1
|
Wang C, Deng W, Huang Z, Li C, Wei R, Zhu Y, Wu K, Li C, Deng L, Wei M, Chen X, Li D. Nutrient Utilization and Gut Microbiota Composition in Giant Pandas of Different Age Groups. Animals (Basel) 2024; 14:2324. [PMID: 39199858 PMCID: PMC11350801 DOI: 10.3390/ani14162324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Proper feeding and nutrition are vital for maintaining the health of giant pandas (GPs), yet the impact of dietary changes and gut microbiota on their nutrient utilization remains unclear. To address these uncertainties, we investigated nutrient intake and apparent digestibility, as well as gut microbiota composition across different age groups of giant pandas: sub-adults (SGPs), adults (AGPs), and geriatrics (GGPs). Our findings revealed notable shifts in dietary patterns from SGPs to GGPs. As they aged, significantly more bamboo shoots and less bamboo were consumed. Consequently, GGPs showed significantly reduced crude fiber (CF) intake and digestibility, while crude protein (CP) did not alter significantly. In addition, 16S rRNA microbial sequencing results showed that unidentified_Enterobacteriaceae and Streptococcus were the dominant genera among all age groups. The relative abundance of the genus Enterococcus in GGPs was significantly higher than that in SGPs and AGPs (p < 0.05). Overall, our results indicated the importance of bamboo shoots as a major source of protein in GGPs' diet, which can effectively compensate for the certain nutritional loss caused by the reduction in bamboo intake. Age-related changes in bacterial abundance have an effect on specific nutrient apparent digestibility in the gut of GPs. The data presented in this study serve as a useful reference for nutritional management in different ages of GPs under healthy conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Desheng Li
- China Conservation and Research Centre for the Giant Panda, Key Laboratory of SFGA on the Giant Panda, Chengdu 610051, China (Z.H.)
| |
Collapse
|
2
|
Yao Y, Zhao W, Xiang G, Lv R, Dong Y, Yan H, Li M. Bamboo Plant Part Preference Affects the Nutrients Digestibility and Intestinal Microbiota of Geriatric Giant Pandas. Animals (Basel) 2023; 13:ani13050844. [PMID: 36899701 PMCID: PMC10000146 DOI: 10.3390/ani13050844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Bamboo part preference plays a critical role in influencing the nutrient utilization and gastrointestinal microbiota composition of captive giant pandas. However, the effects of bamboo part consumption on the nutrient digestibility and gut microbiome of geriatric giant pandas remain unknown. A total of 11 adult and 11 aged captive giant pandas were provided with bamboo shoots or bamboo leaves in the respective single-bamboo-part consumption period, and the nutrient digestibility and fecal microbiota of both adult and aged giant pandas in each period were evaluated. Bamboo shoot ingestion increased the crude protein digestibility and decreased the crude fiber digestibility of both age groups. The fecal microbiome of the bamboo shoot-fed giant pandas exhibited greater alpha diversity indices and significantly different beta diversity index than the bamboo leaf-fed counterparts regardless of age. Bamboo shoot feeding significantly changed the relative abundance of predominant taxa at both phylum and genus levels in adult and geriatric giant pandas. Bamboo shoot-enriched genera were positively correlated with crude protein digestibility and negatively correlated with crude fiber digestibility. Taken together, these results suggest that bamboo part consumption dominates over age in affecting the nutrient digestibility and gut microbiota composition of giant pandas.
Collapse
Affiliation(s)
- Ying Yao
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Wenjia Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Guilin Xiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ruiqing Lv
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Yanpeng Dong
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Honglin Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Correspondence: (H.Y.); (M.L.)
| | - Mingxi Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Correspondence: (H.Y.); (M.L.)
| |
Collapse
|
3
|
Lignocellulose Fermentation Products Generated by Giant Panda Gut Microbiomes Depend Ultimately on pH Rather than Portion of Bamboo: A Preliminary Study. Microorganisms 2022; 10:microorganisms10050978. [PMID: 35630422 PMCID: PMC9146640 DOI: 10.3390/microorganisms10050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Giant pandas feed almost exclusively on bamboo but miss lignocellulose-degrading genes. Their gut microbiome may contribute to their nutrition; however, the limited access to pandas makes experimentation difficult. In vitro incubation of dung samples is used to infer gut microbiome activity. In pandas, such tests indicated that green leaves are largely fermented to ethanol at neutral pH and yellow pith to lactate at acidic pH. Pandas may feed on either green leaves or yellow pith within the same day, and it is unclear how pH, dung sample, fermentation products and supplied bamboo relate to one another. Additionally, the gut microbiome contribution to solid bamboo digestion must be appropriately assessed. Here, gut microbiomes derived from dung samples with mixed colors were used to ferment green leaves, also by artificially adjusting the initial pH. Gut microbiomes digestion of solid lignocellulose accounted for 30–40% of the detected final fermentation products. At pH 6.5, mixed-color dung samples had the same fermentation profile as green dung samples (mainly alcohols), while adjusting the initial pH to 4.5 resulted in the profile of yellow dung samples (mainly lactate). Metaproteomics confirmed that gut microbiomes attacked hemicellulose, and that the panda’s alpha amylase was the predominant enzyme (up to 75%).
