1
|
Acedos MG, De la Torre I, Barriuso J, García JL. Unsilencing a cryptic xylose metabolic pathway in Rhodococcus jostii RHA1 for efficient lipid production from lignocellulosic biomass. J Biol Eng 2025; 19:32. [PMID: 40229808 PMCID: PMC11998424 DOI: 10.1186/s13036-025-00503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025] Open
Abstract
Rhodococcus jostii RHA1 is an oleaginous bacterium that has attracted considerable attention due to its capacity to use different carbon sources to accumulate significant levels of triacylglycerols that might be converted into biofuels. However, this strain cannot transform xylose into lipids reducing its potential when growing on saccharified lignocellulosic biomass. In this work, we demonstrate that wild type R. jostii RHA1 can be evolved by adaptive laboratory evolution (ALE) to metabolize xylose without engineering heterologous metabolic pathways in the host. We have generated a phenotypically adapted ALE-xyl strain able to use xylose as the sole carbon and energy source more efficiently that an engineered recombinant strain harbouring heterologous xylA and xylB genes encoding a xylose isomerase metabolic pathway. The R. jostii RHA1 ALE-xyl strain accumulates lipids very efficiently using xylose as substrate, but even more importantly it can consume glucose and xylose at the same time. Transcriptomic analyses of ALE-xyl strain growing with glucose or xylose revealed the existence of a silent pentose metabolizing operon that is overexpressed in the presence of xylose. The detection of a xylose reductase activity together with the presence of xylitol in the cytoplasm of ALE-xyl strain suggests that xylose is consumed by a reductase pathway. This study demonstrates that, in cases where a clear phenotypic selection method is available, ALE can be used to improve very efficiently industrial microbial strains without using genetic engineering tools. Strategies focused to exploit the silent phenotypic flexibility of microorganisms to metabolize different carbon sources are powerful tools for the production of microbial value-added products using saccharified lignocellulosic wastes.
Collapse
Affiliation(s)
- Miguel G Acedos
- Department of Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.
| | - Isabel De la Torre
- Department of Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jorge Barriuso
- Department of Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José L García
- Department of Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
2
|
Woo S, Han YH, Lee HK, Baek D, Noh MH, Han S, Lim HG, Jung GY, Seo SW. Generation of a Vibrio-based platform for efficient conversion of raffinose through Adaptive Laboratory Evolution on a solid medium. Metab Eng 2024; 86:300-307. [PMID: 39489215 DOI: 10.1016/j.ymben.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/07/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Raffinose, a trisaccharide abundantly found in soybeans, is a potential alternative carbon source for biorefineries. Nevertheless, residual intermediate di- or monosaccharides and low catabolic efficiency limit raffinose use through conventional microbial hosts. This study presents a Vibrio-based platform to convert raffinose efficiently. Vibrio sp. dhg was selected as the starting strain for the Adaptive Laboratory Evolution (ALE) strategy to leverage its significantly higher metabolic efficiency. We conducted ALE on a solid minimal medium supplemented with raffinose to prevent the enrichment of undesired phenotypes due to the shared effect of extracellular raffinose hydrolysis among multiple strains. As a result, we generated the VRA10 strain that efficiently utilizes raffinose without leaving behind degraded di- or monosaccharides, achieving a notable growth rate (0.40 h-1) and raffinose consumption rate (1.2 g/gdcw/h). Whole genome sequencing and reverse engineering identified that a missense mutation in the melB gene (encoding a melibiose/raffinose:sodium symporter) and the deletion of the two galR genes (encoding transcriptional repressors for galactose catabolism) facilitated rapid raffinose utilization. The further engineered strain produced 6.2 g/L of citramalate from 20 g/L of raffinose. This study will pave the way for the efficient utilization of diverse raffinose-rich byproducts and the expansion of alternative carbon streams in biorefinery applications.
Collapse
Affiliation(s)
- Sunghwa Woo
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Yong Hee Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro 77, Gwangju, 61186, South Korea
| | - Hye Kyung Lee
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Dongyeop Baek
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Myung Hyun Noh
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jonggaro, Junggu, Ulsan, 44429, South Korea
| | - Sukjae Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyun Gyu Lim
- Department of Biological Sciences and Bioengineering, Inha University, Inha-ro 100, Michuhol-gu, Incheon, 22212, South Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea; Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea.
