1
|
Singh P, Bisen M, Kulshreshtha S, Kumar L, Choudhury SR, Nath MJ, Mandal M, Kumar A, Patel SKS. Advancement in Anaerobic Ammonia Oxidation Technologies for Industrial Wastewater Treatment and Resource Recovery: A Comprehensive Review and Perspectives. Bioengineering (Basel) 2025; 12:330. [PMID: 40281690 PMCID: PMC12024423 DOI: 10.3390/bioengineering12040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Anaerobic ammonium oxidation (anammox) technologies have attracted substantial interest due to their advantages over traditional biological nitrogen removal processes, including high efficiency and low energy demand. Currently, multiple side-stream applications of the anammox coupling process have been developed, including one-stage, two-stage, and three-stage systems such as completely autotrophic nitrogen removal over nitrite, denitrifying ammonium oxidation, simultaneous nitrogen and phosphorus removal, partial denitrification-anammox, and partial nitrification and integrated fermentation denitritation. The one-stage system includes completely autotrophic nitrogen removal over nitrite, oxygen-limited autotrophic nitrification/denitrification, aerobic de-ammonification, single-stage nitrogen removal using anammox, and partial nitritation. Two-stage systems, such as the single reactor system for high-activity ammonium removal over nitrite, integrated fixed-film activated sludge, and simultaneous nitrogen and phosphorus removal, have also been developed. Three-stage systems comprise partial nitrification anammox, partial denitrification anammox, simultaneous ammonium oxidation denitrification, and partial nitrification and integrated fermentation denitritation. The performance of these systems is highly dependent on interactions between functional microbial communities, physiochemical parameters, and environmental factors. Mainstream applications are not well developed and require further research and development. Mainstream applications demand a high carbon/nitrogen ratio to maintain levels of nitrite-oxidizing bacteria, high concentrations of ammonium and nitrite in wastewater, and retention of anammox bacteria biomass. To summarize various aspects of the anammox processes, this review provides information regarding the microbial diversity of different genera of anammox bacteria and the engineering aspects of various side streams and mainstream anammox processes for wastewater treatment. Additionally, this review offers detailed insights into the challenges related to anammox technology and delivers solutions for future sustainable research.
Collapse
Affiliation(s)
- Pradeep Singh
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
| | - Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
| | - Sourabh Kulshreshtha
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Shubham R. Choudhury
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India; (S.R.C.); (M.J.N.); (M.M.)
| | - Mayur J. Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India; (S.R.C.); (M.J.N.); (M.M.)
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India; (S.R.C.); (M.J.N.); (M.M.)
| | - Aman Kumar
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India;
| | - Sanjay K. S. Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India;
| |
Collapse
|
2
|
Adams M, Issaka E, Chen C. Anammox-based technologies: A review of recent advances, mechanism, and bottlenecks. J Environ Sci (China) 2025; 148:151-173. [PMID: 39095154 DOI: 10.1016/j.jes.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 08/04/2024]
Abstract
The removal of nitrogen via the ANAMMOX process is a promising green wastewater treatment technology, with numerous benefits. The incessant studies on the ANAMMOX process over the years due to its long start-up and high operational cost has positively influenced its technological advancement, even though at a rather slow pace. At the moment, relatively new ANAMMOX technologies are being developed with the goal of treating low carbon wastewater at low temperatures, tackling nitrite and nitrate accumulation and methane utilization from digestates while also recovering resources (phosphorus) in a sustainable manner. This review compares and contrasts the handful of ANAMMOX -based processes developed thus far with plausible solutions for addressing their respective bottlenecks hindering full-scale implementation. Ultimately, future prospects for advancing understanding of mechanisms and engineering application of ANAMMOX process are posited. As a whole, technological advances in process design and patents have greatly contributed to better understanding of the ANAMMOX process, which has greatly aided in the optimization and industrialization of the ANAMMOX process. This review is intended to provide researchers with an overview of the present state of research and technological development of the ANAMMOX process, thus serving as a guide for realizing energy autarkic future practical applications.
