1
|
Zhang Y, Yu S, Wang M, Chen B, Tan T. Process of a Photobacterial Cascade Reaction for Biobased Adipic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40396465 DOI: 10.1021/acs.jafc.5c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Adipic acid, a crucial monomer in polymer synthesis, plays a significant role in the production of food packaging materials. In the context of the "Dual Carbon" strategy, the advancement of biobased adipic acid is of critical importance. Here, we have developed an innovative photobacterial cascade reaction system for adipic acid synthesis, which represents a groundbreaking approach in production methodology. The pathway with l-lysine as the precursor is a potential pathway for adipic acid synthesis, but it is subject to low catalytic activity or unknown enzymes in some reactions. In this study, the biosynthesis pathway of l-2-aminoadipate, an intermediate metabolite of adipic acid synthesis with l-lysine as the precursor, was constructed in Corynebacterium glutamicum. It was determined that the coexpression of lysine 6-dehydrogenase from Geobillus sp. 12AMOR1 and aminoadipate semialdehyde dehydrogenase from Pseudomonas fulva 12-X was more beneficial to the synthesis of l-2-aminoadipate. Regulation of the expression of the above enzymes and overexpression of key genes in the precursor lysine synthesis pathway increased l-2-aminoadipate production to 1.02 g/L, which was 6.4 times higher than that of the parental strain. Subsequently, the synthesis of l-2-aminoadipate to adipic acid was realized by photocatalytic conversion instead of the conversion by unknown enzymes. A photocatalyst could complete the oxidation process of deamination by using electron-hole pairs. By optimizing the photocatalytic materials, the treated rape pollen (TRP) was determined as the better photocatalyst. TRP was added as a catalyst in the fermentation system of producing l-2-aminoadipate by C. glutamicum, and the light system was introduced to achieve the photocatalytic conversion of l-2-aminoadipate to adipic acid. 235 mg/L adipic acid could be produced after 48 h of fermentation. A method for producing adipic acid by microbial fermentation coupled with photocatalysis was successfully developed, which broadens the routes for the synthesis of adipic acid. In addition, the photomicrobial cascade reactions could replace the catalytic processes of unknown enzymes, providing new ideas for the synthesis of other important chemicals.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Green Biomanufacturing, National Energy R&D Center for Biorefinery, Biorefinery Engineering Research Center of the Ministry of Education, Beijing University of Chemical Technology. No. 15 of North Three-Ring East Road, Chaoyang District, Beijing 100029, P. R. China
| | - Senshen Yu
- Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Normal University, Kunming 650500, P. R. China
- School of Energy and Environmental Science, Yunnan Normal University, Kunming, Yunnan 650500, P. R. China
| | - Meng Wang
- State Key Laboratory of Green Biomanufacturing, National Energy R&D Center for Biorefinery, Biorefinery Engineering Research Center of the Ministry of Education, Beijing University of Chemical Technology. No. 15 of North Three-Ring East Road, Chaoyang District, Beijing 100029, P. R. China
| | - Biqiang Chen
- State Key Laboratory of Green Biomanufacturing, National Energy R&D Center for Biorefinery, Biorefinery Engineering Research Center of the Ministry of Education, Beijing University of Chemical Technology. No. 15 of North Three-Ring East Road, Chaoyang District, Beijing 100029, P. R. China
| | - Tianwei Tan
- State Key Laboratory of Green Biomanufacturing, National Energy R&D Center for Biorefinery, Biorefinery Engineering Research Center of the Ministry of Education, Beijing University of Chemical Technology. No. 15 of North Three-Ring East Road, Chaoyang District, Beijing 100029, P. R. China
| |
Collapse
|
2
|
Zhou C, Kong Y, Zhang N, Zhang X, Qin W, Zhang L, Zhang H, Yang G, Lu F. Transcriptomic analysis of Bacillus licheniformis 2709 reveals the molecular mechanism of alkaline protease biosynthesis regulated by the DegS/DegU two-component system. Int J Biol Macromol 2025; 306:140868. [PMID: 39986498 DOI: 10.1016/j.ijbiomac.2025.140868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/24/2025] [Accepted: 02/08/2025] [Indexed: 02/24/2025]
Abstract
The DegS/DegU two-component signal transduction system (TCS), plays significant roles in a broad range of bacterial responses to the complicated environment in Bacillus subtilis. However, few efforts have been made to explore the physiological functions of DegS/DegU in alkaline protease (AprE) biosynthesis in the industrial strain Bacillus licheniformis 2709. In this study, it was found that the biosynthesis of AprE is severely hampered in degS and degU deficient mutants compared with the original strain. To investigate the underlying mechanisms responsible for changing the AprE productivity, transcriptome profile analysis was conducted to compare the differentially expressed genes (DEGs) among the deficient mutants and the control. At the peak of AprE production in degS mutant, a total of 810 DEGs including 125 up-regulated and 685 down-regulated were identified compared to the control, which were mainly annotated in 15 pathways, including oxidative phosphorylation, amino acid metabolism and ABC transporters. Besides, the transcriptomic analysis of degU mutant revealed that 307 genes were significantly up-regulated and 604 genes were down-regulated, among which, rho was identified and further functionally verified. Systematic comparison of DEGs under different conditions elucidated self-repression mechanism of DegU on aprE expression in B. licheniformis 2709, which was confirmed by the inducible expression of degU::gfp in this study. The study will yield valuable insight into how the DegS/DegU TCS regulates aprE expression in industrial strain with respect to protease production, and facilitates genetic strain improvement aiming at biological containment and effectiveness of biotechnological processes.
Collapse
Affiliation(s)
- Cuixia Zhou
- School of biology and brewing engineering, Taishan University, Tai'an 271018, PR China.
| | - Ying Kong
- Taishan Vocational and Technical College, Tai'an 271018, PR China
| | - Na Zhang
- School of biology and brewing engineering, Taishan University, Tai'an 271018, PR China
| | - Ximei Zhang
- School of biology and brewing engineering, Taishan University, Tai'an 271018, PR China
| | - Weishuai Qin
- School of biology and brewing engineering, Taishan University, Tai'an 271018, PR China
| | - Lei Zhang
- School of biology and brewing engineering, Taishan University, Tai'an 271018, PR China
| | - Huitu Zhang
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science & Technology, Tianjin 300450, PR China
| | - Guangcheng Yang
- School of biology and brewing engineering, Taishan University, Tai'an 271018, PR China
| | - Fuping Lu
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science & Technology, Tianjin 300450, PR China.
