influencing the fitness and phenazines tolerance of Xanthomonas species.
Collapse
Affiliation(s)
- Jian Wu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Plant Protection and Agro Product Safety, Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Xiayan Pan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu Xu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yabing Duan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jueyu Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianxin Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tongchun Gao
- Institute of Plant Protection and Agro Product Safety, Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Yong Zhang
- Institute of Plant Protection and Agro Product Safety, Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Mingguo Zhou
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
18
|
Yuan P, Pan H, Boak EN, Pierson LS, Pierson EA. Phenazine-Producing Rhizobacteria Promote Plant Growth and Reduce Redox and Osmotic Stress in Wheat Seedlings Under Saline Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:575314. [PMID: 33133116 PMCID: PMC7550623 DOI: 10.3389/fpls.2020.575314] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/01/2020] [Indexed: 05/23/2023]
Abstract
Application of plant growth promoting bacteria may induce plant salt stress tolerance, however the underpinning microbial and plant mechanisms remain poorly understood. In the present study, the specific role of phenazine production by rhizosphere-colonizing Pseudomonas in mediating the inhibitory effects of salinity on wheat seed germination and seedling growth in four different varieties was investigated using Pseudomonas chlororaphis 30-84 (wild type) and isogenic derivatives deficient or enhanced in phenazine production. The results showed that varieties differed in how they responded to the salt stress treatment and the benefits derived from colonization by P. chlororaphis 30-84. In all varieties, the salt stress treatment significantly reduced seed germination, and in seedlings, reduced relative water content, increased reactive oxygen species (ROS) levels in leaves, and in three of four varieties, reduced shoot and root production compared to the no salt stress treatment. Inoculation of seeds with Pseudomonas chlororaphis 30-84 wild type or derivatives promoted salt-stress tolerance in seedlings of the four commercial winter wheat varieties tested, but the salt-stress tolerance phenotype was not entirely due to phenazine production. For example, all P. chlororaphis derivatives (including the phenazine-producing mutant) significantly improved relative water content in two varieties, Iba and CV 1, for which the salt stress treatment had a large impact. Importantly, all P. chlororaphis derivatives enabled the salt inhibited wheat varieties studied to maintain above ground productivity in saline conditions. However, only phenazine-producing derivatives enhanced the shoot or root growth of seedlings of all varieties under nonsaline conditions. Notably, ROS accumulation was reduced, and antioxidant enzyme (catalase) activity enhanced in the leaves of seedlings grown in saline conditions that were seed-treated with phenazine-producing P. chlororaphis derivatives as compared to noninoculated seedlings. The results demonstrate the capacity of P. chlororaphis to improve salt tolerance in wheat seedlings by promoting plant growth and reducing osmotic stress and a role for bacterial phenazine production in reducing redox stress.
Collapse
Affiliation(s)
- Peiguo Yuan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Huiqiao Pan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, TX, United States
| | - Emily N. Boak
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Leland S. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Elizabeth A. Pierson
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, TX, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
19
|
Wang S, Huang Z, Wan Q, Feng S, Xie X, Zhang R, Zhang Z. Comparative Genomic and Metabolomic Analyses of Two Pseudomonas aeruginosa Strains With Different Antifungal Activities. Front Microbiol 2020; 11:1841. [PMID: 32849439 PMCID: PMC7412747 DOI: 10.3389/fmicb.2020.01841] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa isolated from the plant rhizosphere has been widely used as an effective strain in biological control against plant disease. This bacterium promotes plant growth and protect plants against various phytopathogens through the production of phenazine metabolites. In this study, the strain P. aeruginosa Y12 with anti-Beauveria bassiana activity was isolated from the gut of housefly larvae. It was comparatively analyzed with the strain P. aeruginosa P18, which showed no anti-B. bassiana activity. Genomic and metabolomic methods were used to obtain a comprehensive understanding of the antimicrobial mechanism of Y12. After whole-genome resequencing of the two strains, a total of 7,087 non-synonymous single-nucleotide polymorphisms (nsSNPs), 1079 insertions and deletions (InDels), 62 copy-number variations (CNVs) and 42 structural variations (SV) were found in both strains. We analyzed the differentially abundant metabolites between Y12 and P18, and identified six bioactive compounds that could be associated with the antimicrobial activity of Y12. Additionally, we found that, unlike other previously reported rhizospheric P. aeruginosa strains, Y12 could produce both phenazine-1,6-dicarboxylic acid (PDC) and pyocyanin (PYO) at significantly higher concentrations than P18. As B. bassiana is an effective biological insecticide that can cause high mortality in adult houseflies but has little effect on housefly larvae, we believe that P. aeruginosa Y12, identified in housefly larvae but not in adults, were beneficial for the development of housefly larvae and could protect them from B. bassiana infection through the production of toxic metabolites.
