1
|
Vashisth D, Mishra S. Unlocking the potential of Artemisia annua for artemisinin production: current insights and emerging strategies. 3 Biotech 2025; 15:164. [PMID: 40375936 PMCID: PMC12075056 DOI: 10.1007/s13205-025-04332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 04/28/2025] [Indexed: 05/18/2025] Open
Abstract
Malaria is a deadly disease, and the best effective treatments depend on artemisinin, a sesquiterpene lactone compound isolated from the plant Artemisia annua. However, artemisinin is produced in very small amount within the plant which is insufficient to meet the global demand. Although researchers have investigated synthetic and semi-synthetic approaches, they still face significant challenges, such as high costs and low efficiency, making A. annua the most viable source. Biotechnological advances in breeding and genetic engineering have developed new A. annua varieties with higher artemisinin content, and some varieties have achieved up to 3.2% of plant dry weight. Furthermore, researchers have identified the key genes and transcription factors that can be modified to boost production further. Environmental factors, such as light and specific plant hormones, play a crucial role in regulating this pathway. Also, tissue culture, hairy root systems, and natural elicitors have shown promising results, but need further refinement. Interestingly, the use of whole plants (such as dried leaf powder) instead of purified artemisinin alone has been found to improve drug absorption in the body, improve its effectiveness, and help combat artemisinin resistance. Beyond treating malaria, A. annua also demonstrates other therapeutic potential in treating other diseases, including cancer and viral infections. These findings highlight that A. annua is not just a source of artemisinin; it is a valuable medicinal plant that deserves continued research focus, primarily through approaches that improve artemisinin production directly in the plant.
Collapse
Affiliation(s)
- Divya Vashisth
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O-CIMAP, Lucknow, 226015 India
| | - Sudhanshu Mishra
- Department of Forensic Biology and Biotechnology, School of Forensic Sciences, National Forensic Sciences University (NFSU), An Institute of National Importance, Ministry of Home Affairs, Govt. of India, Delhi Campus, New Delhi, 110085 India
| |
Collapse
|
2
|
Bharathi JK, Suresh P, Prakash MAS, Muneer S. Exploring recent progress of molecular farming for therapeutic and recombinant molecules in plant systems. Heliyon 2024; 10:e37634. [PMID: 39309966 PMCID: PMC11416299 DOI: 10.1016/j.heliyon.2024.e37634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/10/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
An excellent technique for producing pharmaceuticals called "molecular farming" enables the industrial mass production of useful recombinant proteins in genetically modified organisms. Protein-based pharmaceuticals are rising in significance because of a variety of factors, including their bioreactivity, precision, safety, and efficacy rate. Heterologous expression methods for the manufacturing of pharmaceutical products have been previously employed using yeast, bacteria, and animal cells. However, the high cost of mammalian cell system, and production, the chance for product complexity, and contamination, and the hurdles of scaling up to commercial production are the limitations of these traditional expression methods. Plants have been raised as a hopeful replacement system for the expression of biopharmaceutical products due to their potential benefits, which include low production costs, simplicity in scaling up to commercial manufacturing levels, and a lower threat of mammalian toxin contaminations and virus infections. Since plants are widely utilized as a source of therapeutic chemicals, molecular farming offers a unique way to produce molecular medicines such as recombinant antibodies, enzymes, growth factors, plasma proteins, and vaccines whose molecular basis for use in therapy is well established. Biopharming provides more economical and extensive pharmaceutical drug supplies, including vaccines for contagious diseases and pharmaceutical proteins for the treatment of conditions like heart disease and cancer. To assess its technical viability and the efficacy resulting from the adoption of molecular farming products, the following review explores the various methods and methodologies that are currently employed to create commercially valuable molecules in plant systems.
