1
|
Alidoosti F, Giyahchi M, Moien S, Moghimi H. Unlocking the potential of soil microbial communities for bioremediation of emerging organic contaminants: omics-based approaches. Microb Cell Fact 2024; 23:210. [PMID: 39054471 PMCID: PMC11271216 DOI: 10.1186/s12934-024-02485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
The remediation of emerging contaminants presents a pressing environmental challenge, necessitating innovative approaches for effective mitigation. This review article delves into the untapped potential of soil microbial communities in the bioremediation of emerging contaminants. Bioremediation, while a promising method, often proves time-consuming and requires a deep comprehension of microbial intricacies for enhancement. Given the challenges presented by the inability to culture many of these microorganisms, conventional methods are inadequate for achieving this goal. While omics-based methods provide an innovative approach to understanding the fundamental aspects, processes, and connections among microorganisms that are essential for improving bioremediation strategies. By exploring the latest advancements in omics technologies, this review aims to shed light on how these approaches can unlock the hidden capabilities of soil microbial communities, paving the way for more efficient and sustainable remediation solutions.
Collapse
Affiliation(s)
- Fatemeh Alidoosti
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Minoo Giyahchi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Shabnam Moien
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Laux M, Ciapina LP, de Carvalho FM, Gerber AL, Guimarães APC, Apolinário M, Paes JES, Jonck CR, de Vasconcelos ATR. Living in mangroves: a syntrophic scenario unveiling a resourceful microbiome. BMC Microbiol 2024; 24:228. [PMID: 38943070 PMCID: PMC11212195 DOI: 10.1186/s12866-024-03390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Mangroves are complex and dynamic coastal ecosystems under frequent fluctuations in physicochemical conditions related to the tidal regime. The frequent variation in organic matter concentration, nutrients, and oxygen availability, among other factors, drives the microbial community composition, favoring syntrophic populations harboring a rich and diverse, stress-driven metabolism. Mangroves are known for their carbon sequestration capability, and their complex and integrated metabolic activity is essential to global biogeochemical cycling. Here, we present a metabolic reconstruction based on the genomic functional capability and flux profile between sympatric MAGs co-assembled from a tropical restored mangrove. RESULTS Eleven MAGs were assigned to six Bacteria phyla, all distantly related to the available reference genomes. The metabolic reconstruction showed several potential coupling points and shortcuts between complementary routes and predicted syntrophic interactions. Two metabolic scenarios were drawn: a heterotrophic scenario with plenty of carbon sources and an autotrophic scenario with limited carbon sources or under inhibitory conditions. The sulfur cycle was dominant over methane and the major pathways identified were acetate oxidation coupled to sulfate reduction, heterotrophic acetogenesis coupled to carbohydrate catabolism, ethanol production and carbon fixation. Interestingly, several gene sets and metabolic routes similar to those described for wastewater and organic effluent treatment processes were identified. CONCLUSION The mangrove microbial community metabolic reconstruction reflected the flexibility required to survive in fluctuating environments as the microhabitats created by the tidal regime in mangrove sediments. The metabolic components related to wastewater and organic effluent treatment processes identified strongly suggest that mangrove microbial communities could represent a resourceful microbial model for biotechnological applications that occur naturally in the environment.
Collapse
Affiliation(s)
- Marcele Laux
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Luciane Prioli Ciapina
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil.