Collapse
Affiliation(s)
- Shumin Wang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Zhendong Huang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Qing Wan
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Shuo Feng
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Xiaochen Xie
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Ruiling Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Zhong Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| |
Collapse
|
20
|
Jin ZJ, Zhou L, Sun S, Cui Y, Song K, Zhang X, He YW. Identification of a Strong Quorum Sensing- and Thermo-Regulated Promoter for the Biosynthesis of a New Metabolite Pesticide Phenazine-1-carboxamide in Pseudomonas strain PA1201. ACS Synth Biol 2020; 9:1802-1812. [PMID: 32584550 DOI: 10.1021/acssynbio.0c00161] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Phenazine-1-carboxamide (PCN) produced by multifarious Pseudomonas strains represents a promising candidate as a new metabolite pesticide due to its broad-spectrum antifungal activity and capacity to induce systemic resistance in plants. The rice rhizosphere Pseudomonas strain PA1201 contains two reiterated gene clusters, phz1 and phz2, for phenazine-1-carboxylic acid (PCA) biosynthesis; PCA is further converted into PCN by this strain using a functional phzH-encoding glutamine aminotransferase. However, PCN levels in PA1201 constitute approximately one-fifth of PCA levels and the optimal temperature for PCN synthesis is 28 °C. In this study, the phzH open reading frame (ORF) and promoter region were investigated and reannotated. phzH promoter PphzH was found to be a weak promoter, and PhzH levels were not sufficient to convert all of the native PCA into PCN. Following RNA Seq and promoter-lacZ fusion analyses, a strong quorum sensing (QS)- and thermo-regulated promoter PrhlI was identified and characterized. The activity of PphzH is approximately 1% of PrhlI in PA1201. After three rounds of promoter editing and swapping by PrhlI, a new PCN-overproducing strain UP46 was generated. The optimal fermentation temperature for PCN biosynthesis in UP46 was increased from 28 to 37 °C and the PCN fermentation titer increased 179.5-fold, reaching 14.1 g/L, the highest ever reported.
Collapse
Affiliation(s)
- Zi-Jing Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lian Zhou
- Zhiyuan Innovation Research Centre, Student Innovation Institute, Zhiyuan College, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuang Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Ji’nan, 250014, China
| | - Ying Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
21
|
Sun S, Tan LTH, Fang YL, Jin ZJ, Zhou L, Goh BH, Lee LH, Zhou J, He YW. Overexpression of oxyR Increases Phenazine-1-Carboxylic Acid Biosynthesis via Small RNA phrS in the Rhizobacterium Strain Pseudomonas PA1201. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:488-498. [PMID: 31710580 DOI: 10.1094/mpmi-09-19-0264-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phenazine-1-carboxylic acid (PCA) is the primary active component in the newly registered, commercial biopesticide Shenqinmycin and is produced during fermentation by the engineered rhizobacterium strain Pseudomonas PA1201. Both phz1 and phz2 gene clusters contribute to PCA biosynthesis. In this study, we evaluated the role of OxyR in the regulation of PCA biosynthesis in PA1201. We first showed a functional link between oxyR expression and PCA biosynthesis. Deletion of oxyR and overexpression of oxyR both increase PCA biosynthesis. The molecular mechanisms underlying OxyR regulation of PCA production were investigated using several approaches. OxyR acts divergently in phz1 and phz2. Overexpression of oxyR activated the expression of phz1 and phz1-dependent PCA production. However, overexpression of oxyR had little effect on phz2-dependent PCA biosynthesis, while deletion of oxyR promoted phz2-dependent PCA production and exerted a negative effect on phz2 expression. Further, OxyR directly bound to the phz2 promoter region. In addition, the regulation of PCA biosynthesis by OxyR was associated with quorum sensing (QS) systems. Overexpression of OxyR positively regulated pqs QS system. Finally, transcriptomic analysis and subsequent genetic analysis revealed the small RNA phrS plays a key role in OxyR-dependent PCA accumulation. Specifically, OxyR directly binds to the phrS promoter region to positively regulate phrS expression wherein PhrS regulates the PCA positive regulator MvfR in order to control PCA biosynthesis.
