1
|
Shweqa NS, El-Naggar NEA, Abdelmigid HM, Alyamani AA, Elshafey N, El-Shall H, Heikal YM, Soliman HM. Green Fabrication of Silver Nanoparticles, Statistical Process Optimization, Characterization, and Molecular Docking Analysis of Their Antimicrobial Activities onto Cotton Fabrics. J Funct Biomater 2024; 15:354. [PMID: 39728154 PMCID: PMC11728425 DOI: 10.3390/jfb15120354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Nanotechnological methods for creating multifunctional fabrics are attracting global interest. The incorporation of nanoparticles in the field of textiles enables the creation of multifunctional textiles exhibiting UV irradiation protection, antimicrobial properties, self-cleaning properties and photocatalytic. Nanomaterials-loaded textiles have many innovative applications in pharmaceuticals, sports, military the textile industry etc. This study details the biosynthesis and characterization of silver nanoparticles (AgNPs) using the aqueous mycelial-free filtrate of Aspergillus flavus. The formation of AgNPs was indicated by a brown color in the extracellular filtrate and confirmed by UV-Vis spectroscopy with a peak at 426 nm. The Box-Behnken design (BBD) is used to optimize the physicochemical parameters affecting AgNPs biosynthesis. The desirability function was employed to theoretically predict the optimal conditions for the biosynthesis of AgNPs, which were subsequently experimentally validated. Through the desirability function, the optimal conditions for the maximum predicted value for the biosynthesized AgNPs (235.72 µg/mL) have been identified as follows: incubation time (58.12 h), initial pH (7.99), AgNO3 concentration (4.84 mM/mL), and temperature (34.84 °C). Under these conditions, the highest experimental value of AgNPs biosynthesis was 247.53 µg/mL. Model validation confirmed the great accuracy of the model predictions. Scanning electron microscopy (SEM) revealed spherical AgNPs measuring 8.93-19.11 nm, which was confirmed by transmission electron microscopy (TEM). Zeta potential analysis indicated a positive surface charge (+1.69 mV), implying good stability. X-ray diffraction (XRD) confirmed the crystalline nature, while energy-dispersive X-ray spectroscopy (EDX) verified elemental silver (49.61%). FTIR findings indicate the presence of phenols, proteins, alkanes, alkenes, aliphatic and aromatic amines, and alkyl groups which play significant roles in the reduction, capping, and stabilization of AgNPs. Cotton fabrics embedded with AgNPs biosynthesized using the aqueous mycelial-free filtrate of Aspergillus flavus showed strong antimicrobial activity. The disc diffusion method revealed inhibition zones of 15, 12, and 17 mm against E. coli (Gram-negative), S. aureus (Gram-positive), and C. albicans (yeast), respectively. These fabrics have potential applications in protective clothing, packaging, and medical care. In silico modeling suggested that the predicted compound derived from AgNPs on cotton fabric could inhibit Penicillin-binding proteins (PBPs) and Lanosterol 14-alpha-demethylase (L-14α-DM), with binding energies of -4.7 and -5.2 Kcal/mol, respectively. Pharmacokinetic analysis and sensitizer prediction indicated that this compound merits further investigation.
Collapse
Affiliation(s)
- Nada S. Shweqa
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| | - Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City 21934, Egypt;
| | - Hala M. Abdelmigid
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (H.M.A.); (A.A.A.)
| | - Amal A. Alyamani
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (H.M.A.); (A.A.A.)