| |
Collapse
|
3
|
Suboktagin S, Ullah MW, Sethupathy S, Keerio HA, Alabbosh KF, Khan KA, Zhu D. Microbial cell factories for bioconversion of lignin to vanillin - Challenges and opportunities: A review. Int J Biol Macromol 2025; 309:142805. [PMID: 40187450 DOI: 10.1016/j.ijbiomac.2025.142805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The bioconversion of lignin into vanillin via microbial cell factories offers a promising and sustainable route for producing high-value aromatic compounds from the abundant and underutilized byproducts of plant biomass. This review comprehensively explores the synthesis, structural characteristics, and diverse industrial applications of lignin, while addressing the inherent challenges posed by its complex structure in bioconversion processes. It examines the potential of microbial cell factories for lignin degradation, emphasizing the latest advancements in genetic engineering and metabolic optimization strategies that enhance microbial efficiency in lignin degradation and vanillin biosynthesis. It further assesses the economic feasibility of lignin-to-vanillin conversion by discussing key factors influencing cost-effectiveness and scalability, highlighting the transformative potential for producing high-value aromatic compounds in an environmentally sustainable manner. The review also highlights ongoing research efforts to develop robust microbial strains and optimize metabolic pathways for improved vanillin yield. By integrating multidisciplinary approaches, this review highlights the transformative potential of microbial cell factories to valorize lignin, offering a sustainable pathway for the production of vanillin and related aromatic compounds.
Collapse
Affiliation(s)
- Sultan Suboktagin
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Sivasamy Sethupathy
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hareef Ahmed Keerio
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products (CBRP), King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
4
|
Pullen R, Decker SR, Subramanian V, Adler MJ, Tobias AV, Perisin M, Sund CJ, Servinsky MD, Kozlowski MT. Considerations for Domestication of Novel Strains of Filamentous Fungi. ACS Synth Biol 2025; 14:343-362. [PMID: 39883596 PMCID: PMC11852223 DOI: 10.1021/acssynbio.4c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Fungi, especially filamentous fungi, are a relatively understudied, biotechnologically useful resource with incredible potential for commercial applications. These multicellular eukaryotic organisms have long been exploited for their natural production of useful commodity chemicals and proteins such as enzymes used in starch processing, detergents, food and feed production, pulping and paper making and biofuels production. The ability of filamentous fungi to use a wide range of feedstocks is another key advantage. As chassis organisms, filamentous fungi can express cellular machinery, and metabolic and signal transduction pathways from both prokaryotic and eukaryotic origins. Their genomes abound with novel genetic elements and metabolic processes that can be harnessed for biotechnology applications. Synthetic biology tools are becoming inexpensive, modular, and expansive while systems biology is beginning to provide the level of understanding required to design increasingly complex synthetic systems. This review covers the challenges of working in filamentous fungi and offers a perspective on the approaches needed to exploit fungi as microbial cell factories.
Collapse
Affiliation(s)
- Randi
M. Pullen
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Stephen R. Decker
- National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | | | - Meaghan J. Adler
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Alexander V. Tobias
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Matthew Perisin
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Christian J. Sund
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Matthew D. Servinsky
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Mark T. Kozlowski
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| |
Collapse
|
5
|
Tominaga M, Shima Y, Nozaki K, Ito Y, Someda M, Shoya Y, Hashii N, Obata C, Matsumoto-Kitano M, Suematsu K, Matsukawa T, Hosoya K, Hashiba N, Kondo A, Ishii J. Designing strong inducible synthetic promoters in yeasts. Nat Commun 2024; 15:10653. [PMID: 39702268 PMCID: PMC11659477 DOI: 10.1038/s41467-024-54865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Inducible promoters are essential for precise control of target gene expression in synthetic biological systems. However, engineering eukaryotic promoters is often more challenging than engineering prokaryotic promoters due to their greater mechanistic complexity. In this study, we describe a simple and reliable approach for constructing strongly inducible synthetic promoters with minimum leakiness in yeasts. The results indicate that the leakiness of yeast-inducible synthetic promoters is primarily the result of cryptic transcriptional activation of heterologous sequences that may be avoided by appropriate insulation and operator mutagenesis. Our promoter design approach has successfully generated robust, inducible promoters that achieve a > 103-fold induction in reporter gene expression. The utility of these promoters is demonstrated by using them to produce various biologics with titers up to 2 g/L, including antigens designed to raise specific antibodies against a SARS-CoV-2 omicron variant through chicken immunization.
Collapse
Affiliation(s)
- Masahiro Tominaga
- Engineering Biology Research Center, Kobe University, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Yoko Shima
- Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Kenta Nozaki
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Yoichiro Ito
- Engineering Biology Research Center, Kobe University, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | | | - Yuji Shoya
- Pharma Foods International Co. Ltd., Kyoto, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Chihiro Obata
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | | | - Kohei Suematsu
- Engineering Biology Research Center, Kobe University, Kobe, Japan
| | | | - Keita Hosoya
- Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Noriko Hashiba
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
- Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, Kobe, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Jun Ishii
- Engineering Biology Research Center, Kobe University, Kobe, Japan.
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.
| |
Collapse
|
6
|
Wang XT, Tang XN, Zhang YW, Guo YQ, Yao Y, Li RM, Wang YJ, Liu J, Guo JC. Promoter of Cassava MeAHL31 Responds to Diverse Abiotic Stresses and Hormone Signals in Transgenic Arabidopsis. Int J Mol Sci 2024; 25:7714. [PMID: 39062957 PMCID: PMC11276720 DOI: 10.3390/ijms25147714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The AT-hook motif nuclear-localized (AHL) family is pivotal for the abiotic stress response in plants. However, the function of the cassava AHL genes has not been elucidated. Promoters, as important regulatory elements of gene expression, play a crucial role in stress resistance. In this study, the promoter of the cassava MeAHL31 gene was cloned. The MeAHL31 protein was localized to the cytoplasm and the nucleus. qRT-PCR analysis revealed that the MeAHL31 gene was expressed in almost all tissues tested, and the expression in tuber roots was 321.3 times higher than that in petioles. Promoter analysis showed that the MeAHL31 promoter contains drought, methyl jasmonate (MeJA), abscisic acid (ABA), and gibberellin (GA) cis-acting elements. Expression analysis indicated that the MeAHL31 gene is dramatically affected by treatments with salt, drought, MeJA, ABA, and GA3. Histochemical staining in the proMeAHL31-GUS transgenic Arabidopsis corroborated that the GUS staining was found in most tissues and organs, excluding seeds. Beta-glucuronidase (GUS) activity assays showed that the activities in the proMeAHL31-GUS transgenic Arabidopsis were enhanced by different concentrations of NaCl, mannitol (for simulating drought), and MeJA treatments. The integrated findings suggest that the MeAHL31 promoter responds to the abiotic stresses of salt and drought, and its activity is regulated by the MeJA hormone signal.