Collapse
Affiliation(s)
- Mabruk Adams
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 2155009, China; Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Eliasu Issaka
- School of Environmental and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 2155009, China.
| |
Collapse
|
3
|
Wang C, Qiao S, Zhou J. Strategy of nitrate removal in anaerobic ammonia oxidation-dependent processes. CHEMOSPHERE 2023; 313:137586. [PMID: 36529177 DOI: 10.1016/j.chemosphere.2022.137586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The anaerobic ammonium oxidation (anammox), a microbial process that is considered as a low-cost and high efficient wastewater treatment, has received extensive attention with an attractive application prospect. The anammox process reduces nitrite (NO2-) to nitrogen gas (N2) with ammonium (NH4+) as the electron donor. However, some nitrate (NO3-) equivalent to 11% of total nitrogen (TN) is generated in this process, which limits the development of anammox. To overcome this problem, many efforts have been made in this regard, mainly combining with other biological treatment methods (denitrification, denitrifying anaerobic methane oxidation, etc.), introducing the substance into anammox process, etc. Herein, we summarized a detailed review of previous researches on the removal of NO3- in the anammox-dependent processes. It is hoped that this review could serve as valuable guidance in future research and practical applications of anammox.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
4
|
Influencing factors on ureolytic microbiologically induced calcium carbonate precipitation for biocementation. World J Microbiol Biotechnol 2023; 39:61. [PMID: 36576609 PMCID: PMC9797461 DOI: 10.1007/s11274-022-03499-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
Microbiologically induced calcium carbonate precipitation (MICP) is a technique that has received a lot of attention in the field of geotechnology in the last decade. It has the potential to provide a sustainable and ecological alternative to conventional consolidation of minerals, for example by the use of cement. From a variety of microbiological metabolic pathways that can induce calcium carbonate (CaCO3) precipitation, ureolysis has been established as the most commonly used method. To better understand the mechanisms of MICP and to develop new processes and optimize existing ones based on this understanding, ureolytic MICP is the subject of intensive research. The interplay of biological and civil engineering aspects shows how interdisciplinary research needs to be to advance the potential of this technology. This paper describes and critically discusses, based on current literature, the key influencing factors involved in the cementation of sand by ureolytic MICP. Due to the complexity of MICP, these factors often influence each other, making it essential for researchers from all disciplines to be aware of these factors and its interactions. Furthermore, this paper discusses the opportunities and challenges for future research in this area to provide impetus for studies that can further advance the understanding of MICP.
Collapse
|
5
|
Cheenakula D, Griebel K, Montag D, Grömping M. Concept development of a mainstream deammonification and comparison with conventional process in terms of energy, performance and economical construction perspectives. Front Microbiol 2023; 14:1155235. [PMID: 37113237 PMCID: PMC10126410 DOI: 10.3389/fmicb.2023.1155235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Deammonification for nitrogen removal in municipal wastewater in temperate and cold climate zones is currently limited to the side stream of municipal wastewater treatment plants (MWWTP). This study developed a conceptual model of a mainstream deammonification plant, designed for 30,000 P.E., considering possible solutions corresponding to the challenging mainstream conditions in Germany. In addition, the energy-saving potential, nitrogen elimination performance and construction-related costs of mainstream deammonification were compared to a conventional plant model, having a single-stage activated sludge process with upstream denitrification. The results revealed that an additional treatment step by combining chemical precipitation and ultra-fine screening is advantageous prior the mainstream deammonification. Hereby chemical oxygen demand (COD) can be reduced by 80% so that the COD:N ratio can be reduced from 12 to 2.5. Laboratory experiments testing mainstream conditions of temperature (8-20°C), pH (6-9) and COD:N ratio (1-6) showed an achievable volumetric nitrogen removal rate (VNRR) of at least 50 gN/(m3∙d) for various deammonifying sludges from side stream deammonification systems in the state of North Rhine-Westphalia, Germany, where m3 denotes reactor volume. Assuming a retained Norganic content of 0.0035 kgNorg./(P.E.∙d) from the daily loads of N at carbon removal stage and a VNRR of 50 gN/(m3∙d) under mainstream conditions, a resident-specific reactor volume of 0.115 m3/(P.E.) is required for mainstream deammonification. This is in the same order of magnitude as the conventional activated sludge process, i.e., 0.173 m3/(P.E.) for an MWWTP of size class of 4. The conventional plant model yielded a total specific electricity demand of 35 kWh/(P.E.∙a) for the operation of the whole MWWTP and an energy recovery potential of 15.8 kWh/(P.E.∙a) through anaerobic digestion. In contrast, the developed mainstream deammonification model plant would require only a 21.5 kWh/(P.E.∙a) energy demand and result in 24 kWh/(P.E.∙a) energy recovery potential, enabling the mainstream deammonification model plant to be self-sufficient. The retrofitting costs for the implementation of mainstream deammonification in existing conventional MWWTPs are nearly negligible as the existing units like activated sludge reactors, aerators and monitoring technology are reusable. However, the mainstream deammonification must meet the performance requirement of VNRR of about 50 gN/(m3∙d) in this case.