Collapse
|
4
|
Wang J, Pu Y, Zeng Y, Chen Y, Zhao W, Niu L, Chen B, Yang Z, Wu L, Pan K, Jing B, Zeng D, Ni X. Multi-functional Potential of Five Lactic Acid Bacteria Strains Derived from Giant Panda (Ailuropoda melanoleuca). Probiotics Antimicrob Proteins 2022; 15:668-681. [PMID: 35000110 DOI: 10.1007/s12602-021-09881-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
The multi-functional properties of lactic acid bacteria (LAB) on host health have been a popular research topic. The aim of present study was to assess the multi-functional potential of five LAB strains isolated from giant panda. In this study, we analyzed five giant panda LAB strains (Weissella confuse WJ202003 (W3), WJ202009 (W9), WJ202021 (W21), BSP201703 (X3); Lactiplantibacillus plantarum BSGP201683 (G83)) and found that they exhibited rapid growth as well as strong acid production capacity. The five LAB strains possessed high cell surface hydrophobicity to the four tested solvents (xylene, hexadecane, chloroform, ethyl acetate; except strain W9), auto-aggregation ability, co-aggregation ability with three pathogens (Escherichia coli, Enterotoxigenic Escherichia coli, Salmonella), adhesion ability to Caco-2 cell line, and strongly biofilm formation ability, suggesting an adhesion property. As investigated for their antioxidative potential, all the strains showed good tolerance to H2O2, high scavenging ability against 1, 1-diphenyl-2-picrylhydrazyl (DPPH), and hydroxyl (OH-), and reduction ability. Furthermore, the five LAB strains could produce multiple probiotic substances, including exopolysaccharide (EPS), gamma-aminobutyric acid (GABA), bile salt hydrolase (BSH), cellulase (only strain G83), and protease (except strain X3), which was the first to report the production of EPS, GABA, BSH, cellulase, and protease in giant panda-derived LAB strain. These results demonstrated that strains W3, W9, W21, X3, and G83 had multi-functional potential and could be utilized as potential probiotics for giant panda.
Collapse
Affiliation(s)
- Jie Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Pu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, Sichuan, China
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yingyi Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lili Niu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, Sichuan, China
| | - Benhao Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zihan Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liqian Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Zhu C, Laghi L, Zhang Z, He Y, Wu D, Zhang H, Huang Y, Li C, Zou L. First Steps toward the Giant Panda Metabolome Database: Untargeted Metabolomics of Feces, Urine, Serum, and Saliva by 1H NMR. J Proteome Res 2020; 19:1052-1059. [PMID: 31994893 DOI: 10.1021/acs.jproteome.9b00564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Differences in the concentration of metabolites in the biofluids of animals closely reflect their physiological diversities. In order to set the basis for a metabolomic atlas for giant panda (Ailuropoda melanoleuca), we characterized the metabolome of healthy giant panda feces (23), urine (16), serum (6), and saliva (4) samples by means of 1H NMR. A total of 107 metabolites and a core metabolome of 12 metabolites was quantified across the four biological matrices. Through univariate analysis followed by robust principal component analysis, we were able to describe how the molecular profile observed in giant panda urine and feces was affected by gender and age. Among the molecules modified by age in feces, fucose plays a peculiar role because it is related to the digestion of bamboo's hemicellulose, which is considered as the main source of energy for giant panda. A metagenomic investigation directed toward this molecule showed that its concentration was indeed positively related to the two-component system pathway and negatively related to the amino sugar and nucleotide sugar metabolism pathway. Such work is meant to provide a robust framework for further -omics research studies on giant panda to accelerate our understanding of the interaction of giant panda with its natural environment.