| | - Fabíola Marques de Carvalho
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Ana Paula C Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Moacir Apolinário
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Jorge Eduardo Santos Paes
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Célio Roberto Jonck
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Ana Tereza R de Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| |
Collapse
|
3
|
Vijayan J, Nathan VK, Ammini P, Ammanamveetil AMH. Bacterial diversity in the aquatic system in India based on metagenome analysis-a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28383-28406. [PMID: 36680718 PMCID: PMC9862233 DOI: 10.1007/s11356-023-25195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/04/2023] [Indexed: 04/16/2023]
Abstract
Microbial analysis has become one of the most critical areas in aquatic ecology and a crucial component for assessing the contribution of microbes in food web dynamics and biogeochemical processes. Initial research was focused on estimating the abundance and distribution of the microbes using microscopy and culture-based analysis, which are undoubtedly complex tasks. Over the past few decades, microbiologists have endeavored to apply and extend molecular techniques to address pertinent questions related to the function and metabolism of microbes in aquatic ecology. Metagenomics analysis has revolutionized aquatic ecology studies involving the investigation of the genome of a mixed community of organisms in an ecosystem to identify microorganisms, their functionality, and the discovery of novel proteins. This review discusses the metagenomics analysis of bacterial diversity in and around different aquatic systems in India.
Collapse
Affiliation(s)
- Jasna Vijayan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India.
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, Sastra Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamilnadu, India
| | - Parvathi Ammini
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | - Abdulla Mohamed Hatha Ammanamveetil
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India
| |
Collapse
|
4
|
Vila-Costa M, Lundin D, Casamayor EO, Meijer SN, Fernández P, Dachs J. Microbial metabolic routes in metagenome assembled genomes are mirrored by the mass balance of polycyclic aromatic hydrocarbons in a high altitude lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119592. [PMID: 35688389 DOI: 10.1016/j.envpol.2022.119592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/20/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Semivolatile organic pollutants have potential for long range atmospheric transport and can thus reach pristine remote lakes by atmospheric deposition. Polycyclic aromatic hydrocarbons (PAHs) are among the most abundant and toxic semivolatile pollutants affecting lakes, however, the main factors controlling their fate are still poorly known. Here we show two contrasting lines of evidence for the importance of microbial degradation on the environmental fate of PAHs in a high altitude deep lake. The first evidence is given by an assessment of the metagenomes from surface and deep waters from Lake Redon (Pyrenees Mountains), which shows the occurrence of the initial ring hydroxylating dioxygenases as well as other PAH degrading genes from the complete metabolic route of PAH degradation. The second line of evidence is by the application of an environmental fate model for PAHs to Lake Redon under two contrasting scenarios considering the inclusion or not of degradation. When degradation is included in the model, PAH concentrations in the sediment are predicted within a factor of two of those measured in Lake Redon. Finally, the extent of the degradation sink is quantified and compared to other cycling PAH fluxes in the lake.
Collapse
Affiliation(s)
- Maria Vila-Costa
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya, Spain.
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Sweden
| | - Emilio O Casamayor
- Integrative Freshwater Ecology Group, Center for Advanced Studies of Blanes, CEAB-CSIC, Blanes, Catalunya, Spain
| | - Sandra N Meijer
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Pilar Fernández
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya, Spain
| |
Collapse
|
5
|
Oliveira VM, Andreote FD, Cortelo PC, Castro-Gamboa I, Costa-Lotufo LV, Polizeli MDLTM, Thiemann OH, Setubal JC. Microorganisms: the secret agents of the biosphere, and their key roles in biotechnology. BIOTA NEOTROPICA 2022. [DOI: 10.1590/1676-0611-bn-2022-1343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract We present a survey of projects that have been funded by FAPESP under the BIOTA-Microorganisms program. These projects generated a wide variety of results, including the identification of novel antibacterial-producing microorganisms, the characterization of novel microbial enzymes for industrial applications, taxonomic classification of novel microorganisms in several environments, investigation of the soil and mangrove microbial ecosystems and its influence on endangered plant species, and the sequencing of novel metagenome-assembled genomes. The results surveyed demonstrate the importance of microorganisms in environments that play important roles in human activities as well as the potential that many of these microorganisms have in contributing to biotechnological applications crucial for human survival in the 21st century.