Collapse
Affiliation(s)
- Dheeraja Cheenakula
- Institute NOWUM-Energy, FH Aachen, University of Applied Sciences, Jülich, Germany
- *Correspondence: Dheeraja Cheenakula,
| | - Kai Griebel
- Institute of Environmental Engineering, RWTH Aachen, Aachen, Germany
| | - David Montag
- Institute of Environmental Engineering, RWTH Aachen, Aachen, Germany
| | - Markus Grömping
- Institute NOWUM-Energy, FH Aachen, University of Applied Sciences, Jülich, Germany
| |
Collapse
|
6
|
Rahimi M, Salehi E, Mandooie M, Khalili N. Adsorption/Ozonation Integration for Intensified Ethyl Acetate Plant Wastewater Treatment: Process Optimization and Sensitivity Analysis Assessment. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Optimizing compressive strength of sand treated with MICP using response surface methodology. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AbstractIn the present study, the optimization of the microbiologically induced calcium carbonate precipitation (MICP) to produce biosandstone regarding the compressive strength is shown. For the biosandstone production, quartz sand was treated sequentially with the ureolytic microorganism Sporosarcina pasteurii (ATCC 11859) and a reagent containing urea and calcium chloride. Response surface methodology (RSM) was applied to investigate the influence of urea concentration, calcium chloride concentration and the volume of cell suspension on the compressive strength of produced biosandstone. A central composite design (CCD) was employed, and the resulting experimental data applied to a quadratic model. The statistical significance of the model was verified by experimental data (R2 = 0.9305). Optimized values for the concentration of urea and calcium chloride were 1492 mM and 1391 mM. For the volume of cell suspension during treatment 7.47 mL was determined as the optimum. Specimen treated under these conditions achieved a compressive strength of 1877 ± 240 kPa. This is an improvement of 144% over specimen treated with a reagent that is commonly used in literature (1000 mM urea/1000 mM CaCl2). This protocol allows for a more efficient production of biosandstone in future research regarding MICP.
Collapse
|
8
|
Chen X, Lai C, Wang X, Chen G, Zhang D. High-rate partial denitrification via effluent residual nitrate controlling and microbial mechanism of nitrite accumulation by carbon dosage optimization. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1222-1231. [PMID: 36358057 DOI: 10.2166/wst.2022.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The high-rate partial denitrification (PD) via effluent residual nitrate controlling by carbon dosage optimization was investigated based on the analysis of microbial mechanism of nitrite accumulation in this study. When the COD/N was changed from 4.0 to 1.8 and the effluent nitrate was above 8.48 mg/L, the nitrate accumulation ratio (NAR) and nitrate removal ratio (NRR) achieved 60 and 90%, respectively. With the electron donor starvation (EDS) strategy, nitrite accumulation was increased, which is related to the reduced utilization of carbon sources. In addition, the rapid increase of Thauera (0.21% to 53.29%) and inhibition of Others and Unclassified (96.93% to 16.99%), and the significantly different expression between reductase genes contributed to nitrite production (narG, 1,727.44 copies/mg) and nitrite reduction (nirS, 208.27 copies/mg; nirK, 203.94 copies/mg) commonly involved in PD start-up and stable operation. Another reactor can be quickly started by controlling effluent residual nitrate within 19 days.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou city, Jiangxi province 341000, P.R. China
| | - Cheng Lai
- Department of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou city, Jiangxi province 341000, P.R. China
| | - Xinyi Wang
- Department of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou city, Jiangxi province 341000, P.R. China
| | - Guimei Chen
- Department of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou city, Jiangxi province 341000, P.R. China
| | - Dachao Zhang
- Jiangxi Lingzhen Ecological Environment Group Co. Ltd, Ganzhou Technology Innovation Center of Mine Ecological Restoration, Ganzhou city 341000, PR China E-mail:
| |
Collapse
|
9
|
