1
|
Contreras-Negrete G, Valiente-Banuet A, Molina-Freaner F, Partida-Martínez LP, Hernández-López A. Agricultural Practices and Environmental Factors Drive Microbial Communities in the Mezcal-Producing Agave angustifolia Haw. MICROBIAL ECOLOGY 2025; 87:181. [PMID: 39880965 PMCID: PMC11779764 DOI: 10.1007/s00248-025-02496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Mezcal, a traditional Mexican alcoholic beverage, has been a vital source of livelihood for indigenous and rural communities for centuries. However, increasing international demand is exerting pressure on natural resources and encouraging intensive agricultural practices. This study investigates the impact of management practices (wild, traditional, and conventional) and environmental factors on the microbial communities associated with Agave angustifolia, a key species in mezcal production. High-throughput sequencing of the 16S rRNA and ITS2 gene regions revealed distinct prokaryotic and fungal community structures across different plant compartments (endosphere, episphere, and soil), identifying 8214 prokaryotic and 7459 fungal ASVs. Core microbial communities were dominated by Proteobacteria, Actinobacteria, Ascomycota, and Basidiomycota. Alpha diversity analyses showed significant increases in prokaryotic diversity from the endosphere to soil, while fungal diversity remained stable. Notably, conventional management practices were associated with reductions in beneficial microbial taxa. Environmental factors such as precipitation and temperature significantly influenced microbial diversity and composition, especially in the rhizosphere. Beta diversity patterns underscored the strong impact of plant compartment, with management practices and aridity further shaping microbial communities. These results reveal the intricate interactions between management practices, environmental conditions, and microbial diversity, providing valuable insights for the sustainable cultivation of A. angustifolia.
Collapse
Affiliation(s)
- Gonzalo Contreras-Negrete
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, León, Guanajuato, México.
| | - Alfonso Valiente-Banuet
- Departamento de Ecología de La Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Francisco Molina-Freaner
- Departamento de Ecología de La Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, México
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Hermosillo, Sonora, México
| | - Laila P Partida-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, México
| | - Antonio Hernández-López
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, León, Guanajuato, México.
| |
Collapse
|
2
|
Poddar BJ, Khardenavis AA. Genomic Insights into the Landfill Microbial Community: Denitrifying Activity Supporting One-Carbon Utilization. Appl Biochem Biotechnol 2024; 196:8866-8891. [PMID: 38980659 DOI: 10.1007/s12010-024-04980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/10/2024]
Abstract
In spite of the developments in understanding of denitrifying methylotrophy in the recent years, challenges still exist in unravelling the overall biochemistry of nitrate-dependent methane oxidation in novel or poorly characterized/not-yet-cultured bacteria. In the present study, landfill site was mined for novel C1-carbon-metabolizing bacteria which can use nitrate/nitrite as an electron acceptor. A high-throughput rapid plate assay identified three bacterial isolates with eminent ability for nitrate-dependent methane metabolism under anaerobic conditions. Taxonomic identification by whole-genome sequence-based overall genome relatedness indices accurately assigned the isolates AAK_M13, AAK_M29, and AAK_M39 at the species level to Enterobacter cloacae, Bacillus subtilis, and Bacillus halotolerans, respectively. Several genes encoding sub-components involved in alcohol utilization and denitrification pathways, such as adh, fdh, fdo, nar, nir, and nor, were identified in all the genomes. Though no gene clusters encoding MMO/AMO were annotated, sequencing of PCR amplicons revealed similarity with pMMO/AMO gene using translated nucleotide sequence of strains AAK_M29 and AAK_M39, while strain AAK_M13 showed similarity with XRE family transcriptional regulator. This suggests the horizontal gene transfer and/or presence of a truncated version of a housekeeping enzyme encoded by genes exhibiting partial sequence similarity with pMMO genes that mimicked its function at greenhouse gas emission sites. Owing to lack of conclusive evidence for presence of methane metabolism genes in the selected isolates, further experiment was performed to validate their nitrate-dependent methane oxidation capacities. Bacillus subtilis AAK_M29, Bacillus halotolerans AAK_M39, and Enterobacter cloacae AAK_M13 could oxidize 60%, 75%, and 85% of the added methane respectively accompanied by high nitrate reduction (56-62%) thus supporting the correlation between these two activities. The remarkable ability of these isolates for nitrate-dependent methane metabolism has highlighted their role in ecological contribution and biotechnological potential to serve as methane and nitrate sinks in the landfill sites.