Collapse
|
6
|
De Santana CO, Spealman P, Melo V, Gresham D, de Jesus T, Oliveira E, Chinalia FA. Large-scale differences in diversity and functional adaptations of prokaryotic communities from conserved and anthropogenically impacted mangrove sediments in a tropical estuary. PeerJ 2021; 9:e12229. [PMID: 34631324 PMCID: PMC8465992 DOI: 10.7717/peerj.12229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Mangroves are tropical ecosystems with strategic importance for climate change mitigation on local and global scales. They are also under considerable threat due to fragmentation degradation and urbanization. However, a complete understanding of how anthropogenic actions can affect microbial biodiversity and functional adaptations is still lacking. In this study, we carried out 16S rRNA gene sequencing analysis using sediment samples from two distinct mangrove areas located within the Serinhaém Estuary, Brazil. The first sampling area was located around the urban area of Ituberá, impacted by domestic sewage and urban runoff, while the second was an environmentally conserved site. Our results show significant changes in the structure of the communities between impacted and conserved sites. Biodiversity, along with functional potentials for the cycling of carbon, nitrogen, phosphorus and sulfur, were significantly increased in the urban area. We found that the environmental factors of organic matter, temperature and copper were significantly correlated with the observed shifts in the communities. Contributions of specific taxa to the functional potentials were negatively correlated with biodiversity, such that fewer numbers of taxa in the conserved area contributed to the majority of the metabolic potential. The results suggest that the contamination by urban runoff may have generated a different environment that led to the extinction of some taxa observed at the conserved site. In their place we found that the impacted site is enriched in prokaryotic families that are known human and animal pathogens, a clear negative effect of the urbanization process.
Collapse
Affiliation(s)
| | - Pieter Spealman
- Department of Biology, New York University, New York City, NY, United States of America
| | - Vania Melo
- Department of Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - David Gresham
- Department of Biology, New York University, New York City, NY, United States of America
| | - Taise de Jesus
- Department of Biology, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Eddy Oliveira
- Department of Biology, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | | |
Collapse
|
7
|
Mukherji S, Ghosh A, Bhattacharyya C, Mallick I, Bhattacharyya A, Mitra S, Ghosh A. Molecular and culture-based surveys of metabolically active hydrocarbon-degrading archaeal communities in Sundarban mangrove sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110481. [PMID: 32203775 DOI: 10.1016/j.ecoenv.2020.110481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/21/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Archaea remain important players in global biogeochemical cycles worldwide, including in the highly productive mangrove estuarine ecosystems. In the present study, we have explored the diversity, distribution, and function of the metabolically active fraction of the resident archaeal community of the Sundarban mangrove ecosystem, using both culture-independent and culture-dependent approaches. To evaluate the diversity and distribution pattern of the active archaeal communities, RNA based analysis of the 16S rRNA gene was performed on an Illumina platform. The active Crenarchaeal community was observed to remain constant while active Euryarchaeal community underwent considerable change across the sampling sites depending on varying anthropogenic factors. Haloarchaea were the predominant group in hydrocarbon polluted sediments, leading us to successfully isolate eleven p-hydroxybenzoic acid degrading haloarchaeal species. The isolates could also survive in benzoic acid, naphthalene, and o-phthalate. Quantitative estimation of p-hydroxybenzoic acid degradation was studied on select isolates, and their ability to reduce COD of polluted saline waters of Sundarban was also evaluated. To our knowledge, this is the first ever study combining culture-independent (Next Generation sequencing and metatranscriptome) and culture-dependent analyses for an assessment of archaeal function in the sediment of Sundarban.