Ran X, Zhou M, Wang T, Wang W, Kumari S, Wang Y. Multidisciplinary characterization of nitrogen-removal granular sludge: A review of advances and technologies. WATER RESEARCH 2022; 214:118214. [PMID: 35240472 DOI: 10.1016/j.watres.2022.118214] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen-removal granular sludge (NRGS) is a promising technology in wastewater treatment, with advantages of efficient nitrogen removal, less footprint, lower sludge production and energy consumption, and is a way for wastewater treatment plants to achieve carbon-neutrality. Aerobic granular sludge (AGS) and anammox granular sludge (AnGS) are two typical NRGS technologies that have attracted extensive attention. Mounting evidence has shown strong associations between NRGS properties and the status of NRGS systems; however, a holistic view is still missing. The aim of this article is to provide an overview of NRGS with an emphasis on characterization. Specifically, the integrated nitrogen transformation pathways inside NRGS and the performance of NRGS treating various wastewaters are discussed. NRGS properties are categorized as physical-, chemical-, biological- and systematical ones, presenting current advances and corresponding characterization technologies. Finally, the future prospects for furthering the mechanistic understanding and engineering application of NRGS are proposed. Overall, the technological advancements in characterization have greatly contributed to understanding NRGS properties, which are potential factors for optimizing the performance and evaluating the working status of NRGS. This review will provide guidance in characterizing NRGS properties and boost the introduction of novel characterization technologies.
Collapse
Affiliation(s)
- Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China.
| |
Collapse
|
10
|
Fang D, Wang J, Cui D, Dong X, Tang C, Zhang L, Yue D. Recent Advances of Landfill Leachate Treatment. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-021-00262-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Chen H, Tu Z, Wu S, Yu G, Du C, Wang H, Yang E, Zhou L, Deng B, Wang D, Li H. Recent advances in partial denitrification-anaerobic ammonium oxidation process for mainstream municipal wastewater treatment. CHEMOSPHERE 2021; 278:130436. [PMID: 33839386 DOI: 10.1016/j.chemosphere.2021.130436] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 05/05/2023]
Abstract
To solve the bottleneck of the unstable accumulation of nitrite in the partial nitrification (PN)-anammox (AMX) in municipal wastewater treatment, a novel process called partial denitrification (PD)-AMX has been developed. PD-AMX, which is known for cost-efficiency and environmental friendliness, has currently exhibited a promising potential for the removal of biological nitrogen from municipal wastewater and has attracted much research interest regarding its process mechanisms, as well as its practical applications. Here, we review the recent advances in the PD process and its coupling to the anammox process, including the development, basic principles, main characteristics, and critical process parameters of the stable operation of the PD-AMX process. We also explore the microbial community and its characteristics in the system and summarize the knowledge of the dominant bacteria to clarify the key factors affecting PD-AMX. Then, we introduce the engineering feasibility and economic feasibility as well as the potential challenges of the process. The induction and implementation of partial denitrification and maintenance of mainstream anammox are critical issues to be urgently solved. Meanwhile, the implementation of a full mainstream anammox application remains burdensome, while the mechanism of partial denitrification coupled to anammox needs to be further studied. Additionally, stable operation performance and process control1 methods need to be optimized or developed for the PD-AMX system for better engineering practice. This review can help to accelerate the research and application of the PD-AMX process for municipal wastewater treatment.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Zhi Tu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Sha Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Guanlong Yu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Chunyan Du
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Enzhe Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| | - Lu Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Bin Deng