Collapse
Affiliation(s)
- Shuang Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Yun-Ling Fang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Jing Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lian Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Sood U, Singh DN, Hira P, Lee JK, Kalia VC, Lal R, Shakarad M. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. J Biotechnol 2020; 307:98-106. [DOI: 10.1016/j.jbiotec.2019.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 01/20/2023]
|
23
|
Patel NP, Raju M, Haldar S, Chatterjee PB. Characterization of phenazine-1-carboxylic acid by Klebsiella sp. NP-C49 from the coral environment in Gulf of Kutch, India. Arch Microbiol 2019; 202:351-359. [PMID: 31667534 DOI: 10.1007/s00203-019-01742-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/12/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
Coral-associated microbes from Marine National Park (MNP), Gulf of Kutch (GoK), Gujarat, India, were screened for siderophore production. Maximum siderophore-producing isolate NP-C49 and its compound were identified and characterized. The isolate was identified as Klebsiella sp. through 16S rRNA genes sequencing (GenBank accession nos. KY412519 and MTCC 25160). Antibiotic susceptibility profile against 20 commercial antibiotics showed its more sensitivity compared to human pathogenic strain, i.e., Klebsiella pneumonia. The compound was identified as phenazine-1-carboxylic acid (PCA) using the multinuclear ID (1H and 13C) and 2D (1H-1H COSY and 1H-13C HETCOR) NMR along with high-resolution mass spectrometry. No significant difference in the bacterial growth in the presence of PCA, FeCl3 and Fe(OH)3 indicated involvement of factors other than PCA in bacterial growth. The study first reports the identification and characterization of PCA from Klebsiella sp. both from terrestrial and marine sources.
Collapse
Affiliation(s)
- Neha P Patel
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - M Raju
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Soumya Haldar
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
24
|
Mahmoudi TR, Yu JM, Liu S, Pierson LS, Pierson EA. Drought-Stress Tolerance in Wheat Seedlings Conferred by Phenazine-Producing Rhizobacteria. Front Microbiol 2019; 10:1590. [PMID: 31354678 PMCID: PMC6636665 DOI: 10.3389/fmicb.2019.01590] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/26/2019] [Indexed: 01/09/2023] Open
Abstract
The specific role of phenazines produced by rhizosphere-colonizing Pseudomonas in mediating wheat seedling drought-stress tolerance and recovery from water deficit was investigated using Pseudomonas chlororaphis 30-84 and isogenic derivatives deficient or enhanced in phenazine production compared to wild type. Following a 7-day water deficit, seedlings that received no-inoculum or were colonized by the phenazine mutant wilted to collapse, whereas seedlings colonized by phenazine producers displayed less severe symptoms. After a 7-day recovery period, survival of seedlings colonized by phenazine-producing strains exceeded 80%, but was less than 60% for no-inoculum controls. A second 7-day water deficit reduced overall survival rates to less than 10% for no-inoculum control seedlings, whereas survival was ∼50% for seedlings colonized by phenazine-producers. The relative water content of seedlings colonized by phenazine-producers was 10-20% greater than for the no-inoculum controls at every stage of water deficit and recovery, resulting in higher recovery indices than observed for the no-inoculum controls. For 10-day water deficits causing the collapse of all seedlings, survival rates remained high for plants colonized by phenazine-producers, especially the enhanced phenazine producer (∼74%), relative to the no-inoculum control (∼25%). These observations indicate that seedlings colonized by the phenazine-producing strains suffered less from dehydration during water deficit and recovered better, potentially contributing to better resilience from a second drought/recovery cycle. Seedlings colonized by phenazine-producing strains invested more in root systems and produced 1.5 to 2 fold more root tips than seedlings colonized by the phenazine mutant or the no-inoculum controls when grown with or without water deficit. The results suggest that the presence of phenazine-producing bacteria in the rhizosphere provides wheat seedlings with a longer adjustment period resulting in greater drought-stress avoidance and resilience.