Collapse
Affiliation(s)
- Bhagyashri J Poddar
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anshuman A Khardenavis
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Sang Y, Ren K, Chen Y, Wang B, Meng Y, Zhou W, Jiang Y, Xu J. Integration of soil microbiology and metabolomics to elucidate the mechanism of the accelerated infestation of tobacco by the root-knot nematode. Front Microbiol 2024; 15:1455880. [PMID: 39247692 PMCID: PMC11377229 DOI: 10.3389/fmicb.2024.1455880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Tobacco root-knot nematode (TRKN) disease is a soil-borne disease that presents a major hazard to the cultivation of tobacco, causing significant reduction in crop quality and yield, and affecting soil microbial diversity and metabolites. However, differences in rhizosphere soil microbial communities and metabolites between healthy tobacco soils and tobacco soils with varying degrees of TRKN infection remain unclear. Methods In this study, diseased rhizosphere soils of tobacco infected with different degrees of TRKN [severally diseased (DH) soils, moderately diseased (DM) soils, and mildly diseased (DL) soils] and healthy (H) rhizosphere soils were collected. Here, we combined microbiology with metabolomics to investigate changes in rhizosphere microbial communities and metabolism in healthy and TRKN-infected tobacco using high-throughput sequencing and LC-MS/MS platforms. Results The results showed that the Chao1 and Shannon indices of bacterial communities in moderately and mildly diseased soils were significantly higher than healthy soils. The Proteobacteria, Actinobacteria, Ascomycota, Burkholderia, Bradyrhizobium and Dyella were enriched in the rhizosphere soil of healthy tobacco. Basidiomycota, Agaricales, Pseudeurotiaceae and Ralstonia were enriched in severally diseased soils. Besides, healthy soils exhibited a relatively complex and interconnected network of bacterial molecular ecologies, while in severally and moderately diseased soils the fungal molecular networks are relatively complex. Redundancy analysis showed that total nitrogen, nitrate nitrogen, available phosphorus, significantly affected the changes in microbial communities. In addition, metabolomics results indicated that rhizosphere soil metabolites were significantly altered after tobacco plants were infected with TRKNs. The relative abundance of organic acids was higher in severally diseased soils. Spearman's analyses showed that oleic acid, C16 sphinganine, 16-hydroxyhexadecanoic acid, D-erythro-3-methylmalate were positively correlated with Basidiomycota, Agaricales, Ralstonia. Discussion In conclusion, this study revealed the relationship between different levels of TRKN invasion of tobacco root systems with bacteria, fungi, metabolites and soil environmental factors, and provides a theoretical basis for the biological control of TRKN disease.