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
12
|
Trojanowicz K, Plaza E. Combining numerical simulation with response surface modelling for optimization of reject water partial nitritation/anammox in moving bed biofilm reactor. ENVIRONMENTAL TECHNOLOGY 2021; 42:2823-2835. [PMID: 31928337 DOI: 10.1080/09593330.2020.1714747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Optimization of a single-stage, partial nitritation/anammox (PN/A) process for a reject water treatment in a continuous-flow, moving bed biofilm reactor (MBBR) was presented. Response surface method (RSM) was combined with simulation experiments conducted with the validated mathematical model of PN/A in MBBR. The total inorganic nitrogen (TIN) removal efficiency was the response parameter. Eight independent variables were taken into consideration: reject water flow rate (Q), inflow concentrations of the total ammonium nitrogen (TAN), chemical oxygen demand (COD), alkalinity (ALK), pH, temperature (T), dissolved oxygen concentration in the bulk liquid (DO) and aeration time within 60 min intermittent aeration cycle (AERON). Eleven interactions between independent variables were found as significant (p < 0.05). The interaction of AERON*DO had the highest impact on the PN/A process. Optimal values of the controlled variables were found for two cases of MBBR operation. Verification of the optimization was done by the simulation and comparison with the data from the empirical experiments. Under the conditions of the fixed hydraulic retention time of about 38 h, volumetric nitrogen loading rate of 0.48 kgN/m3d, T of 22.5°C, TAN of 750 gN/m3 and optimized values of DO = 3.0 gO2/m3, AERON = 0.54 h, pH = 7.5, ALK = 80 molHCO3/m3, COD = 775 gO2/m3, the predicted TINrem was 78% which is consistent with PN/A performance observed in the technical-scale MBBR systems.
Collapse
Affiliation(s)
- Karol Trojanowicz
- Department of Environmental Engineering, St. Pigon Krosno State College Krosno, Poland
- Department of Sustainable Development, Environmental Science and Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Elzbieta Plaza
- Department of Sustainable Development, Environmental Science and Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden
| |
Collapse
|
13
|
Akram M, Dietl A, Müller M, Barends TRM. Purification of the key enzyme complexes of the anammox pathway from DEMON sludge. Biopolymers 2021; 112:e23428. [PMID: 33798263 DOI: 10.1002/bip.23428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
Anaerobic Ammonium Oxidation ("anammox") is a bacterial process in which nitrite and ammonium are converted into nitrogen gas and water, yielding energy for the cell. Anammox is an important branch of the global biological nitrogen cycle, being responsible for up to 50% of the yearly nitrogen removal from the oceans. Strikingly, the anammox process uniquely relies on the extremely reactive and toxic compound hydrazine as a free intermediate. Given its global importance and biochemical novelty, there is considerable interest in the enzymes at the heart of the anammox pathway. Unfortunately, obtaining these enzymes in sufficiently large amounts for biochemical and structural studies is problematic, given the slow growth of pure cultures of anammox bacteria when high cell densities are required. However, the anammox process is being applied in wastewater treatment to remove nitrogenous waste in processes like DEamMONification (DEMON). In plants using such processes, which rely on a combination of aerobic ammonia-oxidizers and anammox organisms, kilogram amounts of anammox bacteria-containing sludge are readily available. Here, we report a protein isolation protocol starting from anammox cells present in DEMON sludge from a wastewater treatment plan that readily yields pure preparations of key anammox proteins in the tens of milligrams, including hydrazine synthase HZS and hydrazine dehydrogenase (HDH), as well as hydroxylamine oxidoreductase (HAO). HDH and HAO were active and of sufficient quality for biochemical studies and for HAO, the crystal structure could be determined. The method presented here provides a viable way to obtain materials for the study of proteins not only from the central anammox metabolism but also for the study of other exciting aspects of anammox bacteria, such as for example, their unusual ladderane lipids.