Collapse
Affiliation(s)
- Jothi Kanmani Bharathi
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India
| | - Preethika Suresh
- School of Bioscience and Biotechnology, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
- Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India
| | - Sowbiya Muneer
- Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
| |
Collapse
|
3
|
Lawrence N, Handley TNG, de Veer SJ, Harding MD, Andraszek A, Hall L, Raven KD, Duffy S, Avery VM, Craik DJ, Malins LR, McMorran BJ. Enhancing the Intrinsic Antiplasmodial Activity and Improving the Stability and Selectivity of a Tunable Peptide Scaffold Derived from Human Platelet Factor 4. ACS Infect Dis 2024; 10:2899-2912. [PMID: 39087267 PMCID: PMC11320574 DOI: 10.1021/acsinfecdis.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
The control of malaria, a disease caused by Plasmodium parasites that kills over half a million people every year, is threatened by the continual emergence and spread of drug resistance. Therefore, new molecules with different mechanisms of action are needed in the antimalarial drug development pipeline. Peptides developed from host defense molecules are gaining traction as anti-infectives due to theood of inducing drug resistance. Human platelet factor 4 (PF4) has intrinsic activity against P. falciparum, and a macrocyclic helix-loop-helix peptide derived from its active domain recapitulates this activity. In this study, we used a stepwise approach to optimize first-generation PF4-derived internalization peptides (PDIPs) by producing analogues with substitutions to charged and hydrophobic amino acid residues or with modifications to terminal residues including backbone cyclization. We evaluated the in vitro activity of PDIP analogues against P. falciparum compared to their overall helical structure, resistance to breakdown by serum proteases, selective binding to negatively charged membranes, and hemolytic activity. Next, we combined antiplasmodial potency-enhancing substitutions that retained favorable membrane and cell-selective properties onto the most stable scaffold to produce a backbone cyclic PDIP analogue with four-fold improved activity against P. falciparum compared to first-generation peptides. These studies demonstrate the ability to modify PDIP to select for and combine desirable properties and further validate the suitability of this unique peptide scaffold for developing a new molecule class that is distinct from existing antimalarial drugs.
Collapse
Affiliation(s)
- Nicole Lawrence
- Institute
for Molecular Bioscience and Australian Research Council Centre of
Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas N. G. Handley
- Department
of Radiopharmaceutical Sciences, Cancer Imaging, The Peter MacCallum Cancer Centre, Victoria 3000, Australia
- Sir
Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Simon J. de Veer
- Institute
for Molecular Bioscience and Australian Research Council Centre of
Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Maxim D. Harding
- Institute
for Molecular Bioscience and Australian Research Council Centre of
Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alicja Andraszek
- Institute
for Molecular Bioscience and Australian Research Council Centre of
Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lachlan Hall
- Institute
for Molecular Bioscience and Australian Research Council Centre of
Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Karoline D. Raven
- The
John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Sandra Duffy
- Discovery
Biology, Centre for Cellular Phenomics, School of Environment and
Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Vicky M. Avery
- Discovery
Biology, Centre for Cellular Phenomics, School of Environment and
Science, Griffith University, Nathan, Queensland 4111, Australia
| | - David J. Craik
- Institute
for Molecular Bioscience and Australian Research Council Centre of
Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lara R. Malins
- Research
School of Chemistry and Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Brendan J. McMorran
- The
John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
4
|
Negri S, Pietrolucci F, Andreatta S, Chinyere Njoku R, Antunes Silva Nogueira Ramos C, Crimi M, Commisso M, Guzzo F, Avesani L. Bioprospecting of Artemisia genus: from artemisinin to other potentially bioactive compounds. Sci Rep 2024; 14:4791. [PMID: 38413638 PMCID: PMC10899597 DOI: 10.1038/s41598-024-55128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Species from genus Artemisia are widely distributed throughout temperate regions of the northern hemisphere and many cultures have a long-standing traditional use of these plants as herbal remedies, liquors, cosmetics, spices, etc. Nowadays, the discovery of new plant-derived products to be used as food supplements or drugs has been pushed by the exploitation of bioprospection approaches. Often driven by the knowledge derived from the ethnobotanical use of plants, bioprospection explores the existing biodiversity through integration of modern omics techniques with targeted bioactivity assays. In this work we set up a bioprospection plan to investigate the phytochemical diversity and the potential bioactivity of five Artemisia species with recognized ethnobotanical tradition (A. absinthium, A. alba, A. annua, A. verlotiorum and A. vulgaris), growing wild in the natural areas of the Verona province. We characterized the specialized metabolomes of the species (including sesquiterpenoids from the artemisinin biosynthesis pathway) through an LC-MS based untargeted approach and, in order to identify potential bioactive metabolites, we correlated their composition with the in vitro antioxidant activity. We propose as potential bioactive compounds several isomers of caffeoyl and feruloyl quinic acid esters (e.g. dicaffeoylquinic acids, feruloylquinic acids and caffeoylferuloylquinic acids), which strongly characterize the most antioxidant species A. verlotiorum and A. annua. Morevoer, in this study we report for the first time the occurrence of sesquiterpenoids from the artemisinin biosynthesis pathway in the species A. alba.
