1
|
Li W, Zou G, Bao D, Wu Y. Current Advances in the Functional Genes of Edible and Medicinal Fungi: Research Techniques, Functional Analysis, and Prospects. J Fungi (Basel) 2024; 10:311. [PMID: 38786666 PMCID: PMC11121823 DOI: 10.3390/jof10050311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Functional genes encode various biological functions required for the life activities of organisms. By analyzing the functional genes of edible and medicinal fungi, varieties of edible and medicinal fungi can be improved to enhance their agronomic traits, growth rates, and ability to withstand adversity, thereby increasing yield and quality and promoting industrial development. With the rapid development of functional gene research technology and the publication of many whole-genome sequences of edible and medicinal fungi, genes related to important biological traits have been mined, located, and functionally analyzed. This paper summarizes the advantages and disadvantages of different functional gene research techniques and application examples for edible and medicinal fungi; systematically reviews the research progress of functional genes of edible and medicinal fungi in biological processes such as mating type, mycelium and fruit growth and development, substrate utilization and nutrient transport, environmental response, and the synthesis and regulation of important active substances; and proposes future research directions for functional gene research for edible and medicinal fungi. The overall aim of this study was to provide a valuable reference for further promoting the molecular breeding of edible and medicinal fungi with high yield and quality and to promote the wide application of edible and medicinal fungi products in food, medicine, and industry.
Collapse
Affiliation(s)
- Wenyun Li
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
| | - Dapeng Bao
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingying Wu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Li J, Wu M, Igarashi Y, Luo F, Chang P. Agrobacterium tumefaciens-mediated transformation of the white-rot fungus Dichomitus squalens. J Microbiol Methods 2023; 214:106842. [PMID: 37827437 DOI: 10.1016/j.mimet.2023.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Dichomitus squalens is an efficient white-rot fungus that generates a wide range of extracellular enzymes to degrade lignocellulose in nature. Although a protoplast-mediated transformation method for D. squalens has been developed, the transformation efficiency remains low. Here, we established a highly efficient Agrobacterium tumefaciens-mediated transformation (ATMT) procedure for D. squalens by transferring a binary vector harboring the neomycin phosphotransferase II (nptII) resistance gene fused with DsRed-Express2, under the control of the native glyceraldehyde-3-phosphate dehydrogenase (GPD) gene promoter. Key factors affecting the efficiency of transformation were tested. A. tumefaciens EHA105 strain with a cell density of 0.4 OD600nm and 96 h co-cultivation resulted in the highest transformation efficiency, with an average of 98 ± 11 transformants per co-cultivation plate. Besides, the strong expression of DsRed-Express2 indicates the effectiveness of the DsGPD promoter in driving gene expression in D. squalens. This ATMT system of D. squalens would be beneficial for its molecular genetic studies.
Collapse
Affiliation(s)
- Jing Li
- Chongqing Key Laboratory of Bioresource, Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Min Wu
- Chongqing Key Laboratory of Bioresource, Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yasuo Igarashi
- Chongqing Key Laboratory of Bioresource, Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Feng Luo
- Chongqing Key Laboratory of Bioresource, Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Peng Chang
- Chongqing Key Laboratory of Bioresource, Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Liu W, He P, Shi X, Zhang Y, Perez-Moreno J, Yu F. Large-Scale Field Cultivation of Morchella and Relevance of Basic Knowledge for Its Steady Production. J Fungi (Basel) 2023; 9:855. [PMID: 37623626 PMCID: PMC10455658 DOI: 10.3390/jof9080855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Morels are one of the most highly prized edible and medicinal mushrooms worldwide. Therefore, historically, there has been a large international interest in their cultivation. Numerous ecological, physiological, genetic, taxonomic, and mycochemical studies have been previously developed. At the beginning of this century, China finally achieved artificial cultivation and started a high-scale commercial development in 2012. Due to its international interest, its cultivation scale and area expanded rapidly in this country. However, along with the massive industrial scale, a number of challenges, including the maintenance of steady economic profits, arise. In order to contribute to the solution of these challenges, formal research studying selection, species recognition, strain aging, mating type structure, life cycle, nutrient metabolism, growth and development, and multi-omics has recently been boosted. This paper focuses on discussing current morel cultivation technologies, the industrial status of cultivation in China, and the relevance of basic biological research, including, e.g., the study of strain characteristics, species breeding, mating type structure, and microbial interactions. The main challenges related to the morel cultivation industry on a large scale are also analyzed. It is expected that this review will promote a steady global development of the morel industry based on permanent and robust basic scientific knowledge.