Collapse
Affiliation(s)
- Chenglin Zhu
- Centre of Food-omics, Department of Agro-Food Science and Technology, University of Bologna, Cesena 47521, Italy
| | - Luca Laghi
- Centre of Food-omics, Department of Agro-Food Science and Technology, University of Bologna, Cesena 47521, Italy
| | - Zhizhong Zhang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan 611800, China
| | - Yongguo He
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan 611800, China
| | - Daifu Wu
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan 611800, China
| | - Hemin Zhang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan 611800, China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan 611800, China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan 611800, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
6
|
Liu Q, Ni X, Wang Q, Peng Z, Niu L, Xie M, Lin Y, Zhou Y, Sun H, Pan K, Jing B, Zeng D. Investigation of Lactic Acid Bacteria Isolated from Giant Panda Feces for Potential Probiotics In Vitro. Probiotics Antimicrob Proteins 2019; 11:85-91. [PMID: 29353415 DOI: 10.1007/s12602-017-9381-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present study aimed to isolate an optimal lactic acid bacterial strain from the feces of healthy giant pandas. The strain exhibited good stability at low pH and high bile salt concentrations, activity against pathogens relevant to pandas, and antibiotic susceptibility. In the current study, 25 isolates were obtained from de Man, Rogosa, and Sharpe agar. Two (E21 and G83) and eight (E1, E2, E16, E18, E21, E69, E70, and G83) isolates demonstrated good performance at pH 2.0 and bile 2% (w/v), respectively. Three isolates (G83, G88, and G90) possessed better antimicrobial effect on enterotoxigenic Escherichia coli CVCC196 (ETEC) than the rest. One isolate (G83) strongly affected Salmonella, whereas three (G83, G87, and G88) exhibited inhibitory activity against Staphylococcus aureus. All isolates were multi-drug resistant. These isolates were identified as Lactobacillus (5 isolates) and Enterococcus (20 isolates) by 16S rRNA sequencing. Virulence genes were detected in Enterococcus isolates. Isolate G83 was identified as Lactobacillus plantarum and was considered as the best probiotic candidate among all of the experimental isolates. This study provided necessary and important theoretical guidance for further experiments on G83 in vivo.
Collapse
Affiliation(s)
- Qian Liu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, China
| | - Zhirong Peng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lili Niu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, China
| | - Meiling Xie
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yicen Lin
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Sun
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Kangcheng Pan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China.
| |
Collapse
|
7
|
Zhao S, Li C, Li G, Yang S, Zhou Y, He Y, Wu D, Zhou Y, Zeng W, Li T, Qu Y, Li B, Deng W, Jin L, Yu X, Huang Y, Zhang H, Zou L. Comparative Analysis of Gut Microbiota Among the Male, Female and Pregnant Giant Pandas ( Ailuropoda Melanoleuca). Open Life Sci 2019; 14:288-298. [PMID: 33817162 PMCID: PMC7874769 DOI: 10.1515/biol-2019-0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
The giant panda (GP) was the most endangered species in China, and gut microbiota plays a vital role in host health. To determine the differences of the gut microbiota among the male, female and pregnant GPs, a comparative analysis of gut microbiota in GPs was carried out by 16S rRNA and ITS high-throughput sequencing. In 16S rRNA sequencing, 435 OTUs, 17 phyla and 182 genera were totally detected. Firmicutes (53.6%) was the predominant phylum followed by Proteobacteria (37.8%) and Fusobacteria (7.1%). Escherichia/Shigella (35.9%) was the most prevalent genus followed by Streptococcus (25.9%) and Clostridium (11.1%). In ITS sequencing, 920 OTUs, 6 phyla and 322 genera were also detected. Ascomycota (71.3%) was the predominant phylum followed by Basidiomycota (28.4%) and Zygomycota (0.15%). Purpureocillium (4.4%) was the most prevalent genus followed by Cladosporium (2.5%) and Pezicula (2.4%). Comparative analysis indicated that the male GPs harbor a higher abundance of phylum Firmicutes than female GPs with the contribution from genus Streptococcus. Meanwhile, the female GPs harbor a higher abundance of phylum Proteobacteria than male GPs with the contribution from genus Escherichia/ Shigella. In addition, the shift in bacteria from female to pregnant GPs indicated that phylum Firmicutes increased significantly with the contribution from Clostridium in the gut, which may provide an opportunity to study possible associations with low reproduction of the GPs.