Collapse
Affiliation(s)
- Yinghua Sang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Ke Ren
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, China
| | - Bin Wang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Yufang Meng
- Yuxi Branch of Yunnan Provincial Tobacco Company, Yuxi, Yunnan, China
| | - Wenbing Zhou
- Yuxi Branch of Yunnan Provincial Tobacco Company, Yuxi, Yunnan, China
| | - Yonglei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, China
| | - Junju Xu
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Buzzo BB, Lima NSM, Pereira PAM, Gomes-Pepe ES, Sartini CCF, Lemos EGDM. Lignin degradation by a novel thermophilic and alkaline yellow laccase from Chitinophaga sp. Microbiol Spectr 2024; 12:e0401323. [PMID: 38712938 PMCID: PMC11237711 DOI: 10.1128/spectrum.04013-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
Laccases (EC 1.10.3.2) are oxidoreductases that belong to the multicopper oxidase subfamily and are classified as yellow/white or blue according to their absorption spectrum. Yellow laccases are more useful for industrial processes since they oxidize nonphenolic compounds in the absence of a redox mediator and stand out for being more stable and functional under extreme conditions. This study aimed to characterize a new laccase that was predicted to be present in the genome of Chitinophaga sp. CB10 - Lac_CB10. Lac_CB10, with a molecular mass of 100.06 kDa, was purified and characterized via biochemical assays using guaiacol as a substrate. The enzyme demonstrated extremophilic characteristics, exhibiting relative activity under alkaline conditions (CAPS buffer pH 10.5) and thermophilic conditions (80-90°C), as well as maintaining its activity above 50% for 5 h at 80°C and 90°C. Furthermore, Lac_CB10 presented a spectral profile typical of yellow laccases, exhibiting only one absorbance peak at 300 nm (at the T2/T3 site) and no peak at 600 nm (at the T1 site). When lignin was degraded using copper as an inducer, 52.27% of the material was degraded within 32 h. These results highlight the potential of this enzyme, which is a novel yellow laccase with thermophilic and alkaline activity and the ability to act on lignin. This enzyme could be a valuable addition to the biorefinery process. In addition, this approach has high potential for industrial application and in the bioremediation of contaminated environments since these processes often occur at extreme temperatures and pH values. IMPORTANCE The characterization of the novel yellow laccase, Lac_CB10, derived from Chitinophaga sp. CB10, represents a significant advancement with broad implications. This enzyme displays exceptional stability and functionality under extreme conditions, operating effectively under both alkaline (pH 10.5) and thermophilic (80-90°C) environments. Its capability to maintain considerable activity over extended periods, even at high temperatures, showcases its potential for various industrial applications. Moreover, its distinctive ability to efficiently degrade lignin-demonstrated by a significant 52.27% degradation within 32 h-signifies a promising avenue for biorefinery processes. This newfound laccase's characteristics position it as a crucial asset in the realm of bioremediation, particularly in scenarios involving contamination at extreme pH and temperature levels. The study's findings highlight the enzyme's capacity to address challenges in industrial processes and environmental cleanup, signifying its vital role in advancing biotechnological solutions.
Collapse
Affiliation(s)
- Bárbara Bonfá Buzzo
- Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University Júlio de Mesquita Filho, Jaboticabal, São Paulo, Brazil
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo, Brazil
- Agricultural Microbiology Graduate Program at UNESP, Jaboticabal, São Paulo, Brazil
| | - Natália Sarmanho Monteiro Lima
- Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University Júlio de Mesquita Filho, Jaboticabal, São Paulo, Brazil
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo, Brazil
- Agricultural Microbiology Graduate Program at UNESP, Jaboticabal, São Paulo, Brazil
| | - Pâmela Aparecida Maldaner Pereira
- Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University Júlio de Mesquita Filho, Jaboticabal, São Paulo, Brazil
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo, Brazil
| | - Elisângela Soares Gomes-Pepe
- Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University Júlio de Mesquita Filho, Jaboticabal, São Paulo, Brazil
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo, Brazil