Collapse
Affiliation(s)
- Stefano Negri
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Fabio Pietrolucci
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | | | - Ruth Chinyere Njoku
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
| | | | - Massimo Crimi
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| | - Linda Avesani
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134, Verona, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| |
Collapse
|
5
|
Nabi N, Singh S, Saffeullah P. An updated review on distribution, biosynthesis and pharmacological effects of artemisinin: A wonder drug. PHYTOCHEMISTRY 2023; 214:113798. [PMID: 37517615 DOI: 10.1016/j.phytochem.2023.113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Plant-based drugs have been used for centuries for treating different ailments. Malaria, one of the prevalent threats in many parts of the world, is treated mainly by artemisinin-based drugs derived from plants of genus Artemisia. However, the distribution of artemisinin is restricted to a few species of the genus; besides, its yield depends on ontogeny and the plant's geographical location. Here, we review the studies focusing on biosynthesis and distributional pattern of artemisinin production in species of the genus Artemisia. We also discussed various agronomic and in vitro methods and molecular approaches to increase the yield of artemisinin. We have summarized different mechanisms of artemisinin involved in its anti-malarial, anti-cancer, anti-inflammatory and anti-viral activities (like against Covid-19). Overall the current review provides a synopsis of a global view of the distribution of artemisinin, its biosynthesis, and pharmacological potential in treating various diseases like malaria, cancer, and coronavirus, which may provoke future research efforts in drug development. Nevertheless, long-term trials and molecular approaches, like CRISPR-Cas, are required for in-depth research.
Collapse
Affiliation(s)
- Neelofer Nabi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Seema Singh
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Peer Saffeullah
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
6
|
Biodiversity: the overlooked source of human health. Trends Mol Med 2023; 29:173-187. [PMID: 36585352 DOI: 10.1016/j.molmed.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
Biodiversity is the measure of the variation of lifeforms in a given ecological system. Biodiversity provides ecosystems with the robustness, stability, and resilience that sustains them. This is ultimately essential for our survival because we depend on the services that natural ecosystems provide (food, fresh water, air, climate, and medicine). Despite this, human activity is driving an unprecedented rate of biodiversity decline, which may jeopardize the life-support systems of the planet if no urgent action is taken. In this article we show why biodiversity is essential for human health. We raise our case and focus on the biomedicine services that are enabled by biodiversity, and we present known and novel approaches to promote biodiversity conservation.
Collapse
|
7
|
Malarz J, Galanty A, Stojakowska A. Chemical Composition and Cytotoxic Activity of Extracts from Carpesium divaricatum: In Vitro- versus Field-Grown Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:2815. [PMID: 36365268 PMCID: PMC9659292 DOI: 10.3390/plants11212815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Carpesium divaricatum Sieb. & Zucc. is a plant species rich in terpenoids of anti-inflammatory and cytotoxic activity, especially germacranolides of potential medicinal value. The present study describes in vitro multiplication of C. divaricatum, analysis of active constituents in the multiple shoots, and assessment of cytotoxic activities of extracts prepared from in vitro- and field-grown plants. The plant extracts were evaluated for cytotoxicity using two melanoma cell lines (HTB140 and A375); human keratinocytes (HaCaT); two colon cancer cell lines (Caco2 and HT29); human hepatocellular carcinoma cells (HepG2); two lines of prostate cancer cells (DU145 and PC3) and prostate epithelial cells (PNT2). Chemical compositions of the assayed extracts were analyzed by HPLC/DAD, in reference to isolated compounds. Maximum of 4.07 ± 1.61 shoots regenerated from a nodal explant of C. divaricatum, cultivated in a liquid MS medium supplemented with thidiazuron (1 μM). In vitro grown shoots and plantlets of C. divaricatum accumulated terpenoids that are known as active constituents of the intact plant. Cytotoxic activity of the extracts prepared from the in vitro cultured plants was like that demonstrated by the extracts prepared from field-grown plants and seemed to be more selective than cytotoxicities of the individual germacranolides.