Collapse
Affiliation(s)
- Wei Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.)
| | - Peixin He
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.)
| | - Ya Zhang
- Sichuan Junyinong Agricultural Technology Co., Ltd., Chengdu 610023, China;
| | - Jesus Perez-Moreno
- Edafologia, Campus Montecillo, Colegio de Postgraduados, Texcoco 56230, Mexico
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.)
| |
Collapse
|
4
|
Zhang Q, Shu F, Chen X, Liu W, Bian Y, Kang H. Construction of nucleus-directed fluorescent reporter systems and its application to verification of heterokaryon formation in Morchella importuna. Front Microbiol 2022; 13:1051013. [PMID: 36478869 PMCID: PMC9720127 DOI: 10.3389/fmicb.2022.1051013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
INTRODUCTION Morchella importuna (M. importuna) is a rare fungus with high nutrition value and distinct flavor. Despite the successful artificial cultivation, its genetic characteristics and biological processes such as life cycle, reproductive system, and trophic mode remain poorly understood. METHODS Considering this, we constructed pEH2B and pMH2B vectors by fusing M. importuna endogenous histone protein H2B with fluorescent proteins eGFP or mCherry, respectively. Based on the constructed pEH2B and pMH2B vectors, nuclear fluorescence localization was performed via Agrobacterium tumefaciens-mediated transformation (ATMT). These two vectors were both driven by two endogenous promoters glyceraldehyde 3-phosphate dehydrogenase (GPD) and ubiquitin (UBI). The vector-based reporter systems were tested by the paired culture of two genetically modified strains pEH2B-labeled M04M24 (24e, MAT1-1-1) and pMH2B-abeled M04M26 (26m, MAT1-2-1). RESULTS The fluorescence observation and molecular identification results indicated the successful hyphal fusion and heterokaryon formation. We found that the expression of the reporter genes was stable, and it did not interfere with the growth of the fungus. DISCUSSION Our constructed nucleus-directed fluorescent systems in M. importuna can be used for monitoring the dynamic development and reproductive processes in living cells and also for monitoring the interaction between morels and plant roots. Therefore, morels exhibit the potential to be a candidate organism used for the research on basic biology and genetics of ascomycetes.
Collapse
Affiliation(s)
- Qianqian Zhang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Fang Shu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xin Chen
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Wei Liu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yinbing Bian
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Heng Kang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
5
|
Liu Q, Qu S, He G, Wei J, Dong C. Mating-Type Genes Play an Important Role in Fruiting Body Development in Morchella sextelata. J Fungi (Basel) 2022; 8:jof8060564. [PMID: 35736047 PMCID: PMC9225556 DOI: 10.3390/jof8060564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
True morels (Morchella spp.) are edible mushrooms that are commercially important worldwide due to their rich nutrition and unique appearance. In recent years, outdoor cultivation has been achieved and expanded on a large scale in China. However, the mechanisms of fruiting body development in morels are poorly understood. In this study, the role of mating-type genes in fruiting body development was researched. Fruiting bodies cultivated with different mating-type strains showed no difference in appearance, but the ascus and ascospores were slightly malformed in fruiting bodies obtained from the MAT1-1 strains. The transcript levels of mating-type genes and their target genes revealed that the regulatory mechanisms were conserved in ascomycetes fungi. The silencing of mat1-2-1 by RNA interference verified the direct regulatory effect of mat1-2-1 on its target genes at the asexual stage. When cultivated with the spawn of single mating-type strains of MAT1-1 or MAT1-2, only one corresponding mating-type gene was detected in the mycelial and conidial samples, but both mat1-1-1 and mat1-2-1 were detected in the samples of primordium, pileus, and stipe. An understanding of the mating-type genes’ role in fruiting body development in M. sextelata may help to understand the life cycle and facilitate artificial cultivation.
Collapse
Affiliation(s)
- Qizheng Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Q.L.); (S.Q.)
| | - Shan Qu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Q.L.); (S.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang He
- Beijing Agricultural Technology Extension Station, Beijing 100029, China; (G.H.); (J.W.)
| | - Jinkang Wei
- Beijing Agricultural Technology Extension Station, Beijing 100029, China; (G.H.); (J.W.)
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Q.L.); (S.Q.)