Collapse
Affiliation(s)
- Xiao-Tong Wang
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-T.W.); (X.-N.T.); (Y.-W.Z.); (Y.-Q.G.)
| | - Xiang-Ning Tang
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-T.W.); (X.-N.T.); (Y.-W.Z.); (Y.-Q.G.)
| | - Ya-Wen Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-T.W.); (X.-N.T.); (Y.-W.Z.); (Y.-Q.G.)
| | - Yu-Qiang Guo
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-T.W.); (X.-N.T.); (Y.-W.Z.); (Y.-Q.G.)
| | - Yuan Yao
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (R.-M.L.); (Y.-J.W.)
| | - Rui-Mei Li
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (R.-M.L.); (Y.-J.W.)
| | - Ya-Jie Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (R.-M.L.); (Y.-J.W.)
| | - Jiao Liu
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (R.-M.L.); (Y.-J.W.)
| | - Jian-Chun Guo
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (R.-M.L.); (Y.-J.W.)
| |
Collapse
|
7
|
Zhou C, Yang G, Meng P, Qin W, Li Y, Lin Z, Hui W, Zhang H, Lu F. Identification and engineering of the aprE regulatory region and relevant regulatory proteins in Bacillus licheniformis 2709. Enzyme Microb Technol 2024; 172:110310. [PMID: 37925770 DOI: 10.1016/j.enzmictec.2023.110310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/01/2023] [Accepted: 08/27/2023] [Indexed: 11/07/2023]
Abstract
Bacillus licheniformis 2709 is the main industrial producer of alkaline protease (AprE), but its biosynthesis is strictly controlled by a highly sophisticated transcriptional network. In this study, the UP elements of aprE located 74-98, 98-119 and 140-340 bp upstream of the transcriptional start site (TSS) were identified, which presented obvious effects on the transcription of aprE. To further analyze the transcriptional mechanism, the specific proteins binding to the approximately 500-bp DNA sequences were subsequently captured by reverse-chromatin immunoprecipitation (reverse-ChIP) and DNA pull-down (DPD) assays, which captured the transcriptional factors CggR, FruR, and YhcZ. The study demonstrated that CggR, FruR and YhcZ had no significant effect on cell growth and aprE expression. Then, aprE expression was significantly enhanced by deleting a potential negative regulatory factor binding site in the genome. The AprE enzyme activity in shake flasks of the genomic mutant BL ∆1 was 47% higher than in the original strain, while the aprE transcription level increased 3.16 times. The protocol established in this study provides a valuable reference for the high-level production of proteins in other Bacillus species. At the same time, it will help reveal the molecular mechanism of the transcriptional regulatory network of aprE and provide important theoretical guidance for further enhancing the yield of AprE.
Collapse
Affiliation(s)
- Cuixia Zhou
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China; Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Guangcheng Yang
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China.
| | - Panpan Meng
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Weishuai Qin
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Yanyan Li
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Zhenxian Lin
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Wei Hui
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Huitu Zhang
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Fuping Lu
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China.
| |
Collapse
|
8
|
Bartolo-Aguilar Y, Chávez-Cabrera C, Flores-Cotera LB, Badillo-Corona JA, Oliver-Salvador C, Marsch R. The potential of cold-shock promoters for the expression of recombinant proteins in microbes and mammalian cells. J Genet Eng Biotechnol 2022; 20:173. [PMID: 36580173 PMCID: PMC9800685 DOI: 10.1186/s43141-022-00455-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Low-temperature expression of recombinant proteins may be advantageous to support their proper folding and preserve bioactivity. The generation of expression vectors regulated under cold conditions can improve the expression of some target proteins that are difficult to express in different expression systems. The cspA encodes the major cold-shock protein from Escherichia coli (CspA). The promoter of cspA has been widely used to develop cold shock-inducible expression platforms in E. coli. Moreover, it is often necessary to employ expression systems other than bacteria, particularly when recombinant proteins require complex post-translational modifications. Currently, there are no commercial platforms available for expressing target genes by cold shock in eukaryotic cells. Consequently, genetic elements that respond to cold shock offer the possibility of developing novel cold-inducible expression platforms, particularly suitable for yeasts, and mammalian cells. CONCLUSIONS This review covers the importance of the cellular response to low temperatures and the prospective use of cold-sensitive promoters to direct the expression of recombinant proteins. This concept may contribute to renewing interest in applying white technologies to produce recombinant proteins that are difficult to express.
Collapse
Affiliation(s)
- Yaneth Bartolo-Aguilar
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Cipriano Chávez-Cabrera
- Colegio de Estudios Científicos y Tecnológicos del Estado de Michoacán, CECyTE Michoacán, Héroes de la Revolución S/N, Col. Centro, 61880, Churumuco de Morelos, Michoacán, Mexico.
| | - Luis Bernardo Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Jesús Agustín Badillo-Corona
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Carmen Oliver-Salvador
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Rodolfo Marsch
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| |
Collapse
|
9
|
Zhang Y, Bailey TS, Kubiak AM, Lambin P, Theys J. Heterologous Gene Regulation in Clostridia: Rationally Designed Gene Regulation for Industrial and Medical Applications. ACS Synth Biol 2022; 11:3817-3828. [PMID: 36265075 PMCID: PMC9680021 DOI: 10.1021/acssynbio.2c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several species from the Clostridium genus show promise as industrial solvent producers and cancer therapeutic delivery vehicles. Previous development of shuttle plasmids and genome editing tools has aided the study of these species and enabled their exploitation in industrial and medical applications. Nevertheless, the precise control of gene expression is still hindered by the limited range of characterized promoters. To address this, libraries of promoters (native and synthetic), 5' UTRs, and alternative start codons were constructed. These constructs were tested in Escherichia coli K-12, Clostridium sporogenes NCIMB 10696, and Clostridium butyricum DSM 10702, using β-glucuronidase (gusA) as a gene reporter. Promoter activity was corroborated using a second gene reporter, nitroreductase (nmeNTR) from Neisseria meningitides. A strong correlation was observed between the two reporters. In C. sporogenes and C. butyricum, respectively, changes in GusA activity between the weakest and strongest expressing levels were 129-fold and 78-fold. Similar results were obtained with the nmeNTR. Using the GusA reporter, translation initiation from six alternative (non-AUG) start codons was measured in E. coli, C. sporogenes, and C. butyricum. Clearly, species-specific differences between clostridia and E. coli in translation initiation were observed, and the performance of the start codons was influenced by the upstream 5' UTR sequence. These results highlight a new opportunity for gene control in recombinant clostridia. To demonstrate the value of these results, expression of the sacB gene from Bacillus subtilis was optimized for use as a novel negative selection marker in C. butyricum. In summary, these results indicate improvements in the understanding of heterologous gene regulation in Clostridium species and E. coli cloning strains. This new knowledge can be utilized for rationally designed gene regulation in Clostridium-mediated industrial and medical applications, as well as fundamental research into the biology of Clostridium species.