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; School of Chemical and Biological Engineering, South Korea; Institute of Chemical Processes, South Korea; Bio-MAX Institute, South Korea; Institute of Bio Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
3
|
Andler R, González-Arancibia F, Vilos C, Sepulveda-Verdugo R, Castro R, Mamani M, Valdés C, Arto-Paz F, Díaz-Barrera A, Martínez I. Production of poly-3-hydroxybutyrate (PHB) nanoparticles using grape residues as the sole carbon source. Int J Biol Macromol 2024; 261:129649. [PMID: 38266847 DOI: 10.1016/j.ijbiomac.2024.129649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
The production of poly-3-hydroxybutyrate (PHB) on an industrial scale remains a major challenge due to its higher production cost compared to petroleum-based plastics. As a result, it is necessary to develop efficient fermentative processes using low-cost substrates and identify high-value-added applications where biodegradability and biocompatibility properties are of fundamental importance. In this study, grape residues, mainly grape skins, were used as the sole carbon source in Azotobacter vinelandii OP cultures for PHB production and subsequent nanoparticle synthesis based on the extracted polymer. The grape residue pretreatment showed a high rate of conversion into reducing sugars (fructose and glucose), achieving up to 43.3 % w w-1 without the use of acid or external heat. The cultures were grown in shake flasks, obtaining a biomass concentration of 2.9 g L-1 and a PHB accumulation of up to 37.7 % w w-1. PHB was characterized using techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The formation of emulsified PHB nanoparticles showed high stability, with a particle size between 210 and 240 nm and a zeta potential between -12 and - 15 mV over 72 h. Owing to these properties, the produced PHB nanoparticles hold significant potential for applications in drug delivery.
Collapse
Affiliation(s)
- R Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca, Chile.
| | - F González-Arancibia
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca, Chile
| | - C Vilos
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca 3460000, Chile; Center for Nanomedicine, Diagnostic & Drug Development (cND3), Universidad de Talca, Talca 3460000, Chile; Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - R Sepulveda-Verdugo
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca 3460000, Chile; Center for Nanomedicine, Diagnostic & Drug Development (cND3), Universidad de Talca, Talca 3460000, Chile; Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - R Castro
- Multidisciplinary Agroindustry Research Laboratory, Carrera de Ingeniería en Construcción, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca, Chile
| | - M Mamani
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Chile
| | - C Valdés
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Chile
| | - F Arto-Paz
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca, Chile
| | - A Díaz-Barrera
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - I Martínez
- Department of Chemical Engineering, Biotechnology and Materials, Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Gu P, Li F, Huang Z. Engineering Escherichia coli for Isobutanol Production from Xylose or Glucose-Xylose Mixture. Microorganisms 2023; 11:2573. [PMID: 37894231 PMCID: PMC10609591 DOI: 10.3390/microorganisms11102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Aiming to overcome the depletion of fossil fuels and serious environmental pollution, biofuels such as isobutanol have garnered increased attention. Among different synthesis methods, the microbial fermentation of isobutanol from raw substrate is a promising strategy due to its low cost and environmentally friendly and optically pure products. As an important component of lignocellulosics and the second most common sugar in nature, xylose has become a promising renewable resource for microbial production. However, bottlenecks in xylose utilization limit its wide application as substrates. In this work, an isobutanol synthetic pathway from xylose was first constructed in E. coli MG1655 through the combination of the Ehrlich and Dahms pathways. The engineering of xylose transport and electron transport chain complexes further improved xylose assimilation and isobutanol production. By optimizing xylose supplement concentration, the recombinant E. coli strain BWL4 could produce 485.35 mg/L isobutanol from 20 g/L of xylose. To our knowledge, this is the first report related to isobutanol production using xylose as a sole carbon source in E. coli. Additionally, a glucose-xylose mixture was utilized as the carbon source. The Entner-Doudorof pathway was used to assimilate glucose, and the Ehrlich pathway was applied for isobutanol production. After carefully engineering the recombinant E. coli, strain BWL9 could produce 528.72 mg/L isobutanol from a mixture of 20 g/L glucose and 10 g/L xylose. The engineering strategies applied in this work provide a useful reference for the microbial production of isobutanol from xylose or glucose-xylose mixture.