Collapse
Affiliation(s)
- Tessa Rose Mahmoudi
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Jun Myoung Yu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Shuyu Liu
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Leland S. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Elizabeth A. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
25
|
Wu J, Pan X, Xu S, Duan Y, Luo J, Zhou Z, Wang J, Zhou M. The critical role of cytochrome c maturation (CCM) system in the tolerance of Xanthomonas campestris pv. campestris to phenazines. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:63-71. [PMID: 31027582 DOI: 10.1016/j.pestbp.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Phenazine-1-carboxylic acid (PCA), a secondary metabolite produced by Pseudomonas spp., exhibits a high inhibitory effect in Xanthomonas oryzae pv. oryzae (Xoo), but less inhibitory effect in Xanthomonas oryzae pv. oryzicola (Xoc), and almost no inhibitory effect in Xanthomonas campestris pv. campestris (Xcc). In our previous study, reactive oxygen species (ROS) scavenging system was reported to be involved in PCA tolerance in Xanthomonas spp. However, the PCA tolerance mechanism of Xanthomonas spp. is unclear. In the current study, we constructed a Tn5-based transposon mutant library in Xcc and four highly PCA-sensitive insertion mutants were obtained. TAIL-PCR further confirmed that the Tn5 transposon was inserted in the cytochrome c maturation (CCM) system (XC_1893, XC_1897) of these mutants. Disruption of the CCM system significantly decreased the growth, motility and tolerance of Xcc to PCA and other phenazines, such as phenazine and 1-OH-phenazine. The CCM system is responsible for the covalent attachment of the apocytochrome and heme. Disruption of the transmembrane thioredox protein (Dsb) pathway (XC_0531), an essential process for the formation of mature apocytochrome, also exhibited a decreased tolerance to PCA, suggesting that the defect of cytochrome c caused decreased tolerance of Xcc to PCA. Meanwhile, disruption of the CCM system or Dsb pathway interfered with the functions of cytochrome c proteins, causing an increased sensitivity to H2O2. Collectively, we concluded that the CCM system and Dsb pathway, regulate the tolerance of Xcc to phenazines by influencing the functions of cytochrome c. Therefore, these results provide important references for revealing the action mechanism of PCA in Xanthomonas spp.
Collapse
Affiliation(s)
- Jian Wu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiayan Pan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Xu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianying Luo
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Zehua Zhou
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
26
|
Kenawy A, Dailin DJ, Abo-Zaid GA, Malek RA, Ambehabati KK, Zakaria KHN, Sayyed RZ, El Enshasy HA. Biosynthesis of Antibiotics by PGPR and Their Roles in Biocontrol of Plant Diseases. PLANT GROWTH PROMOTING RHIZOBACTERIA FOR SUSTAINABLE STRESS MANAGEMENT 2019:1-35. [DOI: 10.1007/978-981-13-6986-5_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
27
|
Nie H, Nie M, Wang L, Diwu Z, Xiao T, Qiao Q, Wang Y, Jiang X. Evidences of extracellular abiotic degradation of hexadecane through free radical mechanism induced by the secreted phenazine compounds of P. aeruginosa NY3. WATER RESEARCH 2018; 139:434-441. [PMID: 29709800 DOI: 10.1016/j.watres.2018.02.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 02/05/2018] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
The aim of this work was to investigate the effects of secreted extracellular phenazine compounds (PHCs) on the degradation efficiency of alkanes by P. aeruginosa NY3. Under aerobic conditions, the PHCs secreted by P. aeruginosa NY3 initiate the oxidation of alkanes outside cells, in coupling with some reducing agents, such as β-Nicotinamide adenine dinucleotide, reduced disodium salt (NADH) or reduced glutathione (GSH). This reaction might be via free radical reactions similar to Fenton Oxidation Reaction (FOR). P. aeruginosa NY3 secretes pyocyanin (Pyo), 1-hydroxyphenazine (HPE), phenazine-1-carboxylic acid (PCA), and phenazine-1-amide (PCN) simultaneously. The cell-free extracellular fluid containing these four PHCs degrades hexadecane effectively. The observation of Electron Spin Resonance (EPR) signals of superoxide anion radical (O2-), hydroxyl radical (OH) and/or carbon free radicals (R) both in vivo and in vitro suggested the degradation of hexadecane could be via a free radical pathway. Secretion of PHCs has been found to be characteristic of Pseudomonas which is often involved in or related to the degradation of organic pollutants. Our work suggested that certain organic contaminants may be oxidized through ubiquitously extracellular abiotic degradation by the free radicals produced during bio-remediation and bio-treatment.