| | - Naglaa Elshafey
- Botany and Microbiology Department, Faculty of Science, Arish University, Al-Arish 45511, Egypt;
| | - Hadeel El-Shall
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City 21934, Egypt;
| | - Yasmin M. Heikal
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| | - Hoda M. Soliman
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| |
Collapse
|
2
|
Matúš P, Littera P, Farkas B, Urík M. Review on Performance of Aspergillus and Penicillium Species in Biodegradation of Organochlorine and Organophosphorus Pesticides. Microorganisms 2023; 11:1485. [PMID: 37374987 DOI: 10.3390/microorganisms11061485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The use of pesticides in agricultural practices raises concerns considering the toxic effects they generate in the environment; thus, their sustainable application in crop production remains a challenge. One of the frequently addressed issues regarding their application includes the development of a sustainable and ecofriendly approach for their degradation. Since the filamentous fungi can bioremediate various xenobiotics owing to their efficient and versatile enzymatic machinery, this review has addressed their performance in the biodegradation of organochlorine and organophosphorus pesticides. It is focused particularly on fungal strains belonging to the genera Aspergillus and Penicillium, since both are ubiquitous in the environment, and often abundant in soils contaminated with xenobiotics. Most of the recent reviews on microbial biodegradation of pesticides focus primarily on bacteria, and the soil filamentous fungi are mentioned only marginally there. Therefore, in this review, we have attempted to demonstrate and highlight the exceptional potential of aspergilli and penicillia in degrading the organochlorine and organophosphorus pesticides (e.g., endosulfan, lindane, chlorpyrifos, and methyl parathion). These biologically active xenobiotics have been degraded by fungi into various metabolites efficaciously, or these are completely mineralized within a few days. Since they have demonstrated high rates of degradation activity, as well as high tolerance to pesticides, most of the Aspergillus and Penicillium species strains listed in this review are excellent candidates for the remediation of pesticide-contaminated soils.
Collapse
Affiliation(s)
- Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Pavol Littera
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Bence Farkas
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
3
|
Alex A V, Mukherjee A. An ultrasensitive "mix-and-detect" kind of fluorescent biosensor for malaoxon detection using the AChE-ATCh-Ag-GO system. RSC Adv 2023; 13:14159-14170. [PMID: 37180011 PMCID: PMC10167908 DOI: 10.1039/d3ra02253f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Malaoxon, a highly toxic metabolite of malathion, can lead to severe harm or death if ingested. This study introduces a rapid and innovative fluorescent biosensor that relies on acetylcholinesterase (AChE) inhibition for detecting malaoxon using Ag-GO nanohybrid. The synthesized nanomaterials (GO, Ag-GO) were evaluated with multiple characterization methods to confirm their elemental composition, morphology, and crystalline structure. The fabricated biosensor works by utilizing AChE to catalyze the substrate acetylthiocholine (ATCh), which generates positively charged thiocholine (TCh) and triggers citrate-coated AgNP aggregation on the GO sheet, leading to an increase in fluorescence emission at 423 nm. However, the presence of malaoxon inhibits the AChE action and reduces the production of TCh, resulting in a decrease in fluorescence emission intensity. This mechanism allows the biosensor to detect a wide range of malaoxon concentrations with excellent linearity and low LOD and LOQ values of 0.001 pM to 1000 pM, 0.9 fM, and 3 fM, respectively. The biosensor also demonstrated superior inhibitory efficacy towards malaoxon compared to other OP pesticides, indicating its resistance to external influences. In practical sample testing, the biosensor displayed recoveries of over 98% with extremely low RSD% values. Based on the results obtained from the study, it can be concluded that the developed biosensor has the potential to be used in various real-world applications for detecting malaoxon in food, and water samples, with high sensitivity, accuracy, and reliability.