Collapse
Affiliation(s)
- Shayantan Mukherji
- Department of Biochemistry, Bose Institute, P1/12- C.I.T. Road, Scheme VIIM, Kolkata, 700054, West Bengal, India
| | - Anandita Ghosh
- Department of Biochemistry, Bose Institute, P1/12- C.I.T. Road, Scheme VIIM, Kolkata, 700054, West Bengal, India
| | - Chandrima Bhattacharyya
- Department of Biochemistry, Bose Institute, P1/12- C.I.T. Road, Scheme VIIM, Kolkata, 700054, West Bengal, India
| | - Ivy Mallick
- Department of Biochemistry, Bose Institute, P1/12- C.I.T. Road, Scheme VIIM, Kolkata, 700054, West Bengal, India
| | - Anish Bhattacharyya
- Department of Biochemistry, 35 Ballygunge Circular Road, University of Calcutta, Kolkata, 700019, India
| | - Suparna Mitra
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Thoresby Place, Leeds, LS1 3EX, W. Yorkshire, United Kingdom
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, P1/12- C.I.T. Road, Scheme VIIM, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
8
|
Araujo FJ, Hissa DC, Silva GO, Antunes ASLM, Nogueira VLR, Gonçalves LRB, Melo VMM. A novel bacterial carboxylesterase identified in a metagenome derived-clone from Brazilian mangrove sediments. Mol Biol Rep 2020; 47:3919-3928. [DOI: 10.1007/s11033-020-05484-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
|
9
|
Sousa STPD, Cabral L, Lacerda-Júnior GV, Noronha MF, Ottoni JR, Sartoratto A, Oliveira VMD. Exploring the genetic potential of a fosmid metagenomic library from an oil-impacted mangrove sediment for metabolism of aromatic compounds. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109974. [PMID: 31761556 DOI: 10.1016/j.ecoenv.2019.109974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/10/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Aromatic hydrocarbons (AH) are widely distributed in nature, and many of them have been reported as relevant environmental pollutants and valuable carbon sources for different microorganisms. In this work, high-throughput sequencing of a metagenomic fosmid library was carried out to evaluate the functional and taxonomic diversity of genes involved in aromatic compounds degradation in oil-impacted mangrove sediments. In addition, activity-based approach and gas chromatography were used to assess the degradation potential of fosmid clones. Results indicated that AH degradation genes, such as monooxygenases and dioxygenases, were grouped into the following categories: anaerobic degradation of aromatic compounds (20.34%), metabolism of central aromatic intermediates (35.40%) and peripheral pathways for catabolism of aromatic compounds (22.56%). Taxonomic affiliation of genes related to aromatic compounds metabolism revealed the prevalence of the classes Alphaproteobacteria, Actinobacteria, Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria. Aromatic hydrocarbons (phenol, naphthalene, phenanthrene, pyrene and benzopyrene) were used as the only carbon source to screen clones with degradation potential. Of the 2500 clones tested, 48 showed some respiratory activity in at least one of the five carbon sources used. The hydrocarbon degradation ability of the top ten fosmid clones was confirmed by GC-MS. Further, annotation of assembled metagenomic fragments revealed ORFs corresponding to proteins and functional domains directly or indirectly involved in the aromatic compound metabolism, such as catechol 2,3-dioxygenase and ferredoxin oxidoreductase. Finally, these data suggest that the indigenous mangrove sediment microbiota developed essential mechanisms towards ecosystem remediation of petroleum hydrocarbon impact.