Collapse
Affiliation(s)
- Hongyun Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, People's Republic of China
| | - Maiqian Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, People's Republic of China.
| | - Lei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, People's Republic of China.
| | - Zhenjun Diwu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, People's Republic of China
| | - Ting Xiao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, People's Republic of China
| | - Qi Qiao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, People's Republic of China
| | - Yan Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, People's Republic of China
| | - Xin Jiang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, Shaanxi Province, People's Republic of China
| |
Collapse
|
28
|
Fang YL, Chen B, Zhou L, Jin ZJ, Sun S, He YW. The Anti-activator QslA Negatively Regulates Phenazine-1-Carboxylic Acid Biosynthesis by Interacting With the Quorum Sensing Regulator MvfR in the Rhizobacterium Pseudomonas aeruginosa Strain PA1201. Front Microbiol 2018; 9:1584. [PMID: 30090088 PMCID: PMC6068238 DOI: 10.3389/fmicb.2018.01584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/25/2018] [Indexed: 01/01/2023] Open
Abstract
Two almost identical gene clusters (phz1 and phz2) are responsible for phenazine-1-carboxylic acid (PCA) production in Pseudomonas aeruginosa (P. aeruginosa) strain MSH (derived from strain PA1201). Here, we showed that the anti-activator QslA negatively regulated PCA biosynthesis and phz1 expression in strain PA1201 but had little effect on phz2 expression. This downregulation was mediated by a 56-bp region within the 5'-untranslated region (5'-UTR) of the phz1 promoter and was independent of LasR and RsaL signaling. QslA also negatively regulated Pseudomonas quinolone signal (PQS) production. Indeed, QslA controlled the PQS threshold concentration needed for PQS-dependent PCA biosynthesis. The quorum sensing regulator MvfR was required for the QslA-dependent inhibition of PCA production. We identified a direct protein-protein interaction between QslA and MvfR. The ligand-binding domain of MvfR (residues 123-306) was involved in this interaction. Our results suggested that MvfR bound directly to the promoter of the phz1 cluster. QslA interaction with MvfR prevented the binding of MvfR to the phz1 promoter regions. Thus, this study depicted a new mechanism by which QslA controls PCA and PQS biosynthesis in P. aeruginosa.