Collapse
Affiliation(s)
- Yanchao Zhang
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands,
| | - Tom S. Bailey
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aleksandra M. Kubiak
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands,Exomnis
Biotech BV, Oxfordlaan
55, 6229 EV Maastricht, The Netherlands
| | - Philippe Lambin
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jan Theys
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
10
|
Promoter of Vegetable Soybean GmTIP1;6 Responds to Diverse Abiotic Stresses and Hormone Signals in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms232012684. [PMID: 36293538 PMCID: PMC9604487 DOI: 10.3390/ijms232012684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Tonoplast intrinsic proteins (TIPs), a sub-family of aquaporins (AQPs), are known to play important roles in plant abiotic stress responses. However, evidence for the promoters of TIPs involvement in abiotic stress processes remains scarce. In this study, the promoter of the vegetable soybean GmTIP1;6 gene, which had the highest similarity to TIP1-type AQPs from other plants, was cloned. Expression pattern analyses indicated that the GmTIP1;6 gene was dramatically induced by drought, salt, abscisic acid (ABA), and methyl jasmonate (MeJA) stimuli. Promoter analyses revealed that the GmTIP1;6 promoter contained drought, ABA, and MeJA cis-acting elements. Histochemical staining of the GmTIP1;6 promoter in transgenic Arabidopsis corroborated that it was strongly expressed in the vascular bundles of leaves, stems, and roots. Beta-glucuronidase (GUS) activity assays showed that the activities of the GmTIP1;6 promoter were enhanced by different concentrations of polyethylene glycol 6000 (PEG 6000), NaCl, ABA, and MEJA treatments. Integrating these results revealed that the GmTIP1;6 promoter could be applied for improving the tolerance to abiotic stresses of the transgenic plants by promoting the expression of vegetable soybean AQPs.
Collapse
|
11
|
Gao L, She M, Shi J, Cai D, Wang D, Xiong M, Shen G, Gao J, Zhang M, Yang Z, Chen S. Enhanced production of iturin A by strengthening fatty acid synthesis modules in Bacillus amyloliquefaciens. Front Bioeng Biotechnol 2022; 10:974460. [PMID: 36159706 PMCID: PMC9500472 DOI: 10.3389/fbioe.2022.974460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022] Open
Abstract
Iturin A is a biosurfactant with various applications, and its low synthesis capability limits its production and application development. Fatty acids play a critical role in cellular metabolism and target product syntheses, and the relationship between fatty acid supplies and iturin A synthesis is unclear. In this study, we attempted to increase iturin A production via strengthening fatty acid synthesis pathways in Bacillus amyloliquefaciens. First, acetyl-CoA carboxylase AccAD and ACP S-malonyltransferase fabD were overexpressed via promoter replacement, and iturin A yield was increased to 1.36 g/L by 2.78-fold in the resultant strain HZ-ADF1. Then, soluble acyl-ACP thioesterase derived from Escherichia coli showed the best performance for iturin A synthesis, as compared to those derived from B. amyloliquefaciens and Corynebacterium glutamicum, the introduction of which in HZ-ADF1 further led to a 57.35% increase of iturin A yield, reaching 2.14 g/L. Finally, long-chain fatty acid-CoA ligase LcfA was overexpressed in HZ-ADFT to attain the final strain HZ-ADFTL2, and iturin A yield reached 2.96 g/L, increasing by 6.59-fold, and the contents of fatty acids were enhanced significantly in HZ-ADFTL2, as compared to the original strain HZ-12. Taken together, our results implied that strengthening fatty acid supplies was an efficient approach for iturin A production, and this research provided a promising strain for industrial production of iturin A.
Collapse
Affiliation(s)
- Lin Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Menglin She
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Jiao Shi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Dong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Min Xiong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Guoming Shen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jiaming Gao
- Hubei Corporation of China National Tobacco Corporation, Wuhan, China
| | - Min Zhang
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan, China
| | - Zhifan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
- *Correspondence: Shouwen Chen, ; Zhifan Yang,
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan, China
- *Correspondence: Shouwen Chen, ; Zhifan Yang,
| |
Collapse
|
12
|
He BT, Liu ZH, Li BZ, Yuan YJ. Advances in biosynthesis of scopoletin. Microb Cell Fact 2022; 21:152. [PMID: 35918699 PMCID: PMC9344664 DOI: 10.1186/s12934-022-01865-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022] Open
Abstract
Scopoletin is a typical example of coumarins, which can be produced in plants. Scopoletin acts as a precursor for pharmaceutical and health care products, and also possesses promising biological properties, including antibacterial, anti-tubercular, anti-hypertensive, anti-inflammatory, anti-diabetic, and anti-hyperuricemic activity. Despite the potential benefits, the production of scopoletin using traditional extraction processes from plants is unsatisfactory. In recent years, synthetic biology has developed rapidly and enabled the effective construction of microbial cell factories for production of high value-added chemicals. Herein, this review summarizes the progress of scopoletin biosynthesis in artificial microbial cell factories. The two main pathways of scopoletin biosynthesis are summarized firstly. Then, synthetic microbial cell factories are reviewed as an attractive improvement strategy for biosynthesis. Emerging techniques in synthetic biology and metabolic engineering are introduced as innovative tools for the efficient synthesis of scopoletin. This review showcases the potential of biosynthesis of scopoletin in artificial microbial cell factories.
Collapse
Affiliation(s)
- Bo-Tao He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| |
Collapse
|
13
|
Expanding the promoter toolbox for metabolic engineering of methylotrophic yeasts. Appl Microbiol Biotechnol 2022; 106:3449-3464. [PMID: 35538374 DOI: 10.1007/s00253-022-11948-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/31/2023]
Abstract
Methylotrophic yeasts have been widely recognized as a promising host for production of recombinant proteins and value-added chemicals. Promoters for controlled gene expression are critical for construction of efficient methylotrophic yeasts cell factories. Here, we summarized recent advances in characterizing and engineering promoters in methylotrophic yeasts, such as Komagataella phaffii and Ogataea polymorpha. Constitutive and inducible promoters controlled by methanol or other inducers/repressors were introduced to demonstrate their applications in production of proteins and chemicals. Furthermore, efforts of promoter engineering, including site-directed mutagenesis, hybrid promoter, and transcription factor regulation to expand the promoter toolbox were also summarized. This mini-review also provides useful information on promoters for the application of metabolic engineering in methylotrophic yeasts. KEY POINTS: • The characteristics of six methylotrophic yeasts and their promoters are described. • The applications of Komagataella phaffii and Ogataea polymorpha in metabolic engineeringare expounded. • Three promoter engineering strategies are introduced in order to expand the promoter toolbox.