Collapse
Affiliation(s)
- Mohd Akram
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Andreas Dietl
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Melanie Müller
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Thomas R M Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
14
|
Izadi P, Izadi P, Eldyasti A. Towards mainstream deammonification: Comprehensive review on potential mainstream applications and developed sidestream technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111615. [PMID: 33172703 DOI: 10.1016/j.jenvman.2020.111615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
Deammonification (partial nitritation-anammox) process is a favorable and innovative process, for treatment of nitrogen-rich wastewater due to decreased oxygen and carbon requirements at very high nitrogen loadings. The bacterial groups responsible for this process are anaerobic ammonium oxidation (anammox) bacteria in symbiosis with ammonium oxidizing bacteria (AOB) which have an active role in development of nitrogen removal biotechnology in wastewater. Development and operation of sidestream deammonification processes has augmented since the initial full-scale systems, yet there are several aspects which mandate additional investigation and deliberation by the practitioners, to reach the operating perspective, set for the facility. Process technologies for treatment of streams with high ammonia concentrations continue to emerge, correspondingly, further investigation towards feasibility of applying the deammonification concept, in the mainstream treatment process is required. Mainstream deammonification can potentially improve the process of achieving more sustainable and energy-neutral municipal wastewater treatment, however feasible applications are not accessible yet. This critical review focuses on a comprehensive assessment of the worldwide lab-scale, pilot-scale and full-scale sidestream applications as well as identifying the major issues obstructing the implementation of mainstream processes, in addition to the designs, operational factors and technology advancements at both novel and/or conventional levels. This review aims to provide a novel and broad overview of the status and challenges of both sidestream and mainstream deammonification technologies and installations worldwide to assess the global perspectives on deammonification research in the recent years. The different configurations, crucial factors and overall trends in the development of deammonification research are discussed and conclusively, the future needs for feasible applications are critically reviewed.
Collapse
Affiliation(s)
- Parin Izadi
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele street, Toronto, M3J 1P3, ON, Canada
| | - Parnian Izadi
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele street, Toronto, M3J 1P3, ON, Canada
| | - Ahmed Eldyasti
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele street, Toronto, M3J 1P3, ON, Canada.
| |
Collapse
|
15
|
Garrido-Amador P, Kniaziuk M, Vekeman B, Kartal B. Learning from microorganisms: using new insights in microbial physiology for sustainable nitrogen management. Curr Opin Biotechnol 2021; 67:42-48. [PMID: 33444876 PMCID: PMC8012881 DOI: 10.1016/j.copbio.2020.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/26/2020] [Accepted: 12/23/2020] [Indexed: 11/29/2022]
Abstract
To reduce nitrate to N2 distinct nitrogen-oxide-reducing microorganisms function together. Detecting nirS, nirK or narG genes cannot be directly linked to NO and N2O emission. Nitrogen-oxide-reducing specialists can be exploited to reduce NO and N2O emission from wwtp. Aerobic methanotrophs and methane stripping must be considered for the application of N-DAMO. Ammonium recovery could be a more sustainable alternative to nitrogen removal.
Diverse nitrogen-transforming microorganisms with a wide variety of physiological properties are employed for biological nitrogen removal from wastewater. There are many technologies that achieve the required nitrogen discharge standards; however, greenhouse gas emissions and energy consumption constitute the bulk of the environmental footprint of wastewater treatment plants. In this review, we highlight current and proposed approaches aiming to achieve more energy-efficient and environment-friendly biological nitrogen removal, discuss whether new discoveries in microbial physiology of nitrogen-transforming microorganisms could be used to reduce greenhouse gas emissions, and summarize recent advances in ammonium recovery from wastewater.
Collapse
Affiliation(s)
- Paloma Garrido-Amador
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Margarita Kniaziuk
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Bram Vekeman
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Boran Kartal
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
16
|
Wang S, Li H, Zhang A, Fang F, Chen Y, Yan P, Guo J, Ma T, Shen Y. Importance of exopolysaccharide branched chains in determining the aggregation ability of anammox sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139470. [PMID: 32464401 DOI: 10.1016/j.scitotenv.2020.139470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The high aggregation ability of anammox granular sludge is an issue of wide concern; however, the mechanism needs to be further clarified. In this study, selective hydrolysis experiments were performed to determine the role of exopolysaccharide (PS) branched chains and proteins for the aggregation mechanism of anammox granular sludge. The results revealed that selective hydrolysis of proteins hardly affected the granular aggregation while the hydrolysis of PS branched chains led to a decrease in the sludge zeta potential by 17.3% (β-amylase group) and 24.1% (isoamylase group), a decrease of hydrophobicity by 11.6% (β-amylase group) and 17.7% (isoamylase group), an increase of surface free energy by 36.8% (β-amylase group) and 55.1% (isoamylase group) and the deterioration of the PS self-assembly ability. In addition, FTIR and XPS spectra analysis showed that the disruption of PS branched chains resulted in a higher proportion of hydrophilic and electronegative groups, which hindered bacterial aggregation, which was further confirmed by XDLVO theory. The key role of the PS chain structure in sludge aggregation is a critical finding of this work that provides helpful insights for the application of anammox process.