Collapse
Affiliation(s)
- Yun-Ling Fang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lian Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Jing Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Huang R, Feng Z, Chi X, Sun X, Lu Y, Zhang B, Lu R, Luo W, Wang Y, Miao J, Ge Y. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Microbiol Res 2018; 215:55-64. [PMID: 30172309 DOI: 10.1016/j.micres.2018.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/16/2018] [Accepted: 06/16/2018] [Indexed: 12/21/2022]
Abstract
Fusarium graminearum is the major causal agent of Fusarium head blight (FHB) disease in cereal crops worldwide. Infection with this fungal phytopathogen can regularly cause severe yield and quality losses and mycotoxin contamination in grains. In previous other studies, one research group reported that pyrrolnitrin had an ability to suppress of mycelial growth of F. graminearum. Other groups revealed that phenazine-1-carboxamide, a derivative of phenazine-1-carboxylic acid, could also inhibit the growth of F. graminearum and showed great potentials in the bioprotection of crops from FHB disease. In our recent work with Pseudomonas chlororaphis strain G05, however, we found that although the phz operon (phenazine biosynthetic gene cluster) was knocked out, the phenazine-deficient mutant G05Δphz still exhibited effective inhibition of the mycelial growth of some fungal phytopathogens in pathogen inhibition assay, especially including F. graminearum, Colletotrichum gloeosporioides, Botrytis cinerea. With our further investigations, including deletion and complementation of the prn operon (pyrrolnitrin biosynthetic gene cluster), purification and identification of fungal compounds, we first verified that not phenazines but pyrrolnitrin biosynthesized in P. chlororaphis G05 plays an essential role in growth suppression of F. graminearum and the bioprotection of cereal crops against FHB disease.
Collapse
Affiliation(s)
- Run Huang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Zhibin Feng
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Xiaoyan Chi
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Xiaoqiang Sun
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Yang Lu
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Baoshen Zhang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Ruiyang Lu
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Wangtai Luo
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Yanhua Wang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Jing Miao
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Yihe Ge
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China.
| |
Collapse
|
30
|
Sekar J, Raju K, Duraisamy P, Ramalingam Vaiyapuri P. Potential of Finger Millet Indigenous Rhizobacterium Pseudomonas sp. MSSRFD41 in Blast Disease Management-Growth Promotion and Compatibility With the Resident Rhizomicrobiome. Front Microbiol 2018; 9:1029. [PMID: 29875748 PMCID: PMC5974220 DOI: 10.3389/fmicb.2018.01029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/01/2018] [Indexed: 01/05/2023] Open
Abstract
Finger millet [Eleusine coracona (L). Gaertner] "Ragi" is a nutri-cereal with potential health benefits, and is utilized solely for human consumption in semi-arid regions of Asia and Africa. It is highly vulnerable to blast disease caused by Pyricularia grisea, resulting in 50-100% yield loss. Chemical fungicides are used for the management of blast disease, but with great safety concern. Alternatively, bioinoculants are widely used in promoting seedling efficiency, plant biomass, and disease control. Little is known about the impact of introduced indigenous beneficial rhizobacteria on the rhizosphere microbiota and growth promotion in finger millet. Strain MSSRFD41 exhibited a 22.35 mm zone of inhibition against P. grisea, produces antifungal metabolites, siderophores, hydrolytic enzymes, and IAA, and solubilizes phosphate. Environmental SEM analysis indicated the potential of MSSRFD41 to inhibit the growth of P. grisea by affecting cellular functions, which caused deformation in fungal hyphae. Bioprimed finger millet seeds exhibited significantly higher levels of germination, seedling vigor index, and enhanced shoot and root length compared to control seeds. Cross streaking and RAPD analysis showed that MSSRFD41 is compatible with different groups of rhizobacteria and survived in the rhizosphere. In addition, PLFA analysis revealed no significant difference in microbial biomass between the treated and control rhizosphere samples. Field trials showed that MSSRFD41 treatment significantly reduced blast infestation and enhanced plant growth compared to other treatments. A liquid formulated MSSRFD41 product maintained shelf life at an average of 108 CFU ml-1 over 150 days of storage at 25°C. Overall, results from this study demonstrated that Pseudomonas sp. MSSRFD41, an indigenous rhizobacterial strain, is an alternative, effective, and sustainable resource for the management of P. grisea infestation and growth promotion of finger millet.