Collapse
Affiliation(s)
- Janusz Malarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna Street 9, 30-688 Kraków, Poland
| | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland
| |
Collapse
|
8
|
Klocko AL. Genetic Containment for Molecular Farming. PLANTS (BASEL, SWITZERLAND) 2022; 11:2436. [PMID: 36145835 PMCID: PMC9501302 DOI: 10.3390/plants11182436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022]
Abstract
Plant molecular farming can provide humans with a wide variety of plant-based products including vaccines, therapeutics, polymers, industrial enzymes, and more. Some of these products, such as Taxol, are produced by endogenous plant genes, while many others require addition of genes by artificial gene transfer. Thus, some molecular farming plants are transgenic (or cisgenic), while others are not. Both the transgenic nature of many molecular farming plants and the fact that the products generated are of high-value and specific in purpose mean it is essential to prevent accidental cross-over of molecular farming plants and products into food or feed. Such mingling could occur either by gene flow during plant growth and harvest or by human errors in material handling. One simple approach to mitigate possible transfer would be to use only non-food non-feed species for molecular farming purposes. However, given the extent of molecular farming products in development, testing, or approval that do utilize food or feed crops, a ban on use of these species would be challenging to implement. Therefore, other approaches will need to be considered for mitigation of cross-flow between molecular farming and non-molecular-farming plants. This review summarized some of the production systems available for molecular farming purposes and options to implement or improve plant containment.
Collapse
Affiliation(s)
- Amy L Klocko
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| |
Collapse
|
9
|
Coskun Y, Taslidere F. Influence of biotic and abiotic elicitors on artemisinin, quercetin, caffeic acid and essential oil production in
Artemisia dracunculus
L. FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yasemin Coskun
- Faculty of Arts and Sciences, Department of Biology Suleyman Demirel University Isparta Turkey
| | - Feride Taslidere
- Faculty of Arts and Sciences, Department of Biology Suleyman Demirel University Isparta Turkey
| |
Collapse
|
10
|
Motolinía-Alcántara EA, Castillo-Araiza CO, Rodríguez-Monroy M, Román-Guerrero A, Cruz-Sosa F. Engineering Considerations to Produce Bioactive Compounds from Plant Cell Suspension Culture in Bioreactors. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122762. [PMID: 34961231 PMCID: PMC8707313 DOI: 10.3390/plants10122762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The large-scale production of plant-derived secondary metabolites (PDSM) in bioreactors to meet the increasing demand for bioactive compounds for the treatment and prevention of degenerative diseases is nowadays considered an engineering challenge due to the large number of operational factors that need to be considered during their design and scale-up. The plant cell suspension culture (CSC) has presented numerous benefits over other technologies, such as the conventional whole-plant extraction, not only for avoiding the overexploitation of plant species, but also for achieving better yields and having excellent scaling-up attributes. The selection of the bioreactor configuration depends on intrinsic cell culture properties and engineering considerations related to the effect of operating conditions on thermodynamics, kinetics, and transport phenomena, which together are essential for accomplishing the large-scale production of PDSM. To this end, this review, firstly, provides a comprehensive appraisement of PDSM, essentially those with demonstrated importance and utilization in pharmaceutical industries. Then, special attention is given to PDSM obtained out of CSC. Finally, engineering aspects related to the bioreactor configuration for CSC stating the effect of the operating conditions on kinetics and transport phenomena and, hence, on the cell viability and production of PDSM are presented accordingly. The engineering analysis of the reviewed bioreactor configurations for CSC will pave the way for future research focused on their scaling up, to produce high value-added PDSM.
Collapse
Affiliation(s)
| | - Carlos Omar Castillo-Araiza
- Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Ciudad de México 09310, Mexico;
| | - Mario Rodríguez-Monroy
- Centro de Desarrollo de Productos Bióticos (CEPROBI), Departamento de Biotecnología, Instituto Politécnico Nacional (IPN), Yautepec 62731, Mexico;
| | - Angélica Román-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Ciudad de México 09310, Mexico;
| | - Francisco Cruz-Sosa
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Ciudad de México 09310, Mexico;
| |
Collapse
|
11
|
Mani V, Park S, Kim JA, Lee SI, Lee K. Metabolic Perturbation and Synthetic Biology Strategies for Plant Terpenoid Production-An Updated Overview. PLANTS (BASEL, SWITZERLAND) 2021; 10:2179. [PMID: 34685985 PMCID: PMC8539415 DOI: 10.3390/plants10102179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
Terpenoids represent one of the high-value groups of specialized metabolites with vast structural diversity. They exhibit versatile human benefits and have been successfully exploited in several sectors of day-to-day life applications, including cosmetics, foods, and pharmaceuticals. Historically, the potential use of terpenoids is challenging, and highly hampered by their bioavailability in their natural sources. Significant progress has been made in recent years to overcome such challenges by advancing the heterologous production platforms of hosts and metabolic engineering technologies. Herein, we summarize the latest developments associated with analytical platforms, metabolic engineering, and synthetic biology, with a focus on two terpenoid classes: monoterpenoids and sesquiterpenoids. Accumulated data showed that subcellular localization of both the precursor pool and the introduced enzymes were the crucial factors for increasing the production of targeted terpenoids in plants. We believe this timely review provides a glimpse of current state-of-the-art techniques/methodologies related to terpenoid engineering that would facilitate further improvements in terpenoids research.