Collapse
Affiliation(s)
- Vinotha Alex A
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India +91 416 2202620
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India +91 416 2202620
| |
Collapse
|
4
|
Dash DM, Osborne WJ. A systematic review on the implementation of advanced and evolutionary biotechnological tools for efficient bioremediation of organophosphorus pesticides. CHEMOSPHERE 2023; 313:137506. [PMID: 36526134 DOI: 10.1016/j.chemosphere.2022.137506] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/11/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Ever since the concept of bioremediation was introduced, microorganisms, microbial enzymes and plants have been used as principal elements for Organophosphate pesticide (OPP) bioremediation. The enzyme systems and genetic profile of these microbes have been studied deeply in past years. Plant growth promoting rhizobacteria (PGPR) are considered as one of the potential candidates for OPP bioremediation and has been widely used to stimulate the phytoremediation potential of plants. Constructed wetlands (CWs) in OPP biodegradation have brought new prospects to microcosm and mesocosm based remediation strategies. Application of synthetic biology has provided a new dimension to the field of OPP bioremediation by introducing concepts like, gene manipulation andediting, expression and regulation of catabolic enzymes, implementation of whole-cell based and enzyme based biosensor systems for the detection and monitoring of OPP pollution in both terrestrial and aquatic environment. System biology and bioinformatics tools have rendered significant knowledge regarding the genetic, enzymatic and biochemical aspects of microbes and plants thereby, helping researchers to analyze the mechanism of OPP biodegradation. Structural biology has provided significant conceptual information regarding OPP biodegradation pathways, structural and functional characterization of metabolites and enzymes, enzyme-pollutant interactions, etc. Therefore, this review discussed the prospects and challenges of most advanced and high throughput strategies implemented for OPP biodegradation. The review also established a comparative analysis of various bioremediation techniques and highlighted the interdependency among them. The review highly suggested the simultaneous implementation of more than one remediation strategy or a combinational approach creating an advantageous hybrid technique for OPP bioremediation.
Collapse
Affiliation(s)
- Dipti Mayee Dash
- Department of Bioscience School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - W Jabez Osborne
- Department of Bioscience School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
5
|
Microbial Remediation: A Promising Tool for Reclamation of Contaminated Sites with Special Emphasis on Heavy Metal and Pesticide Pollution: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10071358] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Heavy metal and pesticide pollution have become an inevitable part of the modern industrialized environment that find their way into all ecosystems. Because of their persistent nature, recalcitrance, high toxicity and biological enrichment, metal and pesticide pollution has threatened the stability of the environment as well as the health of living beings. Due to the environmental persistence of heavy metals and pesticides, they get accumulated in the environs and consequently lead to food chain contamination. Therefore, remediation of heavy metals and pesticide contaminations needs to be addressed as a high priority. Various physico-chemical approaches have been employed for this purpose, but they have significant drawbacks such as high expenses, high labor, alteration in soil properties, disruption of native soil microflora and generation of toxic by-products. Researchers worldwide are focusing on bioremediation strategies to overcome this multifaceted problem, i.e., the removal, immobilization and detoxification of pesticides and heavy metals, in the most efficient and cost-effective ways. For a period of millions of evolutionary years, microorganisms have become resistant to intoxicants and have developed the capability to remediate heavy metal ions and pesticides, and as a result, they have helped in the restoration of the natural state of degraded environs with long term environmental benefits. Keeping in view the environmental and health concerns imposed by heavy metals and pesticides in our society, we aimed to present a generalized picture of the bioremediation capacity of microorganisms. We explore the use of bacteria, fungi, algae and genetically engineered microbes for the remediation of both metals and pesticides. This review summarizes the major detoxification pathways and bioremediation technologies; in addition to that, a brief account is given of molecular approaches such as systemic biology, gene editing and omics that have enhanced the bioremediation process and widened its microbiological techniques toward the remediation of heavy metals and pesticides.
Collapse
|
6
|
Seerat W, Akram A, Qureshi R, Yaseen G, Mukhtar T, Hanif NQ. Light and scanning electron microscopic characterization of aflatoxins producing
Aspergillus flavus
in the maize crop. Microsc Res Tech 2022; 85:2894-2903. [DOI: 10.1002/jemt.24139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Wajiha Seerat
- Department of Botany Pir Mehr Ali Shah Arid Agriculture University Rawalpindi Pakistan
| | - Abida Akram
- Department of Botany Pir Mehr Ali Shah Arid Agriculture University Rawalpindi Pakistan
| | - Rahmatullah Qureshi
- Department of Botany Pir Mehr Ali Shah Arid Agriculture University Rawalpindi Pakistan
| | - Ghulam Yaseen
- Department of Botany, Division of Science and Technology, Township campus University of Education Lahore Pakistan
| | - Tariq Mukhtar
- Department of Plant Pathology Pir Mehr Ali Shah Arid Agriculture University Rawalpindi Pakistan
| | | |
Collapse
|