Collapse
Affiliation(s)
- Shuai Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Hanxiang Li
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Aiyu Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Youpeng Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Tengfei Ma
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Key Laboratory of Catalysis & New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing 400060, China
| | - Yu Shen
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Key Laboratory of Catalysis & New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing 400060, China.
| |
Collapse
|
17
|
Application of the Anammox in China-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031090. [PMID: 32050414 PMCID: PMC7037791 DOI: 10.3390/ijerph17031090] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 11/18/2022]
Abstract
Anaerobic ammonia oxidation (anammox) has been one of the most innovative discoveries for the treatment of wastewater with high ammonia nitrogen concentrations. The process has significant advantages for energy saving and sludge reduction, also capital costs and greenhouse gases emissions are reduced. Recently, the use of anammox has rapidly become mainstream in China. This study reviews the engineering applications of the anammox process in China, including various anammox-based technologies, selection of anammox reactors and attempts to apply them to different wastewater treatment plants. This review discusses the control and implementation of stable reactor operation and analyzes challenges facing mainstream anammox applications. Finally, a unique and novel perspective on the development and application of anammox in China is presented.
Collapse
|
18
|
Li J, Bai L, Qiang Z, Dong H, Wang D. Nitrogen removal through "Candidatus Brocadia sinica" treating high-salinity and low-temperature wastewater with glycine addition: Enhanced performance and kinetics. BIORESOURCE TECHNOLOGY 2018; 270:755-761. [PMID: 30279101 DOI: 10.1016/j.biortech.2018.09.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Freshwater-derived anaerobic ammonia oxidation (anammox) bacteria ("Candidatus Brocadia sinica") were investigated to remove nitrogen from high-salinity and low-temperature wastewater with glycine addition. The reactor was operated at 15 ± 0.5 °C with influent pH of 7.5 ± 0.1. When glycine were 0.2, 0.4, and 0.6 mM, respectively, nitrite removal rate (NRR) increased by 27.7%, 47.3%, and 70.4% accordingly. Optimal ammonia removal rate (0.32 kg/(m3·d)) and NRR (0.45 kg/(m3·d)) were achieved at 0.8 mM glycine. Effect resulting from glycine on nitrite reductase was higher than hydrazine synthase. Moreover, ΔNO2--N/ΔNH4+-N increased with glycine addition while ΔNO3--N/ΔNH4+-N first increased and then decreased. The remodified Logistic model and modified Boltzmann model were appropriate to describe nitrogen removal with glycine addition. Kinetic parameter λ achieved through the remodified Logistic model revealed that "Candidatus Brocadia sinica" had a shorter lag phase than that of marine anammox bacteria.
Collapse
Affiliation(s)
- Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Lijing Bai
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dan Wang
- National Marine Environmental Forecasting Center, State Oceanic Administration, Beijing 100081, China
| |
Collapse
|
19
|
Can Microbially Induced Calcite Precipitation (MICP) through a Ureolytic Pathway Be Successfully Applied for Removing Heavy Metals from Wastewaters? CRYSTALS 2018. [DOI: 10.3390/cryst8110438] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Microbially induced calcite precipitation (MICP) through a ureolytic pathway is a process that promotes calcite precipitation as a result of the urease enzymatic activity of several microorganisms. It has been studied for different technological applications, such as soil bio-consolidation, bio-cementation, CO2 sequestration, among others. Recently, this process has been proposed as a possible process for removing heavy metals from contaminated soils. However, no research has been reported dealing with the MICP process for heavy metal removal from wastewater/waters. This (re)view proposes to consider to such possibility. The main characteristics of MICP are presented and discussed. The precipitation of heavy metals contained in wastewaters/waters via MICP is exanimated based on process characteristics. Moreover, challenges for its successful implementation are discussed, such as the heavy metal tolerance of inoculum, ammonium release as product of urea hydrolysis, and so on. A semi-continuous operation in two steps (cell growth and bio-precipitation) is proposed. Finally, the wastewater from some typical industries releasing heavy metals are examined, discussing the technical barriers and feasibility.