Collapse
|
14
|
Lyu X, Lyu Y, Yu H, Chen W, Ye L, Yang R. Biotechnological advances for improving natural pigment production: a state-of-the-art review. BIORESOUR BIOPROCESS 2022; 9:8. [PMID: 38647847 PMCID: PMC10992905 DOI: 10.1186/s40643-022-00497-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In current years, natural pigments are facing a fast-growing global market due to the increase of people's awareness of health and the discovery of novel pharmacological effects of various natural pigments, e.g., carotenoids, flavonoids, and curcuminoids. However, the traditional production approaches are source-dependent and generally subject to the low contents of target pigment compounds. In order to scale-up industrial production, many efforts have been devoted to increasing pigment production from natural producers, via development of both in vitro plant cell/tissue culture systems, as well as optimization of microbial cultivation approaches. Moreover, synthetic biology has opened the door for heterologous biosynthesis of pigments via design and re-construction of novel biological modules as well as biological systems in bio-platforms. In this review, the innovative methods and strategies for optimization and engineering of both native and heterologous producers of natural pigments are comprehensively summarized. Current progress in the production of several representative high-value natural pigments is also presented; and the remaining challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - WeiNing Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
15
|
Liu L, Chen Y, Yu S, Chen J, Zhou J. Simultaneous transformation of five vectors in Gluconobacter oxydans. Plasmid 2021; 117:102588. [PMID: 34256060 DOI: 10.1016/j.plasmid.2021.102588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
Gluconobacter oxydans is an obligate Gram-negative bacterium that belongs to the family Acetobacteraceae. It is one of the most frequently used microorganisms in industrial biotechnology to produce chemicals related to incomplete oxidation. However, the fine-tuning of G. oxydans is hampered by the lack of efficient genetic tools to enable sophisticated metabolic manipulations. Thus, a series of shuttle vectors for G. oxydans inspired by a series of wild-type plasmids in different G. oxydans strains were constructed. Fifteen shuttle vectors were employed to express mCherry in G. oxydans WSH-003 using the replication origin of these wild-type plasmids. Among them, the intensity of fluorescent proteins expressed by p15-K-mCherry was about 10 times that of fluorescent proteins expressed by p5-K-mCherry. Quantitative real-time polymerase chain reaction showed that the relative copy number of p15-K-mCherry reached 19 and had high stability. In contrast, some of the plasmids had a relative copy number of less than 10. The co-expression of multiple shuttle vectors revealed five shuttle vectors that could be transformed into G. oxydans WSH-003 and could express five different fluorescent proteins. The shuttle vectors will facilitate genetic operations for Gluconobacter strains to produce useful compounds more efficiently.
Collapse
Affiliation(s)
- Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yue Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
16
|
Adebami GE, Kuila A, Ajunwa OM, Fasiku SA, Asemoloye MD. Genetics and metabolic engineering of yeast strains for efficient ethanol production. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Arindam Kuila
- Department of Bioscience and Biotechnology Banasthali University Vanasthali India
| | - Obinna M. Ajunwa
- Department of Microbiology Modibbo Adama University of Technology Yola Nigeria
| | - Samuel A. Fasiku
- Department of Biological Sciences Ajayi Crowther University Oyo Nigeria
| | - Michael D. Asemoloye
- Department of Pharmaceutical Science and Technology Tianjin University Tianjin China
| |
Collapse
|
17
|
Biosensor-Based Multigene Pathway Optimization for Enhancing the Production of Glycolate. Appl Environ Microbiol 2021; 87:e0011321. [PMID: 33837017 DOI: 10.1128/aem.00113-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Glycolate is widely used in industry, especially in the fields of chemical cleaning, cosmetics, and medical materials, and has broad market prospects for the future. Recent advances in metabolic engineering and synthetic biology have significantly improved the titer and yield of glycolate. However, an expensive inducer was used in previous studies, which is not feasible for use in large-scale industrial fermentations. To constitutively biosynthesize glycolate, the expression level of each gene of the glycolate synthetic pathway needs to be systemically optimized. The main challenge of multigene pathway optimization is being able to select or screen the optimum strain from the randomly assembled library by an efficient high-throughput method within a short time. To overcome these challenges, we firstly established a glycolate-responsive biosensor and developed agar plate- and 48-well deep-well plate-scale high-throughput screening methods for the rapid screening of superior glycolate producers from a large library. A total of 22 gradient-strength promoter-5'-untranslated region (UTR) complexes were randomly cloned upstream of the genes of the glycolate synthetic pathway, generating a large random assembled library. After rounds of screening, the optimum strain was obtained from 6 × 105 transformants in a week, and it achieved a titer of 40.9 ± 3.7 g/liter glycolate in a 5-liter bioreactor. Furthermore, high expression levels of the enzymes YcdW and GltA were found to promote glycolate production, whereas AceA has no obvious impact on glycolate production. Overall, the glycolate biosensor-based pathway optimization strategy presented in this work provides a paradigm for other multigene pathway optimizations. IMPORTANCE The use of strong promoters, such as pTrc and T7, to control gene expression not only needs the addition of expensive inducers but also results in excessive protein expression that may result in unbalanced metabolic flux and the waste of cellular building blocks and energy. To balance the metabolic flux of glycolate biosynthesis, the expression level of each gene needs to be systemically optimized in a constitutive manner. However, the lack of high-throughput screening methods restricted glycolate synthetic pathway optimization. Our work firstly established a glycolate-response biosensor, and agar plate- and 48-well plate-scale high-throughput screening methods were then developed for the rapid screening of optimum pathways from a large library. Finally, we obtained a glycolate-producing strain with good biosynthetic performance, and the use of the expensive inducer isopropyl-β-d-thiogalactopyranoside (IPTG) was avoided, which broadens our understanding of the mechanism of glycolate synthesis.
Collapse
|
18
|
Ma Z, Hu Y, Liao Z, Xu J, Xu X, Bechthold A, Yu X. Cloning and Overexpression of the Toy Cluster for Titer Improvement of Toyocamycin in Streptomyces diastatochromogenes. Front Microbiol 2020; 11:2074. [PMID: 32983052 PMCID: PMC7492574 DOI: 10.3389/fmicb.2020.02074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023] Open
Abstract
The nucleoside antibiotic toyocamycin (TM) is a potential fungicide that can control plant diseases, and it has become an attractive target for research. Streptomyces diastatochromogenes 1628, a TM-producing strain, was isolated by our laboratory and was considered to be a potent industrial producer of TM. Recently, the putative TM biosynthetic gene cluster (toy cluster) in S. diastatochromogenes 1628 was found by genome sequencing. In this study, the role of toy cluster for TM biosynthesis in S. diastatochromogenes 1628 was investigated by heterologous expression, deletion, and complementation. The extract of the recombinant strain S. albusJ1074-TC harboring a copy of toy cluster produced TM as shown by HPLC analysis. The Δcluster mutant completely lost its ability to produce TM. TM production in the complemented strain was restored to a level comparable to that of the wild-type strain. These results confirmed that the toy cluster is responsible for TM biosynthesis. Moreover, the introduction of an extra copy of the toy cluster into S. diastatochromogenes 1628 led to onefold increase in TM production (312.9 mg/l vs. 152.1 mg/l) as well as the transcription of all toy genes. The toy gene cluster was engineered in which the native promoter of toyA gene, toyM gene, toyBD operon, and toyEI operon was, respectively, replaced by permE∗ or SPL57. To further improve TM production, the engineered toy gene cluster was, respectively, introduced and overexpressed in S. diastatochromogenes 1628 to generate recombinant strains S. diastatochromogenes 1628-EC and 1628-SC. After 84 h, S. diastatochromogenes 1628-EC and 1628-SC produced 456.5 mg/l and 638.9 mg/l TM, respectively, which is an increase of 2- and 3.2-fold compared with the wild-type strain.