Collapse
Affiliation(s)
| | | | | | | | - Kijong Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (V.M.); (S.P.); (J.A.K.); (S.I.L.)
| |
Collapse
|
12
|
Namdeo AG, Ingawale DK. Ashwagandha: Advances in plant biotechnological approaches for propagation and production of bioactive compounds. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113709. [PMID: 33346029 DOI: 10.1016/j.jep.2020.113709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 09/12/2020] [Accepted: 12/15/2020] [Indexed: 05/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera is one of the most extensively delved Ayurvedic medicine. Apart from rejuvenation and increasing longevity, it has several other properties such as immunomodulation, anti-cancer, anti-stress and neuroprotection. Because of its prevailing use and increasing demand, it becomes prudent to scientifically evaluate and document both its propagation and production of desired phytoconstituents. AIM OF THE STUDY This review aims to highlight the research progress achieved on various biotechnological and tissue culture aspects of Withania somnifera and to cover up-to-date information regarding in-vitro propagation and production of withanolides. MATERIALS AND METHODS Significant published studies were identified for the years 2000-2018 using Elsevier-Science Direct, Pubmed and Google scholar and several research studies in our laboratory. Following keywords such as "plant extracts", "in vitro cultures", "callus and suspension culture", "micropropagation", "hairy root cultures" were used. Further, "Withania somnifera", "secondary metabolites specially withanolides", "molecular techniques" and "in vitro conservation" were used to cross-reference the keywords. RESULTS Ashwagandha comprises a broad spectrum of phytochemicals with a wide range of pharmacological properties. W. somnifera seeds have reduced viability and germination rates; thus, its regular cultivation method fails to achieve commercial demands mainly for the production of desired phytoconstituents. Cultivation of plant cells/tissues under in vitro conditions and development of various biotechnological strategies will help to build an attractive alternative to provide adequate quality and quantity raw materials. Recently, a large number of in vitro protocols has developed for W. somnifera not only for its propagation but for the production of secondary metabolites as well. Present work highlights a variety of biotechnological strategies both for prompt propagation and production of different bioactive secondary metabolites. CONCLUSION The present review focuses on the development and opportunities in various biotechnological approaches to accomplish the global demand of W. somnifera and its secondary metabolites. This review underlines the advances in plant biotechnological approaches for the propagation of W. somnifera and production of its bioactive compounds.
Collapse
Affiliation(s)
- Ajay G Namdeo
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandawane, Pune, 411038, India.
| | - Deepa K Ingawale
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandawane, Pune, 411038, India
| |
Collapse
|
13
|
Lautié E, Russo O, Ducrot P, Boutin JA. Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes. Front Pharmacol 2020; 11:397. [PMID: 32317969 PMCID: PMC7154113 DOI: 10.3389/fphar.2020.00397] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The screening and testing of extracts against a variety of pharmacological targets in order to benefit from the immense natural chemical diversity is a concern in many laboratories worldwide. And several successes have been recorded in finding new actives in natural products, some of which have become new drugs or new sources of inspiration for drugs. But in view of the vast amount of research on the subject, it is surprising that not more drug candidates were found. In our view, it is fundamental to reflect upon the approaches of such drug discovery programs and the technical processes that are used, along with their inherent difficulties and biases. Based on an extensive survey of recent publications, we discuss the origin and the variety of natural chemical diversity as well as the strategies to having the potential to embrace this diversity. It seemed to us that some of the difficulties of the area could be related with the technical approaches that are used, so the present review begins with synthetizing some of the more used discovery strategies, exemplifying some key points, in order to address some of their limitations. It appears that one of the challenges of natural product-based drug discovery programs should be an easier access to renewable sources of plant-derived products. Maximizing the use of the data together with the exploration of chemical diversity while working on reasonable supply of natural product-based entities could be a way to answer this challenge. We suggested alternative ways to access and explore part of this chemical diversity with in vitro cultures. We also reinforced how important it was organizing and making available this worldwide knowledge in an "inventory" of natural products and their sources. And finally, we focused on strategies based on synthetic biology and syntheses that allow reaching industrial scale supply. Approaches based on the opportunities lying in untapped natural plant chemical diversity are also considered.