- Correspondence:
| |
Collapse
|
6
|
Montoya MRA, Massa GA, Colabelli MN, Ridao ADC. Efficient Agrobacterium tumefaciens-mediated transformation system of Diaporthe caulivora. J Microbiol Methods 2021; 184:106197. [PMID: 33713724 DOI: 10.1016/j.mimet.2021.106197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022]
Abstract
This is the first report describing the genetic transformation of Diaporthe caulivora, the soybean stem canker fungus. A simple and 100% efficient protocol of Agrobacterium tumefaciens-mediated transformation used mycelium as starting material and the hygromycin B resistance and green fluorescent protein (GFP) as a selection and reporter agents, respectively. All transgenic isolates were mitotically stable in two independent experiments and polymerase chain reaction with hygromycin B resistance primers confirmed successful T-DNA integration into the fungal genome. Plant-fungus interaction studies, including pathogenicity, latency, and endophytism, as well as further studies of random and targeted mutagenesis will be possible with GFP-expressing isolates of D. caulivora and other species in the Diaporthe / Phomopsis complex.
Collapse
Affiliation(s)
- Marina R A Montoya
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA - CONICET, Ruta 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina..
| | - Gabriela A Massa
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA - CONICET, Ruta 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina.; Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (FCA, UNMdP), Ruta 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina
| | - Mabel N Colabelli
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (FCA, UNMdP), Ruta 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina
| | - Azucena Del Carmen Ridao
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (FCA, UNMdP), Ruta 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina
| |
Collapse
|
7
|
Sambyal K, Singh RV. A comprehensive review on Morchella importuna: cultivation aspects, phytochemistry, and other significant applications. Folia Microbiol (Praha) 2021; 66:147-157. [PMID: 33464471 DOI: 10.1007/s12223-020-00849-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 11/25/2022]
Abstract
Morchella importuna is one of the most highly priced edible mushrooms and a rich source of bioactive substances with numerous beneficial medicinal properties. It has been artificially cultivated in the last few years but due to the unclear mechanism of its fruiting body formation, the stable production has not been achieved yet. This review aims to provide the detailed information about the current research status of the indoor and outdoor cultivation and significant applications of M. importuna worldwide with a vision to know more about its potential therapeutic index and edible values. It will provide the basis of better understanding about the need to develop biotechnological processes for morel farming under controlled conditions.
Collapse
Affiliation(s)
- Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, India
| | - Rahul Vikram Singh
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India.
| |
Collapse
|
8
|
Hong CP, Moon S, Yoo SI, Noh JH, Ko HG, Kim HA, Ro HS, Cho H, Chung JW, Lee HY, Ryu H. Functional Analysis of a Novel ABL ( Abnormal Browning Related to Light) Gene in Mycelial Brown Film Formation of Lentinula edodes. J Fungi (Basel) 2020; 6:E272. [PMID: 33182449 PMCID: PMC7712820 DOI: 10.3390/jof6040272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022] Open
Abstract
Lentinula edodes is a globally important edible mushroom species that is appreciated for its medicinal properties as well as its nutritional value. During commercial cultivation, a mycelial brown film forms on the surface of the sawdust growth medium at the late vegetative stage. Mycelial film formation is a critical developmental process that contributes to the quantity and quality of the mushroom yield. However, little is known regarding the genetic underpinnings of brown film formation on the surface of mycelial tissue. A novel causal gene associated with the formation of the mycelial brown film, named ABL (Abnormal browning related to light), was identified in this study. The comparative genetic analysis by dihybrid crosses between normal and abnormal browning film cultivars demonstrated that a single dominant allele was responsible for the abnormal mycelium browning phenotype. Whole-genome sequencing analysis of hybrid isolates revealed five missense single-nucleotide polymorphisms (SNPs) in the ABL locus of individuals forming abnormal partial brown films. Additional whole-genome resequencing of a further 16 cultivars showed that three of the five missense SNPs were strongly associated with the abnormal browning phenotype. Overexpression of the dominant abl-D allele in a wild-type background conferred the abnormal mycelial browning phenotype upon transformants, with slender hyphae observed as a general defective mycelial growth phenotype. Our methodology will aid the future discovery of candidate genes associated with favorable traits in edible mushrooms. The discovery of a novel gene, ABL, associated with mycelial film formation will facilitate marker-associated breeding in L. edodes.