| | | | - Eliana Gertrudes de Macedo Lemos
- Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University Júlio de Mesquita Filho, Jaboticabal, São Paulo, Brazil
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo, Brazil
- Agricultural Microbiology Graduate Program at UNESP, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
5
|
Buzzo BB, Giuliatti S, Pereira PAM, Gomes-Pepe ES, Lemos EGDM. Molecular Docking of Lac_CB10: Highlighting the Great Potential for Bioremediation of Recalcitrant Chemical Compounds by One Predicted Bacteroidetes CopA-Laccase. Int J Mol Sci 2023; 24:9785. [PMID: 37372934 DOI: 10.3390/ijms24129785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Laccases are multicopper oxidases (MCOs) with a broad application spectrum, particularly in second-generation ethanol biotechnology and the bioremediation of xenobiotics and other highly recalcitrant compounds. Synthetic pesticides are xenobiotics with long environmental persistence, and the search for their effective bioremediation has mobilized the scientific community. Antibiotics, in turn, can pose severe risks for the emergence of multidrug-resistant microorganisms, as their frequent use for medical and veterinary purposes can generate constant selective pressure on the microbiota of urban and agricultural effluents. In the search for more efficient industrial processes, some bacterial laccases stand out for their tolerance to extreme physicochemical conditions and their fast generation cycles. Accordingly, to expand the range of effective approaches for the bioremediation of environmentally important compounds, the prospection of bacterial laccases was carried out from a custom genomic database. The best hit found in the genome of Chitinophaga sp. CB10, a Bacteroidetes isolate obtained from a biomass-degrading bacterial consortium, was subjected to in silico prediction, molecular docking, and molecular dynamics simulation analyses. The putative laccase CB10_180.4889 (Lac_CB10), composed of 728 amino acids, with theoretical molecular mass values of approximately 84 kDa and a pI of 6.51, was predicted to be a new CopA with three cupredoxin domains and four conserved motifs linking MCOs to copper sites that assist in catalytic reactions. Molecular docking studies revealed that Lac_CB10 had a high affinity for the molecules evaluated, and the affinity profiles with multiple catalytic pockets predicted the following order of decreasing thermodynamically favorable values: tetracycline (-8 kcal/mol) > ABTS (-6.9 kcal/mol) > sulfisoxazole (-6.7 kcal/mol) > benzidine (-6.4 kcal/mol) > trimethoprim (-6.1 kcal/mol) > 2,4-dichlorophenol (-5.9 kcal/mol) mol. Finally, the molecular dynamics analysis suggests that Lac_CB10 is more likely to be effective against sulfisoxazole-like compounds, as the sulfisoxazole-Lac_CB10 complex exhibited RMSD values lower than 0.2 nm, and sulfisoxazole remained bound to the binding site for the entire 100 ns evaluation period. These findings corroborate that LacCB10 has a high potential for the bioremediation of this molecule.
Collapse
Affiliation(s)
- Bárbara Bonfá Buzzo
- Department of Agricultural and Environmental Biotechnology, Faculty of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- Graduate Program in Agricultural and Livestock Microbiology, UNESP, Jaboticabal 14884-900, SP, Brazil
| | - Silvana Giuliatti
- Department of Genetics, Faculty of Medicine of Ribeirao Preto, Ribeirao Preto 13566-590, SP, Brazil
| | | | - Elisângela Soares Gomes-Pepe
- Department of Agricultural and Environmental Biotechnology, Faculty of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
| | - Eliana Gertrudes de Macedo Lemos
- Department of Agricultural and Environmental Biotechnology, Faculty of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- Molecular Biology Laboratory, Institute for Research in Bioenergy (IPBEN), Jaboticabal 14884-900, SP, Brazil
| |
Collapse
|
6
|
Meng L, Wu Y, Mu M, Wang Z, Chen Z, Wang L, Ma Z, Cui G, Yin X. Effects of different concentrations of biochar amendments and Pb toxicity on rhizosphere soil characteristics and bacterial community of red clover ( Trifolium pretense L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1112002. [PMID: 37056492 PMCID: PMC10088434 DOI: 10.3389/fpls.2023.1112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 06/19/2023]
Abstract