Collapse
Affiliation(s)
- Emmanuelle Lautié
- Centro de Valorização de Compostos Bioativos da Amazônia (CVACBA)-Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Olivier Russo
- Institut de Recherches Internationales SERVIER, Suresnes, France
| | - Pierre Ducrot
- Molecular Modelling Department, 'PEX Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Jean A Boutin
- Institut de Recherches Internationales SERVIER, Suresnes, France
| |
Collapse
|
14
|
Arora M, Saxena P, Abdin MZ, Varma A. Interaction between Piriformospora indica and Azotobacter chroococcum diminish the effect of salt stress in Artemisia annua L. by enhancing enzymatic and non-enzymatic antioxidants. Symbiosis 2019. [DOI: 10.1007/s13199-019-00656-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Artemisinin and its derivatives; ancient tradition inspiring the latest therapeutic approaches against malaria. Future Med Chem 2019; 11:1443-1459. [PMID: 31298579 DOI: 10.4155/fmc-2018-0337] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Artemisinin (ART) is an endoperoxide sesquiterpene lactone, commonly used in the treatment of malaria. Although it was isolated from Artemisia annua L., a plant widely applied in Chinese Traditional Medicine, its mechanism of action remains uncertain and its clinical use is still limited due to its low solubility, its poor bioavailability and short in vivo half-life. Over time, several studies have been aimed towards the discovery of potent ART derivatives that could overcome clinical drawbacks. In this review, we focus on the multifaced aspects of ART and on the efforts spent to improve its pharmacological profile that so far culminated in the discovery of more effective drugs. Lastly, we outline the new perspectives in the ART-derivatives scenario.
Collapse
|
16
|
Numonov S, Sharopov F, Salimov A, Sukhrobov P, Atolikshoeva S, Safarzoda R, Habasi M, Aisa HA. Assessment of Artemisinin Contents in Selected Artemisia Species from Tajikistan (Central Asia). MEDICINES 2019; 6:medicines6010023. [PMID: 30709043 PMCID: PMC6473495 DOI: 10.3390/medicines6010023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/01/2023]
Abstract
Background: Central Asia is the center of origin and diversification of the Artemisia genus. The genus Artemisia is known to possess a rich phytochemical diversity. Artemisinin is the shining example of a phytochemical isolated from Artemisia annua, which is widely used in the treatment of malaria. There is great interest in the discovery of alternative sources of artemisinin in other Artemisia species. Methods: The hexane extracts of Artemisia plants were prepared with ultrasound-assisted extraction procedures. Silica gel was used as an adsorbent for the purification of Artemisia annua extract. High-performance liquid chromatography with ultraviolet detection was performed for the quantification of underivatized artemisinin from hexane extracts of plants. Results: Artemisinin was found in seven Artemisia species collected from Tajikistan. Content of artemisinin ranged between 0.07% and 0.45% based on dry mass of Artemisia species samples. Conclusions: The artemisinin contents were observed in seven Artemisia species. A. vachanica was found to be a novel plant source of artemisinin. Purification of A. annua hexane extract using silica gel as adsorbent resulted in enrichment of artemisinin.
Collapse
Affiliation(s)
- Sodik Numonov
- Research Institution "Chinese-Tajik Innovation Center for Natural Products" of the Tajikistan Academy of Sciences, Ayni str. 299/2, Dushanbe 734063, Tajikistan.
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- Center for Research in Innovative Technologies, Academy of Sciences of the Republic of Tajikistan, Dushanbe 734062, Tajikistan.
| | - Farukh Sharopov
- Research Institution "Chinese-Tajik Innovation Center for Natural Products" of the Tajikistan Academy of Sciences, Ayni str. 299/2, Dushanbe 734063, Tajikistan.
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan.
| | - Aminjon Salimov
- V.I. Nikitin Institute of Chemistry of the Tajikistan Academy of Sciences, Ayni str. 299/2, Dushanbe 734063, Tajikistan.
| | - Parviz Sukhrobov
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Sunbula Atolikshoeva
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Ramazon Safarzoda
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan.
| | - Maidina Habasi
- Research Institution "Chinese-Tajik Innovation Center for Natural Products" of the Tajikistan Academy of Sciences, Ayni str. 299/2, Dushanbe 734063, Tajikistan.
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Haji Akber Aisa
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|