Collapse
Affiliation(s)
- Jegan Sekar
- Microbiology Lab, M.S. Swaminathan Research Foundation, Chennai, India
| | - Kathiravan Raju
- Microbiology Lab, M.S. Swaminathan Research Foundation, Chennai, India
| | | | | |
Collapse
|
31
|
Yu JM, Wang D, Pierson LS, Pierson EA. Effect of Producing Different Phenazines on Bacterial Fitness and Biological Control in Pseudomonas chlororaphis 30-84. THE PLANT PATHOLOGY JOURNAL 2018; 34:44-58. [PMID: 29422787 PMCID: PMC5796749 DOI: 10.5423/ppj.ft.12.2017.0277] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 05/16/2023]
Abstract
Pseudomonas chlororaphis 30-84 is a biological control agent selected for its ability to suppress diseases caused by fungal pathogens. P. chlororaphis 30-84 produces three phenazines: phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine-1-carboxylic acid (2OHPCA) and a small amount of 2-hydroxy-phenazine (2OHPHZ), and these are required for fungal pathogen inhibition and wheat rhizosphere competence. The two, 2-hydroxy derivatives are produced from PCA via the activity of a phenazine-modifying enzyme encoded by phzO. In addition to the seven biosynthetic genes responsible for the production of PCA, many other Pseudomonas strains possess one or more modifying genes, which encode enzymes that act independently or together to convert PCA into other phenazine derivatives. In order to understand the fitness effects of producing different phenazines, we constructed isogenic derivatives of P. chlororaphis 30-84 that differed only in the type of phenazines produced. Altering the type of phenazines produced by P. chlororaphis 30-84 enhanced the spectrum of fungal pathogens inhibited and altered the degree of take-all disease suppression. These strains also differed in their ability to promote extracellular DNA release, which may contribute to the observed differences in the amount of biofilm produced. All derivatives were equally important for survival over repeated plant/harvest cycles, indicating that the type of phenazines produced is less important for persistence in the wheat rhizosphere than whether or not cells produce phenazines. These findings provide a better understanding of the effects of different phenazines on functions important for biological control activity with implications for applications that rely on introduced or native phenazine producing populations.
Collapse
Affiliation(s)
- Jun Myoung Yu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77943-2133,
USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77943-2133,
USA
| | - Dongping Wang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77943-2133,
USA
| | - Leland S. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77943-2133,
USA
| | - Elizabeth A. Pierson
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77943-2133,
USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77943-2133,
USA
| |
Collapse
|
32
|
Sun S, Chen B, Jin ZJ, Zhou L, Fang YL, Thawai C, Rampioni G, He YW. Characterization of the multiple molecular mechanisms underlying RsaL control of phenazine-1-carboxylic acid biosynthesis in the rhizosphere bacteriumPseudomonas aeruginosaPA1201. Mol Microbiol 2017; 104:931-947. [DOI: 10.1111/mmi.13671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Shuang Sun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Bo Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Zi-Jing Jin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Lian Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Yun-Ling Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Chitti Thawai
- Department of Biology, Faculty of Science; King Mongkut's Institute of Technology Ladkrabang; Bangkok Thailand
| | | | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| |
Collapse
|
33
|
Patil S, Nikam M, Anokhina T, Kochetkov V, Chaudhari A. Multi-stress tolerant plant growth promoting Pseudomonas spp. MCC 3145 producing cytostatic and fungicidal pigment. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Pan X, Wu J, Xu S, Duan Y, Zhou M. CatB is Critical for Total Catalase Activity and Reduces Bactericidal Effects of Phenazine-1-Carboxylic Acid on Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola. PHYTOPATHOLOGY 2017; 107:163-172. [PMID: 27749149 DOI: 10.1094/phyto-07-16-0251-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Rice bacterial leaf blight, caused by Xanthomonas oryzae pv. oryzae, and rice bacterial leaf streak, caused by X. oryzae pv. oryzicola, are major diseases of rice. Phenazine-1-carboxylic acid (PCA) is a natural product that is isolated from Pseudomonas spp. and is used to control many important rice diseases in China. We previously reported that PCA disturbs the redox balance, which results in the accumulation of reactive oxygen species in X. oryzae pv. oryzae. In this study, we found that PCA significantly upregulated the transcript levels of catB and katE, which encode catalases, and that PCA sensitivity was reduced when X. oryzae pvs. oryzae and oryzicola were cultured with exogenous catalase. Furthermore, catB deletion mutants of X. oryzae pvs. oryzae and oryzicola showed dramatically decreased total catalase activity, increased sensitivity to PCA, and reduced virulence in rice. In contrast, deletion mutants of srpA and katG, which also encode catalases, exhibited little change in PCA sensitivity. The results indicate that catB in both X. oryzae pvs. oryzae and oryzicola encodes a catalase that helps protect the bacteria against PCA-induced stress.