Collapse
Affiliation(s)
- Siyue Zhao
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Caiwu Li
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Guo Li
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Shengzhi Yang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Yingming Zhou
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Yongguo He
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China
| | - Daifu Wu
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Yu Zhou
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Wen Zeng
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Ti Li
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Yuanyuan Qu
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Bei Li
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Wenwen Deng
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Lei Jin
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Xiumei Yu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Yan Huang
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Hemin Zhang
- China Conservation and Research Center for Giant Panda, 611830, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park (China Conservation and Research Center of Giant Panda), 611830, Wolong, China
| | - Likou Zou
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Liu Q, Ni X, Wang Q, Peng Z, Niu L, Wang H, Zhou Y, Sun H, Pan K, Jing B, Zeng D. Lactobacillus plantarum BSGP201683 Isolated from Giant Panda Feces Attenuated Inflammation and Improved Gut Microflora in Mice Challenged with Enterotoxigenic Escherichia coli. Front Microbiol 2017; 8:1885. [PMID: 29018435 PMCID: PMC5623042 DOI: 10.3389/fmicb.2017.01885] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/14/2017] [Indexed: 12/28/2022] Open
Abstract
In this work, we searched for an effective probiotic that can help control intestinal infection, particularly enterotoxigenic Escherichia coli K88 (ETEC) invasion, in giant panda (Ailuropoda melanoleuca). As a potential probiotic strain, Lactobacillus plantarum BSGP201683 (L. plantarum G83) was isolated from the feces of giant panda and proven beneficial in vitro. This study was aimed to evaluate the protective effect of L. plantarum G83 in mice challenged with ETEC. The mice were orally administered with 0.2 mL of PBS containing L. plantarum G83 at 0 colony-forming units (cfu) mL−1 (control; negative control, ETEC group), 5.0 × 108 cfu mL−1 (LDLP), 5.0 × 109 cfu mL−1 (MDLP), and 5.0 × 1010 cfu mL−1 (HDLP) for 14 consecutive days. At day 15, the mice (LDLP, MDLP, HDLP, and ETEC groups) were challenged with ETEC and assessed at 0, 24, and 144 h. Animal health status; chemical and biological intestinal barriers; and body weight were measured. Results showed that L. plantarum G83 supplementation protected the mouse gut mainly by attenuating inflammation and improving the gut microflora. Most indices significantly changed at 24 h after challenge compared to those at 0 and 144 h. All treatment groups showed inhibited plasma diamine oxidase activity and D-lactate concentration. Tight-junction protein expression was down-regulated, and interleukin (IL)-1β, IL-6, IL-8, TLR4, and MyD88 levels were up-regulated in the jejunum in the LDLP and MDLP groups. The number of the Enterobacteriaceae family and the heat-labile enterotoxin (LT) gene decreased (P < 0.05) in the colons in the LDLP and MDLP groups. All data indicated that L. plantarum G83 could attenuate acute intestinal inflammation caused by ETEC infection, and the low and intermediate doses were superior to the high dose. These findings suggested that L. plantarum G83 may serve as a protective probiotic for intestinal disease and merits further investigation.
Collapse
Affiliation(s)
- Qian Liu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiang Wang
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, China
| | - Zhirong Peng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, China
| | - Hengsong Wang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hao Sun
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Kangcheng Pan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Zou F, Zeng D, Wen B, Sun H, Zhou Y, Yang M, Peng Z, Xu S, Wang H, Fu X, Du D, Zeng Y, Zhu H, Pan K, Jing B, Wang P, Ni X. Illumina Miseq platform analysis caecum bacterial communities of rex rabbits fed with different antibiotics. AMB Express 2016; 6:100. [PMID: 27770389 PMCID: PMC5074941 DOI: 10.1186/s13568-016-0273-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/14/2016] [Indexed: 12/15/2022] Open
Abstract
Antibiotics have been widely used for the prevention and the treatment of diseases to humans and animals, and they have fed additives for agricultural animals to promote growth. However, there is a growing concern over the practice due to its side effects on intestinal microbial communities which plays a vital role in animals' health. To investigate the effect of antibiotics on the bacterial population of the caecum in rex rabbits, 80 rex rabbits were randomly divided into four groups: control group (B, basal diet), chlortetracycline group (C, 50 mg/kg), colistin sulfate group (S, 20 mg/kg) and zinc bacitracin group (Z, 40 mg/kg). Caecum microbial communities of rex rabbits from the four groups were analyzed through Illumina Miseq platform after being fed 28 days. The results showed that most obtained sequences belongs to Firmicutes followed by Bacteroidetes, and the ratio of Bacteroidetes/Firmicutes in C group (42.31 %) was higher than that in Z group (21.84 %). Zinc bacitracin supplementation caused a significant decreased of the Proteobacteria phylum and Lactobacillus spp. (P < 0.05), while the Lactobacillus spp. significantly increased in S group (P < 0.05). In addition, Ruminococcus spp., especially Ruminococcus albus were the predominant bacterial species found in both S and Z groups. The proportion of Coprococcus spp. significantly increased in Z group (P < 0.05). These findings suggested that the antibiotics used may cause significant changes in the caecum microbiota of rex rabbits, and we also found C group had a similarity caecum bacteria structure with B group which was probably due to the high levels of chlortetracycline resistance.
Collapse
|