Collapse
Affiliation(s)
- Chang Pyo Hong
- Department of R&D Planning & Management, Theragen Bio, Suwon 16229, Korea; (C.P.H.); (S.-i.Y.); (H.A.K.)
| | - Suyun Moon
- Department of Biology, Chungbuk National University, Cheongju 28644, Korea;
| | - Seung-il Yoo
- Department of R&D Planning & Management, Theragen Bio, Suwon 16229, Korea; (C.P.H.); (S.-i.Y.); (H.A.K.)
| | - Jong-Hyun Noh
- Forest Mushroom Research Center, National Forestry Cooperative Federation, Yeoju 12653, Korea; (J.-H.N.); (H.-G.K.)
| | - Han-Gyu Ko
- Forest Mushroom Research Center, National Forestry Cooperative Federation, Yeoju 12653, Korea; (J.-H.N.); (H.-G.K.)
| | - Hyun A. Kim
- Department of R&D Planning & Management, Theragen Bio, Suwon 16229, Korea; (C.P.H.); (S.-i.Y.); (H.A.K.)
| | - Hyeon-Su Ro
- Division of Applied Life Science and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Hyunwoo Cho
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Korea; (H.C.); (J.-W.C.)
| | - Jong-Wook Chung
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Korea; (H.C.); (J.-W.C.)
| | - Hwa-Yong Lee
- Department of Forest Science, Chungbuk National University, Cheongju 28644, Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju 28644, Korea;
| |
Collapse
|
9
|
Chen N, Chen M, Wu T, Bian Y, Xu Z. The development of an efficient RNAi system based on Agrobacterium-mediated transformation approach for studying functional genomics in medical fungus Wolfiporia cocos. World J Microbiol Biotechnol 2020; 36:140. [PMID: 32803511 DOI: 10.1007/s11274-020-02916-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/11/2020] [Indexed: 11/24/2022]
Abstract
Genetic transformation methods reported for Wolfiporia cocos are limited. In this study, we describe an efficient RNA interference (RNAi) system based on Agrobacterium-mediated transformation approach in W. cocos for the first time. Actively growing mycelial plugs were used as recipients for transformation using endogenous orotidine-5'-phosphate decarboxylase gene (URA3) as both a selective marker and a silencing gene, under the control of the dual promoters of Legpd and Leactin from Lentinula edodes and the single promoter of Wcgpd from W. cocos, respectively. The results showed that both the two kinds of promoters effectively drive the expression of URA3 gene, and the URA3-silenced transformants could be selected on CYM medium containing 5'-fluoroorotic acid. In addition, silencing URA3 gene has no effect on the growth of W. cocos hyphae. The incomplete silencing of the URA3 locus was also observed in this study. This study will promote further study on the mechanism of substrate degradation, sclerotial formation, and biosynthesis network of pharmacological compounds in W. cocos.
Collapse
Affiliation(s)
- Naiyao Chen
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengting Chen
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Wu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinbing Bian
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhangyi Xu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Effects of Medium Composition and Genetic Background on Agrobacterium-Mediated Transformation Efficiency of Lentinula edodes. Genes (Basel) 2019; 10:genes10060467. [PMID: 31248134 PMCID: PMC6627104 DOI: 10.3390/genes10060467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/08/2019] [Accepted: 06/14/2019] [Indexed: 11/28/2022] Open
Abstract
The establishment of genetic transformation method is crucial for the functional genomics research in filamentous fungi. Although the transformation method has been developed in several types of fungi, a highly efficient and convenient transformation system is desperately needed in Lentinula edodes. Present work established the Agrobacterium-mediated transformation (ATMT) of basidiomycete L. edodes in both monokaryon and dikaryon mycelia by using constructed binary plasmid pCAMBIA-1300-GFP. Then, the transformation efficiency of ATMT was evaluated by using different mediums for recipient incubation and different varieties of L. edodes. The results showed that in dikaryon strain W1, the positive hygromycin-resistant transformants was observed in all medium with the positive frequency of selected transformants that ranged from 0 to 30%. While in the monokaryon strain W1-26, only the millet medium group obtained positive transformants with a positive frequency of 75.48%. Moreover, three dikaryotic wild strains (YS55, YS3334, and YS3357) and two dikaryotic cultivated strains (W1 and S606) showed the highest transformation efficiency, with 32.96% of the germination frequency, and 85.12% of positive frequency for hygromycin-resistant transformants. This work demonstrated that Agrobacterium-mediated transformation was successfully performed in L. edodes, and the genotype of recipients as well as the medium for mycelial incubation were suggested to play key roles in determining the transformation efficiency. These findings may provide new avenues for the genetic modification of edible mushroom and may extend the cognition of DNA-mediated transformation in filamentous fungi.
Collapse
|