Collapse
Affiliation(s)
- Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yefeng Hu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zhijun Liao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jie Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xianhao Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Andreas Bechthold
- Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
19
|
Abstract
The correct mapping of promoter elements is a crucial step in microbial genomics. Also, when combining new DNA elements into synthetic sequences, predicting the potential generation of new promoter sequences is critical. Over the last years, many bioinformatics tools have been created to allow users to predict promoter elements in a sequence or genome of interest. Here, we assess the predictive power of some of the main prediction tools available using well-defined promoter data sets. Using Escherichia coli as a model organism, we demonstrated that while some tools are biased toward AT-rich sequences, others are very efficient in identifying real promoters with low false-negative rates. We hope the potentials and limitations presented here will help the microbiology community to choose promoter prediction tools among many available alternatives. The promoter region is a key element required for the production of RNA in bacteria. While new high-throughput technology allows massively parallel mapping of promoter elements, we still mainly rely on bioinformatics tools to predict such elements in bacterial genomes. Additionally, despite many different prediction tools having become popular to identify bacterial promoters, no systematic comparison of such tools has been performed. Here, we performed a systematic comparison between several widely used promoter prediction tools (BPROM, bTSSfinder, BacPP, CNNProm, IBBP, Virtual Footprint, iPro70-FMWin, 70ProPred, iPromoter-2L, and MULTiPly) using well-defined sequence data sets and standardized metrics to determine how well those tools performed related to each other. For this, we used data sets of experimentally validated promoters from Escherichia coli and a control data set composed of randomly generated sequences with similar nucleotide distributions. We compared the performance of the tools using metrics such as specificity, sensitivity, accuracy, and Matthews correlation coefficient (MCC). We show that the widely used BPROM presented the worse performance among the compared tools, while four tools (CNNProm, iPro70-FMWin, 70ProPred, and iPromoter-2L) offered high predictive power. Of these tools, iPro70-FMWin exhibited the best results for most of the metrics used. We present here some potentials and limitations of available tools, and we hope that future work can build upon our effort to systematically characterize this useful class of bioinformatics tools. IMPORTANCE The correct mapping of promoter elements is a crucial step in microbial genomics. Also, when combining new DNA elements into synthetic sequences, predicting the potential generation of new promoter sequences is critical. Over the last years, many bioinformatics tools have been created to allow users to predict promoter elements in a sequence or genome of interest. Here, we assess the predictive power of some of the main prediction tools available using well-defined promoter data sets. Using Escherichia coli as a model organism, we demonstrated that while some tools are biased toward AT-rich sequences, others are very efficient in identifying real promoters with low false-negative rates. We hope the potentials and limitations presented here will help the microbiology community to choose promoter prediction tools among many available alternatives.
Collapse
|
20
|
Zhou C, Zhou H, Fang H, Ji Y, Wang H, Liu F, Zhang H, Lu F. Spo0A can efficiently enhance the expression of the alkaline protease gene aprE in Bacillus licheniformis by specifically binding to its regulatory region. Int J Biol Macromol 2020; 159:444-454. [PMID: 32437805 DOI: 10.1016/j.ijbiomac.2020.05.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
The expression of enzymes in Bacillus licheniformis, such as the valuable extracellular alkaline protease AprE, is highly regulated by a complex transcriptional regulation mechanism. Here, we found that the transcript abundance of aprE varies >343-fold in response to the supply of nutrients or to environmental challenges. To identify the underlying regulatory mechanism, the core promoter of aprE and several important upstream regulatory regions outside the promoter were firstly confirmed by 5'-RACE and mutagenesis experiments. The specific proteins that bind to the identified sequences were subsequently captured by DNA pull-down experiments, which yielded the transcriptional factors (TFs) Spo0A, CggR, FruR, YhcZ, as well as fragments of functionally unassigned proteins. Further electrophoretic mobility shift assay (EMSA) and DNase I foot-printing experiments indicated that Spo0A can directly bind to the region from -92 to -118 nucleotides upstream of the transcription start site, and the deletion of this specific region drastically decreased the production of AprE. Taken together, these results indicated that the expression of aprE was mainly regulated by the interplay between Spo0A and its cognate DNA sequence, which was successfully applied to overproduce AprE in a genetically modified host harboring three aprE expression cassettes. The DNA binding proteins may serve to increase the efficiency of transcription by creating an additional binding site for RNA polymerase. The discovery of this mechanism significantly increases our understanding of the aprE transcription mechanism, which is of great importance for AprE overproduction.
Collapse
Affiliation(s)
- Cuixia Zhou
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China; School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Huiying Zhou
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Honglei Fang
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Yizhi Ji
- Beijing Key Laboratory of Biomass Waste Resource Utilization, College of Biochemistry and Engineering, Beijing Union University, Beijing 100023, PR China
| | - Hongbin Wang
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Fufeng Liu
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Huitu Zhang
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China.
| | - Fuping Lu
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China.
| |
Collapse
|
21
|
Bhattarai K, Bastola R, Baral B. Antibiotic drug discovery: Challenges and perspectives in the light of emerging antibiotic resistance. ADVANCES IN GENETICS 2020; 105:229-292. [PMID: 32560788 DOI: 10.1016/bs.adgen.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amid a rising threat of antimicrobial resistance in a global scenario, our huge investments and high-throughput technologies injected for rejuvenating the key therapeutic scaffolds to suppress these rising superbugs has been diminishing severely. This has grasped world-wide attention, with increased consideration being given to the discovery of new chemical entities. Research has now proven that the relatively tiny and simpler microbes possess enhanced capability of generating novel and diverse chemical constituents with huge therapeutic leads. The usage of these beneficial organisms could help in producing new chemical scaffolds that govern the power to suppress the spread of obnoxious superbugs. Here in this review, we have explicitly focused on several appealing strategies employed for the generation of new chemical scaffolds. Also, efforts on providing novel insights on some of the unresolved questions in the production of metabolites, metabolic profiling and also the serendipity of getting "hit molecules" have been rigorously discussed. However, we are highly aware that biosynthetic pathway of different classes of secondary metabolites and their biosynthetic route is a vast topic, thus we have avoided discussion on this topic.