Collapse
Affiliation(s)
- Sanderson Tarciso Pereira de Sousa
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Lucélia Cabral
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Gileno Vieira Lacerda-Júnior
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Melline Fontes Noronha
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Júlia Ronzella Ottoni
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Adilson Sartoratto
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Valéria Maia de Oliveira
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
10
|
Alves KJ, da Silva MCP, Cotta SR, Ottoni JR, van Elsas JD, de Oliveira VM, Andreote FD. Mangrove soil as a source for novel xylanase and amylase as determined by cultivation-dependent and cultivation-independent methods. Braz J Microbiol 2019; 51:217-228. [PMID: 31741310 DOI: 10.1007/s42770-019-00162-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/19/2019] [Indexed: 11/25/2022] Open
Abstract
Xylanase and α-amylase enzymes participate in the degradation of organic matter, acting in hemicellulose and starch mineralization, respectively, and are in high demand for industrial use. Mangroves represent a promising source for bioprospecting enzymes due to their unique characteristics, such as fluctuations in oxic/anoxic conditions and salinity. In this context, the present work aimed to bioprospect xylanases from mangrove soil using cultivation-dependent and cultivation-independent methods. Through screening from a metagenomic library, three potentially xylanolytic clones were obtained and sequenced, and reads were assembled into contigs and annotated. The contig MgrBr135 was affiliated with the Planctomycetaceae family and was one of 30 ORFs selected for subcloning that demonstrated only amylase activity. Through the cultivation method, 38 bacterial isolates with xylanolytic activity were isolated. Isolate 11 showed an enzymatic index of 10.9 using the plate assay method. Isolate 39 achieved an enzyme activity of 0.43 U/mL using the colorimetric method with 3,5-dinitrosalicylic acid. Isolate 39 produced xylanase on culture medium with salinity ranging from 1.25 to 5%. Partial 16S rRNA gene sequencing identified isolates in the Bacillus and Paenibacillus genera. The results of this study highlight the importance of mangroves as an enzyme source and show that bacterial groups can be used for starch and hemicellulose degradation.
Collapse
Affiliation(s)
- Kelly Jaqueline Alves
- Department of Soil Science, Laboratory of Soil Microbiology, University of Sao Paulo, Padua Dias Avenue, 11 CP 09, Piracicaba, São Paulo, 13418-900, Brazil.
| | - Mylenne Calciolari Pinheiro da Silva
- Department of Soil Science, Laboratory of Soil Microbiology, University of Sao Paulo, Padua Dias Avenue, 11 CP 09, Piracicaba, São Paulo, 13418-900, Brazil
| | - Simone Raposo Cotta
- Center for Nuclear Energy in Agriculture, University of São Paulo, Centenario Avenue, 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Júlia Ronzella Ottoni
- University Center Dinâmica das Cataratas, Castelo Branco Street, 349, Foz do Iguaçu, Paraná, 85852-010, Brazil
| | - Jan Dirk van Elsas
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands
| | - Valeria Maia de Oliveira
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Alexandre Cazellato Avenue, 999, Paulínia, São Paulo, 13140-000, Brazil
| | - Fernando Dini Andreote
- Department of Soil Science, Laboratory of Soil Microbiology, University of Sao Paulo, Padua Dias Avenue, 11 CP 09, Piracicaba, São Paulo, 13418-900, Brazil
| |
Collapse
|
11
|
Cabral L, Noronha MF, de Sousa STP, Lacerda-Júnior GV, Richter L, Fostier AH, Andreote FD, Hess M, Oliveira VMD. The metagenomic landscape of xenobiotics biodegradation in mangrove sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:232-240. [PMID: 31051396 DOI: 10.1016/j.ecoenv.2019.04.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Metagenomics is a powerful approach to study microorganisms present in any given environment and their potential to maintain and improve ecosystem health without the need of cultivating these microorganisms in the laboratory. In this study, we combined a cultivation-independent metagenomics approach with functional assays to identify the detoxification potential of microbial genes evaluating their potential to contribute to xenobiotics resistance in oil-impacted mangrove sediments. A metagenomic fosmid library containing 12,960 clones from highly contaminated mangrove sediment was used in this study. For assessment of metal resistance, clones were grown in culture medium with increasing concentrations of mercury. The analyses metagenomic library sequences revealed the presence of genes related to heavy metals and antibiotics resistance in the oil-impacted mangrove microbiome. The taxonomic profiling of these sequences suggests that at the genus level, Geobacter was the most abundant genus in our dataset. A functional screening assessment of the metagenomic library successfully detected 24 potential heavy metal tolerant clones, six of which were capable of growing with increased concentrations of mercury. The genetic characterization of selected clones allowed the detection of genes related to detoxification processes, such as chromate transport protein ChrA, haloacid dehalogenase-like hydrolase, lipopolysaccharide transport system, and 3-oxoacyl-[acyl-carrier-protein] reductase. Clones were capable of growing in medium containing increased concentrations of metals and antibiotics, but none manifested strong mercury removal from culture medium characteristic of mercuric reductase activity. These results suggest that resistance to xenobiotic stress varies greatly and that additional studies to elucidate the potential of metal biotransformation need to be carried out with the goal of improving bioremediation application.