Collapse
Affiliation(s)
- Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China;
| | - Fangfang Li
- Yantai Food and Drug Control and Test Center, Yantai 264003, China;
| | - Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China;
| |
Collapse
|
5
|
Wang J, Liu S, Huang J, Ren K, Zhu Y, Yang S. Alginate: Microbial production, functionalization, and biomedical applications. Int J Biol Macromol 2023; 242:125048. [PMID: 37236570 DOI: 10.1016/j.ijbiomac.2023.125048] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Alginates are natural polysaccharides widely participating in food, pharmaceutical, and environmental applications due to their excellent gelling capacity. Their excellent biocompatibility and biodegradability further extend their application to biomedical fields. The low consistency in molecular weight and composition of algae-based alginates may limit their performance in advanced biomedical applications. It makes microbial alginate production more attractive due to its potential for customizing alginate molecules with stable characteristics. Production costs remain the primary factor limiting the commercialization of microbial alginates. However, carbon-rich wastes from sugar, dairy, and biodiesel industries may serve as potential substitutes for pure sugars for microbial alginate production to reduce substrate costs. Fermentation parameter control and genetic engineering strategies may further improve the production efficiency and customize the molecular composition of microbial alginates. To meet the specific needs of biomedical applications, alginates may need functionalization, such as functional group modifications and crosslinking treatments, to achieve enhanced mechanical properties and biochemical activities. The development of alginate-based composites incorporated with other polysaccharides, gelatin, and bioactive factors can integrate the advantages of each component to meet multiple requirements in wound healing, drug delivery, and tissue engineering applications. This review provided a comprehensive insight into the sustainable production of high-value microbial alginates. It also discussed recent advances in alginate modification strategies and alginate-based composites for representative biomedical applications.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States.
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States; The Center for Biotechnology & Interdisciplinary Studies (CBIS) at Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Kexin Ren
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Yan Zhu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Siying Yang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| |
Collapse
|
6
|
Wang G, Li Q, Zhang Z, Yin X, Wang B, Yang X. Recent progress in adaptive laboratory evolution of industrial microorganisms. J Ind Microbiol Biotechnol 2023; 50:kuac023. [PMID: 36323428 PMCID: PMC9936214 DOI: 10.1093/jimb/kuac023] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/24/2022] [Indexed: 01/12/2023]
Abstract
Adaptive laboratory evolution (ALE) is a technique for the selection of strains with better phenotypes by long-term culture under a specific selection pressure or growth environment. Because ALE does not require detailed knowledge of a variety of complex and interactive metabolic networks, and only needs to simulate natural environmental conditions in the laboratory to design a selection pressure, it has the advantages of broad adaptability, strong practicability, and more convenient transformation of strains. In addition, ALE provides a powerful method for studying the evolutionary forces that change the phenotype, performance, and stability of strains, resulting in more productive industrial strains with beneficial mutations. In recent years, ALE has been widely used in the activation of specific microbial metabolic pathways and phenotypic optimization, the efficient utilization of specific substrates, the optimization of tolerance to toxic substance, and the biosynthesis of target products, which is more conducive to the production of industrial strains with excellent phenotypic characteristics. In this paper, typical examples of ALE applications in the development of industrial strains and the research progress of this technology are reviewed, followed by a discussion of its development prospects.
Collapse
Affiliation(s)
- Guanglu Wang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Qian Li
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Zhan Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou, Henan 450000, People's Republic of China
| | - Xianzhong Yin
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou, Henan 450000, People's Republic of China
| | - Bingyang Wang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Xuepeng Yang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| |
Collapse
|
7
|
Adaptive Laboratory Evolution of Microorganisms: Methodology and Application for Bioproduction. Microorganisms 2022; 11:microorganisms11010092. [PMID: 36677384 PMCID: PMC9864036 DOI: 10.3390/microorganisms11010092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Adaptive laboratory evolution (ALE) is a useful experimental methodology for fundamental scientific research and industrial applications to create microbial cell factories. By using ALE, cells are adapted to the environment that researchers set based on their objectives through the serial transfer of cell populations in batch cultivations or continuous cultures and the fitness of the cells (i.e., cell growth) under such an environment increases. Then, omics analyses of the evolved mutants, including genome sequencing, transcriptome, proteome and metabolome analyses, are performed. It is expected that researchers can understand the evolutionary adaptation processes, and for industrial applications, researchers can create useful microorganisms that exhibit increased carbon source availability, stress tolerance, and production of target compounds based on omics analysis data. In this review article, the methodologies for ALE in microorganisms are introduced. Moreover, the application of ALE for the creation of useful microorganisms as cell factories has also been introduced.