Collapse
Affiliation(s)
- Keshab Bhattarai
- University of Tübingen, Tübingen, Germany; Center for Natural and Applied Sciences (CENAS), Kathmandu, Nepal
| | - Rina Bastola
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal
| | - Bikash Baral
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal.
| |
Collapse
|
22
|
Construction and application of a dual promoter system for efficient protein production and metabolic pathway enhancement in Bacillus licheniformis. J Biotechnol 2020; 312:1-10. [DOI: 10.1016/j.jbiotec.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
|
23
|
Zhou C, Zhou H, Li D, Zhang H, Wang H, Lu F. Optimized expression and enhanced production of alkaline protease by genetically modified Bacillus licheniformis 2709. Microb Cell Fact 2020; 19:45. [PMID: 32093734 PMCID: PMC7041084 DOI: 10.1186/s12934-020-01307-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/12/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bacillus licheniformis 2709 is extensively applied as a host for the high-level production of heterologous proteins, but Bacillus cells often possess unfavorable wild-type properties, such as production of viscous materials and foam during fermentation, which seriously influenced the application in industrial fermentation. How to develop it from a soil bacterium to a super-secreting cell factory harboring less undomesticated properties always plays vital role in industrial production. Besides, the optimal expression pattern of the inducible enzymes like alkaline protease has not been optimized by comparing the transcriptional efficiency of different plasmids and genomic integration sites in B. licheniformis. RESULT Bacillus licheniformis 2709 was genetically modified by disrupting the native lchAC genes related to foaming and the eps cluster encoding the extracellular mucopolysaccharide via a markerless genome-editing method. We further optimized the expression of the alkaline protease gene (aprE) by screening the most efficient expression system among different modular plasmids and genomic loci. The results indicated that genomic expression of aprE was superior to plasmid expression and finally the transcriptional level of aprE greatly increased 1.67-fold through host optimization and chromosomal integration in the vicinity of the origin of replication, while the enzyme activity significantly improved 62.19% compared with the wild-type alkaline protease-producing strain B. licheniformis. CONCLUSION We successfully engineered an AprE high-yielding strain free of undesirable properties and its fermentation traits could be applied to bulk-production by host genetic modification and expression optimization. In summary, host optimization is an enabling technology for improving enzyme production by eliminating the harmful traits of the host and optimizing expression patterns. We believe that these strategies can be applied to improve heterologous protein expression in other Bacillus species.
Collapse
Affiliation(s)
- Cuixia Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China
| | - Huiying Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China
| | - Dengke Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China
| | - Huitu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China.
| | - Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China.
| |
Collapse
|
24
|
Ren J, Lee J, Na D. Recent advances in genetic engineering tools based on synthetic biology. J Microbiol 2020; 58:1-10. [PMID: 31898252 DOI: 10.1007/s12275-020-9334-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/19/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022]
Abstract
Genome-scale engineering is a crucial methodology to rationally regulate microbiological system operations, leading to expected biological behaviors or enhanced bioproduct yields. Over the past decade, innovative genome modification technologies have been developed for effectively regulating and manipulating genes at the genome level. Here, we discuss the current genome-scale engineering technologies used for microbial engineering. Recently developed strategies, such as clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, multiplex automated genome engineering (MAGE), promoter engineering, CRISPR-based regulations, and synthetic small regulatory RNA (sRNA)-based knockdown, are considered as powerful tools for genome-scale engineering in microbiological systems. MAGE, which modifies specific nucleotides of the genome sequence, is utilized as a genome-editing tool. Contrastingly, synthetic sRNA, CRISPRi, and CRISPRa are mainly used to regulate gene expression without modifying the genome sequence. This review introduces the recent genome-scale editing and regulating technologies and their applications in metabolic engineering.
Collapse
Affiliation(s)
- Jun Ren
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jingyu Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
25
|
Promoter engineering strategies for the overproduction of valuable metabolites in microbes. Appl Microbiol Biotechnol 2019; 103:8725-8736. [PMID: 31630238 DOI: 10.1007/s00253-019-10172-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
Promoter engineering is an enabling technology in metabolic engineering and synthetic biology. As an indispensable part of synthetic biology, the promoter is a key factor in regulating genetic circuits and in coordinating multi-gene biosynthetic pathways. In this review, we summarized the recent progresses in promoter engineering in microbes. Specifically, the endogenous promoters are firstly discussed, followed by the statement of the influence of nucleotides exchange on the strength of promoters explored by site-selective mutagenesis. We then introduced the promoter libraries with a wide range of strength, which are constructed focusing on core promoter regions and upstream activating sequences by rational designs. Finally, the application of promoter libraries in the optimization of multi-gene metabolic pathways for high-yield production of metabolites was illustrated with a couple of recent examples.