Collapse
|
20
|
Augusto MR, Camiloti PR, Souza TSOD. Fast start-up of the single-stage nitrogen removal using anammox and partial nitritation (SNAP) from conventional activated sludge in a membrane-aerated biofilm reactor. BIORESOURCE TECHNOLOGY 2018; 266:151-157. [PMID: 29960245 DOI: 10.1016/j.biortech.2018.06.068] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
The single-stage nitrogen removal using anammox and partial nitritation (SNAP) is a promising alternative for low-cost ammonium removal from wastewaters. This study aimed to evaluate the anammox biomass enrichment and SNAP process start-up in a laboratory-scale membrane-aerated biofilm reactor (MABR) at nitrogen loading rates of 50 g N.m-3.d-1 (period 1) and 100 g N.m-3.d-1 (period 2). Anammox activity was observed after 48 days, and the SNAP process was stable after 80 days. In period 1, the average total nitrogen (TN) removal was 78 ± 6%, and the maximum removal was 84%. In period 2, the average TN removal was 61 ± 5%, and the maximum was 69%. Higher dissolved oxygen levels may have caused imbalances in the microbial community in period 2, decreasing the reactor performance. These results demonstrated the potential of the MABR for the fast implementation of the single-stage partial nitritation and anammox processes.
Collapse
Affiliation(s)
- Matheus Ribeiro Augusto
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo (USP), Av. Prof. Almeida Prado, 83 Travessa 2, Butantã, 05.508-900 São Paulo, SP, Brazil.
| | - Priscila Rosseto Camiloti
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental-Bloco 4-F, Av. João Dagnone, 1100, Santa Angelina, 13.563-120 São Carlos, SP, Brazil
| | - Theo Syrto Octavio de Souza
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo (USP), Av. Prof. Almeida Prado, 83 Travessa 2, Butantã, 05.508-900 São Paulo, SP, Brazil
| |
Collapse
|
21
|
Ding C, Enyi FO, Adrian L. Anaerobic Ammonium Oxidation (Anammox) with Planktonic Cells in a Redox-Stable Semicontinuous Stirred-Tank Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5671-5681. [PMID: 29693390 DOI: 10.1021/acs.est.7b05979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anaerobic ammonium oxidizing (anammox) bacteria are routinely cultivated in mixed culture in biomass-retaining bioreactors or as planktonic cells in membrane bioreactors. Here, we demonstrate that anammox bacteria can also be cultivated as planktonic cells in a semicontinuous stirred-tank reactor (semi-CSTR) with a specific growth rate μ of 0.33 d-1 at 30 °C. Redox potential inside the reactor stabilized at around 10 mV (±15 mV; vs standard hydrogen electrode) without gas purging. Reactor headspace pressure was used as a sensitive and real-time indicator for nitrogen evolution and anammox activity. The reactor was dominated by an organism closely related to " Candidatus Kuenenia stuttgartiensis" (∼87% abundance) as shown by Illumina amplicon sequencing and fluorescence in situ hybridization. Epifluorescence microscopy demonstrated that all cells were in their planktonic form. Mass balance analysis revealed a nitrite/ammonium ratio of 1.270, a nitrate/ammonium ratio of 0.238, and a biomass yield of 1.97 g volatile suspended solids per mole of consumed ammonium. Batch experiments with the reactor effluent showed that anammox activities were sensitive to sulfide (IC50 = 5 μM) and chloramphenicol (IC50 = 19 mg L-1), much lower than reported for granular anammox biomass. This study shows that semi-CSTR is a powerful tool to study anammox bacteria.
Collapse
Affiliation(s)
- Chang Ding
- Helmholtz Centre for Environmental Research - UFZ , Isotope Biogeochemistry , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Francis O Enyi
- Helmholtz Centre for Environmental Research - UFZ , Isotope Biogeochemistry , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research - UFZ , Isotope Biogeochemistry , Permoserstraße 15 , 04318 Leipzig , Germany
- Chair of Geobiotechnology, Technische Universität Berlin , Ackerstraße 76 , 13355 Berlin , Germany
| |
Collapse
|