Collapse
Affiliation(s)
- Xiayan Pan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu Xu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yabing Duan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingguo Zhou
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
35
|
Quorum sensing systems differentially regulate the production of phenazine-1-carboxylic acid in the rhizobacterium Pseudomonas aeruginosa PA1201. Sci Rep 2016; 6:30352. [PMID: 27456813 PMCID: PMC4960564 DOI: 10.1038/srep30352] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/04/2016] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa strain PA1201 is a newly identified rhizobacterium that produces high levels of the secondary metabolite phenazine-1-carboxylic acid (PCA), the newly registered biopesticide Shenqinmycin. PCA production in liquid batch cultures utilizing a specialized PCA-promoting medium (PPM) typically occurs after the period of most rapid growth, and production is regulated in a quorum sensing (QS)-dependent manner. PA1201 contains two PCA biosynthetic gene clusters phz1 and phz2; both clusters contribute to PCA production, with phz2 making a greater contribution. PA1201 also contains a complete set of genes for four QS systems (LasI/LasR, RhlI/RhlR, PQS/MvfR, and IQS). By using several methods including gene deletion, the construction of promoter-lacZ fusion reporter strains, and RNA-Seq analysis, this study investigated the effects of the four QS systems on bacterial growth, QS signal production, the expression of phz1 and phz2, and PCA production. The possible mechanisms for the strain- and condition-dependent expression of phz1 and phz2 were discussed, and a schematic model was proposed. These findings provide a basis for further genetic engineering of the QS systems to improve PCA production.
Collapse
|
36
|
Huang H, Sun L, Bi K, Zhong G, Hu M. The Effect of Phenazine-1-Carboxylic Acid on the Morphological, Physiological, and Molecular Characteristics of Phellinus noxius. Molecules 2016; 21:E613. [PMID: 27187325 PMCID: PMC6273927 DOI: 10.3390/molecules21050613] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/04/2022] Open
Abstract
In this study, the effect of phenazine-1-carboxylic acid (PCA) on morphological, physiological, and molecular characteristics of Phellinus noxius has been investigated, and the potential antifungal mechanism of PCA against P. noxius was also explored. The results revealed that PCA showed in vitro antifungal potential against P. noxius and completely inhibited P. noxius hyphae at concentrations >40 μg/mL. PCA inhibited both mycelial growth and the loss of mycelial biomass in vitro in a dose-dependent manner. Morphological changes in PCA-treated P. noxius hyphae, such as irregularly swollen mycelia as well as short hyphae with increased septation and less branching, were observed by optical microscopy. The intracellular reactive oxygen species (ROS) levels were significantly increased in PCA-treated P. noxius cells as compared to control groups. Induced hyperpolarization of the mitochondrial membrane potential (MMP), repressed superoxide dismutase (SOD) activity and up-regulated gene expression of seven tested genes were also found in PCA-treated P. noxius groups. Thus, the present results suggested that the mechanism of action of PCA against P. noxius might be attributed to direct damage of mycelium and high intracellular ROS production, and indirect induction of genes involved in cell detoxification, oxidation-reduction process, and electron transport of the respiratory chain.
Collapse
Affiliation(s)
- Huazhi Huang
- Key Laboratory of Natural Pesticide and Chemical Biology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Guangzhou Insitute of Forestry and Landscape Architecture, Guangzhou 510405, China.
| | - Longhua Sun
- Guangzhou Insitute of Forestry and Landscape Architecture, Guangzhou 510405, China.
| | - Keke Bi
- Guangzhou Insitute of Forestry and Landscape Architecture, Guangzhou 510405, China.
| | - Guohua Zhong
- Key Laboratory of Natural Pesticide and Chemical Biology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Meiying Hu
- Key Laboratory of Natural Pesticide and Chemical Biology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|