Collapse
|
8
|
Plunder S, Burkard M, Lauer UM, Venturelli S, Marongiu L. Determination of phage load and administration time in simulated occurrences of antibacterial treatments. Front Med (Lausanne) 2022; 9:1040457. [PMID: 36388928 PMCID: PMC9650209 DOI: 10.3389/fmed.2022.1040457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/13/2022] [Indexed: 03/19/2024] Open
Abstract
The use of phages as antibacterials is becoming more and more common in Western countries. However, a successful phage-derived antibacterial treatment needs to account for additional features such as the loss of infective virions and the multiplication of the hosts. The parameters critical inoculation size (V F ) and failure threshold time (T F ) have been introduced to assure that the viral dose (V ϕ) and administration time (T ϕ) would lead to the extinction of the targeted bacteria. The problem with the definition of V F and T F is that they are non-linear equations with two unknowns; thus, obtaining their explicit values is cumbersome and not unique. The current study used machine learning to determine V F and T F for an effective antibacterial treatment. Within these ranges, a Pareto optimal solution of a multi-criterial optimization problem (MCOP) provided a pair of V ϕ and T ϕ to facilitate the user's work. The algorithm was tested on a series of in silico microbial consortia that described the outgrowth of a species at high cell density by another species initially present at low concentration. The results demonstrated that the MCOP-derived pairs of V ϕ and T ϕ could effectively wipe out the bacterial target within the context of the simulation. The present study also introduced the concept of mediated phage therapy, where targeting booster bacteria might decrease the virulence of a pathogen immune to phagial infection and highlighted the importance of microbial competition in attaining a successful antibacterial treatment. In summary, the present work developed a novel method for investigating phage/bacteria interactions that can help increase the effectiveness of the application of phages as antibacterials and ease the work of microbiologists.
Collapse
Affiliation(s)
- Steffen Plunder
- Department of Mathematics, University of Vienna, Vienna, Austria
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Ulrich M. Lauer
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University Hospital Tübingen, Tübingen, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv 2021; 54:107795. [PMID: 34246744 DOI: 10.1016/j.biotechadv.2021.107795] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
Adaptive laboratory evolution (ALE) is an innovative approach for the generation of evolved microbial strains with desired characteristics, by implementing the rules of natural selection as presented in the Darwinian Theory, on the laboratory bench. New as it might be, it has already been used by several researchers for the amelioration of a variety of characteristics of widely used microorganisms in biotechnology. ALE is used as a tool for the deeper understanding of the genetic and/or metabolic pathways of evolution. Another important field targeted by ALE is the manufacturing of products of (high) added value, such as ethanol, butanol and lipids. In the current review, we discuss the basic principles and techniques of ALE, and then we focus on studies where it has been applied to bacteria, fungi and microalgae, aiming to improve their performance to biotechnological procedures and/or inspect the genetic background of evolution. We conclude that ALE is a promising and efficacious method that has already led to the acquisition of useful new microbiological strains in biotechnology and could possibly offer even more interesting results in the future.
Collapse
Affiliation(s)
- Maria Mavrommati
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece; Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Alexandra Daskalaki
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - George Aggelis
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
10
|
Yu X, Shi F, Liu H, Tan S, Li Y. Programming adaptive laboratory evolution of 4-hydroxyisoleucine production driven by a lysine biosensor in Corynebacterium glutamicum. AMB Express 2021; 11:66. [PMID: 33963930 PMCID: PMC8106565 DOI: 10.1186/s13568-021-01227-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 11/10/2022] Open
Abstract
4-Hydroxyisoleucine (4-HIL) is a promising drug for treating diabetes. In our previous study, 4-HIL was synthesized from self-produced L-isoleucine (Ile) in Corynebacterium glutamicum by expressing an Ile dioxygenase gene. Although the 4-HIL production of recombinant strain SZ06 increased significantly, a by-product, L-lysine (Lys) was accumulated because of the share of the first several enzymes in Ile and Lys biosynthetic pathways. In this study, programming adaptive laboratory evolution (ALE) was designed and conducted in SZ06 to promote 4-HIL biosynthesis. At first, a programming evolutionary system pMK was constructed, which contains a Lys biosensor LysG-PlysE and an evolutionary actuator composed of a mutagenesis gene and a fluorescent protein gene. The evolutionary strain SZ06/pMK was then let to be evolved programmatically and spontaneously by sensing Lys concentration. After successive rounds of evolution, nine mutant strains K1 - K9 with significantly increased 4-HIL production and growth performance were obtained. The maximum 4-HIL titer was 152.19 ± 14.60 mM, 28.4% higher than that in SZ06. This titer was higher than those of all the metabolic engineered C. glutamicum strains ever constructed. The whole genome sequencing of the nine evolved strains revealed approximately 30 genetic mutations in each strain. Only one mutation was directly related to the Lys biosynthetic pathway. Therefore, programming ALE driven by Lys biosensor can be used as an effective strategy to increase 4-HIL production in C. glutamicum.
Collapse
|