Collapse
|
26
|
Zhou S, Lyu Y, Li H, Koffas MA, Zhou J. Fine‐tuning the (2
S
)‐naringenin synthetic pathway using an iterative high‐throughput balancing strategy. Biotechnol Bioeng 2019; 116:1392-1404. [DOI: 10.1002/bit.26941] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Shenghu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxi Jiangsu China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University Wuxi Jiangsu China
| | - Yunbin Lyu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxi Jiangsu China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University Wuxi Jiangsu China
| | - Huazhong Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxi Jiangsu China
| | - Mattheos A.G. Koffas
- Department of Chemical and Biological EngineeringRensselaer Polytechnic Institute Troy New York
- Department of Biological SciencesRensselaer Polytechnic Institute Troy New York
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxi Jiangsu China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University Wuxi Jiangsu China
| |
Collapse
|
27
|
Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metab Eng 2018; 50:109-121. [DOI: 10.1016/j.ymben.2018.05.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 01/29/2023]
|
28
|
Klug D, Kehrer J, Frischknecht F, Singer M. A synthetic promoter for multi-stage expression to probe complementary functions of Plasmodium adhesins. J Cell Sci 2018; 131:jcs.210971. [PMID: 30237220 DOI: 10.1242/jcs.210971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/10/2018] [Indexed: 11/20/2022] Open
Abstract
Gene expression of malaria parasites is mediated by the apicomplexan Apetala2 (ApiAP2) transcription factor family. Different ApiAP2s control gene expression at distinct stages in the complex life cycle of the parasite, ensuring timely expression of stage-specific genes. ApiAP2s recognize short cis-regulatory elements that are enriched in the upstream/promoter region of their target genes. This should, in principle, allow the generation of 'synthetic' promoters that drive gene expression at desired stages of the Plasmodium life cycle. Here we test this concept by combining cis-regulatory elements of two genes expressed successively within the mosquito part of the life cycle. Our tailored 'synthetic' promoters, named Spooki 1.0 and Spooki 2.0, activate gene expression in early and late mosquito stages, as shown by the expression of a fluorescent reporter. We used these promoters to address the specific functionality of two related adhesins that are exclusively expressed either during the early or late mosquito stage. By modifying the expression profile of both adhesins in absence of their counterpart we were able to test for complementary functions in gliding and invasion. We discuss the possible advantages and drawbacks of our approach.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Dennis Klug
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
29
|
Horbal L, Marques F, Nadmid S, Mendes MV, Luzhetskyy A. Secondary metabolites overproduction through transcriptional gene cluster refactoring. Metab Eng 2018; 49:299-315. [DOI: 10.1016/j.ymben.2018.09.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 11/26/2022]
|
30
|
Ling M, Liu Y, Li J, Shin HD, Chen J, Du G, Liu L. Combinatorial promoter engineering of glucokinase and phosphoglucoisomerase for improved N-acetylglucosamine production in Bacillus subtilis. BIORESOURCE TECHNOLOGY 2017; 245:1093-1102. [PMID: 28946392 DOI: 10.1016/j.biortech.2017.09.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
In previous work, a recombinant Bacillus subtilis strain was successfully constructed for microbial production of N-acetylglucosamine (GlcNAc). In this study, GlcNAc titer was further improved by combinatorial promoter engineering of key genes glck encoding glucokinase and pgi encoding phosphoglucoisomerase. First, three promoters including constitutive promoter P43, xylose inducible promoter PxylA, and isopropyl-β-d-thiogalactoside inducible Pgrac were used to replace the native promoters of glcK and pgi, yielding 12 recombinant strains. It was found that when glcK and pgi were both under the control of promoter PxylA, the highest GlcNAc titer in 3-L fed-batch bioreactor reached 35.12g/L, which was 52.6% higher than that of the initial host. Next, the transcriptional levels of the related genes in glycolysis, GlcNAc synthesis pathway, peptidoglycan synthesis pathway, and pentose phosphate pathway were investigated by quantitative real-time PCR analysis. Fine-tuning upper GlcNAc synthesis pathway by combinatorial promoter substitution significantly enhanced GlcNAc production in engineered B. subtilis.
Collapse
Affiliation(s)
- Meixi Ling
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
31
|
Yan Q, Fong SS. Study of in vitro transcriptional binding effects and noise using constitutive promoters combined with UP element sequences in Escherichia coli. J Biol Eng 2017; 11:33. [PMID: 29118850 PMCID: PMC5664571 DOI: 10.1186/s13036-017-0075-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND UP elements (upstream element) are DNA sequences upstream of a promoter that interact with the α-subunit of RNA polymerase (RNAP) and can affect transcription by altering the binding RNAP to DNA. However, details of UP element and binding affinity effects on transcriptional strength are unclear. RESULTS Here, we investigated the effects of UP element sequences on gene transcription, binding affinity, and gene expression noise. Addition of UP elements resulted in increased gene expression (maximum 95.7-fold increase) and reduced gene expression noise (8.51-fold reduction). Half UP element sequences at the proximal subsite has little effect on transcriptional strength despite increasing binding affinity by 2.28-fold. In vitro binding assays were used to determine dissociation constants (Kd) and in the in vitro system, the full range of gene expression occurs in a small range of dissociation constants (25 nM < Kd < 45 nM) indicating that transcriptional strength is highly sensitive to small changes in binding affinity. CONCLUSIONS These results demonstrate the utility of UP elements and provide mechanistic insight into the functional relationship between binding affinity and transcription. Given the centrality of gene expression via transcription to biology, additional insight into transcriptional mechanisms can foster both fundamental and applied research. In particular, knowledge of the DNA sequence-specific effects on expression strength can aid in promoter engineering for different organisms and for metabolic engineering to balance pathway fluxes.
Collapse
Affiliation(s)
- Qiang Yan
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, West Hall, Room 422, 601 West Main Street, P.O. Box 843028, Richmond, VA 23284-3028 USA
| | - Stephen S. Fong
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, West Hall, Room 422, 601 West Main Street, P.O. Box 843028, Richmond, VA 23284-3028 USA
- Center for the study of Biological Complexity, Virginia Commonwealth University, Richmond, VA USA
| |
Collapse
|
32
|
Zhou S, Ding R, Chen J, Du G, Li H, Zhou J. Obtaining a Panel of Cascade Promoter-5'-UTR Complexes in Escherichia coli. ACS Synth Biol 2017; 6:1065-1075. [PMID: 28252945 DOI: 10.1021/acssynbio.7b00006] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A promoter is one of the most important and basic tools used to achieve diverse synthetic biology goals. Escherichia coli is one of the most commonly used model organisms in synthetic biology to produce useful target products and establish complicated regulation networks. During the fine-tuning of metabolic or regulation networks, the limited number of well-characterized inducible promoters has made implementing complicated strategies difficult. In this study, 104 native promoter-5'-UTR complexes (PUTR) from E. coli were screened and characterized based on a series of RNA-seq data. The strength of the 104 PUTRs varied from 0.007% to 4630% of that of the PBAD promoter in the transcriptional level and from 0.1% to 137% in the translational level. To further upregulate gene expression, a series of combinatorial PUTRs and cascade PUTRs were constructed by integrating strong transcriptional promoters with strong translational 5'-UTRs. Finally, two combinatorial PUTRs (PssrA-UTRrpsT and PdnaKJ-UTRrpsT) and two cascade PUTRs (PUTRssrA-PUTRinfC-rplT and PUTRalsRBACE-PUTRinfC-rplT) were identified as having the highest activity, with expression outputs of 170%, 137%, 409%, and 203% of that of the PBAD promoter, respectively. These engineered PUTRs are stable for the expression of different genes, such as the red fluorescence protein gene and the β-galactosidase gene. These results show that the PUTRs characterized and constructed in this study may be useful as a plug-and-play synthetic biology toolbox to achieve complicated metabolic engineering goals in fine-tuning metabolic networks to produce target products.
Collapse
Affiliation(s)
- Shenghu Zhou
- Key Laboratory
of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, and ‡National Engineering Laboratory for Cereal Fermentation
Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Renpeng Ding
- Key Laboratory
of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, and ‡National Engineering Laboratory for Cereal Fermentation
Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory
of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, and ‡National Engineering Laboratory for Cereal Fermentation
Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory
of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, and ‡National Engineering Laboratory for Cereal Fermentation
Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huazhong Li
- Key Laboratory
of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, and ‡National Engineering Laboratory for Cereal Fermentation
Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory
of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, and ‡National Engineering Laboratory for Cereal Fermentation
Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|