Collapse
Affiliation(s)
- Lucélia Cabral
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biology (IB)- University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Melline Fontes Noronha
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biology (IB)- University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Sanderson Tarciso Pereira de Sousa
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biology (IB)- University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gileno Vieira Lacerda-Júnior
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biology (IB)- University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Larissa Richter
- Institute of Chemistry - University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Anne Hélène Fostier
- Institute of Chemistry - University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernando Dini Andreote
- Department of Soil Science, ''Luiz de Queiroz'' College of Agriculture, University of Sao Paulo, Piracicaba, São Paulo, Brazil
| | - Matthias Hess
- University of California, Davis, Department of Animal Science, Davis, CA, USA
| | - Valéria Maia de Oliveira
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
12
|
Volz C, Ramoni J, Beisken S, Galata V, Keller A, Plum A, Posch AE, Müller R. Clinical Resistome Screening of 1,110 Escherichia coli Isolates Efficiently Recovers Diagnostically Relevant Antibiotic Resistance Biomarkers and Potential Novel Resistance Mechanisms. Front Microbiol 2019; 10:1671. [PMID: 31456751 PMCID: PMC6700387 DOI: 10.3389/fmicb.2019.01671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Abstract
Multidrug-resistant pathogens represent one of the biggest global healthcare challenges. Molecular diagnostics can guide effective antibiotics therapy but relies on validated, predictive biomarkers. Here we present a novel, universally applicable workflow for rapid identification of antimicrobial resistance (AMR) biomarkers from clinical Escherichia coli isolates and quantitatively evaluate the potential to recover causal biomarkers for observed resistance phenotypes. For this, a metagenomic plasmid library from 1,110 clinical E. coli isolates was created and used for high-throughput screening to identify biomarker candidates against Tobramycin (TOB), Ciprofloxacin (CIP), and Trimethoprim-Sulfamethoxazole (TMP-SMX). Identified candidates were further validated in vitro and also evaluated in silico for their diagnostic performance based on matched genotype-phenotype data. AMR biomarkers recovered by the metagenomics screening approach mechanistically explained 77% of observed resistance phenotypes for Tobramycin, 76% for Trimethoprim-Sulfamethoxazole, and 20% Ciprofloxacin. Sensitivity for Ciprofloxacin resistance detection could be improved to 97% by complementing results with AMR biomarkers that are undiscoverable due to intrinsic limitations of the workflow. Additionally, when combined in a multiplex diagnostic in silico panel, the identified AMR biomarkers reached promising positive and negative predictive values of up to 97 and 99%, respectively. Finally, we demonstrate that the developed workflow can be used to identify potential novel resistance mechanisms.
Collapse
Affiliation(s)
- Carsten Volz
- Helmholtz International Laboratory, Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | | | | | | | | | | | | | - Rolf Müller
- Helmholtz International Laboratory, Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,German Center for Infection Research (DZIF), Braunschweig, Germany
| |
Collapse
|
13
|
Muñoz-García A, Mestanza O, Isaza JP, Figueroa-Galvis I, Vanegas J. Influence of salinity on the degradation of xenobiotic compounds in rhizospheric mangrove soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:750-757. [PMID: 30933772 DOI: 10.1016/j.envpol.2019.03.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/25/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Mangroves are highly productive tropical ecosystems influenced by seasonal and daily salinity changes, often exposed to sewage contamination, oil spills and heavy metals, among others. There is limited knowledge of the influence of salinity on the ability of microorganisms to degrade xenobiotic compounds. The aim of this study were to determine the salinity influence on the degradation of xenobiotic compounds in a semi-arid mangrove in La Guajira-Colombia and establish the more abundant genes and degradation pathways. In this study, rhizospheric soil of Avicennia germinans was collected in three points with contrasting salinity (4H, 2 M and 3 L). Total DNA extraction was performed and shotgun sequenced using the Illumina HiSeq technology. We annotated 507,343 reads associated with 21 pathways and detected 193 genes associated with the degradation of xenobiotics using orthologous genes from the KEGG Orthology (KO) database, of which 16 pathways and 113 genes were influenced by salinity. The highest abundances were found in high salinity. The degradation of benzoate showed the highest abundance, followed by the metabolism of the drugs and the degradation of chloroalkane and chloroalkene. The majority of genes were associated with phase I degradation of xenobiotics. The most abundant genes were acetyl-CoA C-acetyltransferase (atoB), catalase-peroxidase (katG) and GMP synthase (glutamine-hydrolysing) (guaA). In conclusion, the metagenomic analysis detected all the degradation pathways of xenobiotics of KEGG and 59% of the genes associated with these pathways were influenced by salinity.
Collapse
Affiliation(s)
- Andrea Muñoz-García
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| | - Orson Mestanza
- Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá, Colombia.
| | - Juan Pablo Isaza
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| | | | - Javier Vanegas
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| |
Collapse
|
14
|
Behera P, Mohapatra M, Kim JY, Adhya TK, Pattnaik AK, Rastogi G. Spatial and temporal heterogeneity in the structure and function of sediment bacterial communities of a tropical mangrove forest. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3893-3908. [PMID: 30547343 DOI: 10.1007/s11356-018-3927-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Bacterial communities of mangrove sediments are well appreciated for their role in nutrient cycling. However, spatiotemporal variability in these communities over large geographical scale remains understudied. We investigated sediment bacterial communities and their metabolic potential in an intertidal mangrove forest of India, Bhitarkanika, using high-throughput sequencing of 16S rRNA genes and community-level physiological profiling. Bulk surface sediments from five different locations representing riverine and bay sites were collected over three seasons. Seasonality largely explained the variation in the structural and metabolic patterns of the sediment bacterial communities. Freshwater Actinobacteria were more abundant in monsoon, whereas γ-Proteobacteria demonstrated higher abundance in summer. Distinct differences in the bacterial community composition were noted between riverine and bay sites. For example, salt-loving marine bacteria affiliated to Oceanospirillales were more prominent in the bay sites than the riverine sites. L-asparagine, N-acetyl-D-glucosamine, and D-mannitol were the preferentially utilized carbon sources by bacterial communities. Bacterial community composition was largely governed by salinity and organic carbon content of the sediments. Modeling analysis revealed that the abundance of δ-Proteobacteria increased with salinity, whereas β-Proteobacteria displayed an opposite trend. Metabolic mapping of taxonomic data predicted biogeochemical functions such as xylan and chitin degradation, ammonia oxidation, nitrite reduction, and sulfate reduction in the bacterial communities suggesting their role in carbon, nitrogen, and sulfur cycling in mangrove sediments. This study has provided valuable clues about spatiotemporal heterogeneity in the structural and metabolic patterns of bacterial communities and their environmental determinants in a tropical mangrove forest.
Collapse
Affiliation(s)
- Pratiksha Behera
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha, 752030, India
| | - Madhusmita Mohapatra
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha, 752030, India
| | - Ji Yoon Kim
- Department of Integrated Biological Science, Pusan National University, Geumjeong-gu, Busan, 46241, South Korea
| | - Tapan K Adhya
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Ajit K Pattnaik
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha, 752030, India
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha, 752030, India.
| |
Collapse
|
15
|
Priya G, Lau NS, Furusawa G, Dinesh B, Foong SY, Amirul AAA. Metagenomic insights into the phylogenetic and functional profiles of soil microbiome from a managed mangrove in Malaysia. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.aggene.2018.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|