Amending soil with biochar can reduce the toxic effects of heavy metals (HM) on plants and the soil. However, the effects of different concentrations of biochar on the properties and microbial activities in lead (Pb)-contaminated soils are unclear. In this study, two Pb concentrations were set (low, 1000 mg/kg; high, 5000 mg/kg), and five corn straw biochar (CSB) concentrations (0, 2.5, 5, 10 and 15%) were used to determine the response of the growth and rhizosphere of red clover (Trifolium pretense L.) (in terms of soil properties and bacteria) to CSB and Pb application. The results showed that 5% CSB better alleviated the toxicity of Pb on the shoot length of red clover, the biomass increased by 74.55 and 197.76% respectively and reduced the enrichment factor (BCF) and transport factor (TF) of red clover. Pb toxicity reduced soil nutrients, catalase (CAT), acid phosphatase (ACP) and urease activity, while the addition of CSB increased soil pH, soil organic matter (SOM) content and soil enzyme activity. 16S rDNA amplicon sequencing analysis showed that Pb toxicity reduced the diversity of rhizosphere bacteria in red clover and reduced the relative abundance of plant growth-promoting rhizobacteria such as Gemmatimonas, Devosia and Bryobacter. Spearman correlation analysis showed that the addition of alkaline CSB restored the relative abundance of rhizobacteria positively correlated with pH, such as Chitinophaga, Sphingomonas, Devosia and Pseudomonas, and thus restored the rhizosphere soil environment. This study demonstrates that 5% CSB can better alleviate the toxicity of Pb to red clover and soil. We also provide a theoretical basis for the subsequent use of beneficial bacteria to regulate the repair efficiency of red clover.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guowen Cui
- *Correspondence: Guowen Cui, ; Xiujie Yin,
| | - Xiujie Yin
- *Correspondence: Guowen Cui, ; Xiujie Yin,
| |
Collapse
|
7
|
González Plaza JJ, Hradecký J. The tropical cookbook: Termite diet and phylogenetics—Over geographical origin—Drive the microbiome and functional genetic structure of nests. Front Microbiol 2023; 14:1089525. [PMID: 36998409 PMCID: PMC10043212 DOI: 10.3389/fmicb.2023.1089525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/13/2023] [Indexed: 03/15/2023] Open
Abstract
Termites are key decomposers of dead plant material involved in the organic matter recycling process in warm terrestrial ecosystems. Due to their prominent role as urban pests of timber, research efforts have been directed toward biocontrol strategies aimed to use pathogens in their nest. However, one of the most fascinating aspects of termites is their defense strategies that prevent the growth of detrimental microbiological strains in their nests. One of the controlling factors is the nest allied microbiome. Understanding how allied microbial strains protect termites from pathogen load could provide us with an enhanced repertoire for fighting antimicrobial-resistant strains or mining for genes for bioremediation purposes. However, a necessary first step is to characterize these microbial communities. To gain a deeper understanding of the termite nest microbiome, we used a multi-omics approach for dissecting the nest microbiome in a wide range of termite species. These cover several feeding habits and three geographical locations on two tropical sides of the Atlantic Ocean known to host hyper-diverse communities. Our experimental approach included untargeted volatile metabolomics, targeted evaluation of volatile naphthalene, a taxonomical profile for bacteria and fungi through amplicon sequencing, and further diving into the genetic repertoire through a metagenomic sequencing approach. Naphthalene was present in species belonging to the genera Nasutitermes and Cubitermes. We investigated the apparent differences in terms of bacterial community structure and discovered that feeding habits and phylogenetic relatedness had a greater influence than geographical location. The phylogenetic relatedness among nests' hosts influences primarily bacterial communities, while diet influences fungi. Finally, our metagenomic analysis revealed that the gene content provided both soil-feeding genera with similar functional profiles, while the wood-feeding genus showed a different one. Our results indicate that the nest functional profile is largely influenced by diet and phylogenetic relatedness, irrespective of geographical location.
Collapse
|
8
|
Lu P, Shi H, Tao J, Jin J, Wang S, Zheng Q, Liu P, Xiang B, Chen Q, Xu Y, Li Z, Tan J, Cao P. Metagenomic insights into the changes in the rhizosphere microbial community caused by the root-knot nematode Meloidogyne incognita in tobacco. ENVIRONMENTAL RESEARCH 2023; 216:114848. [PMID: 36403441 DOI: 10.1016/j.envres.2022.114848] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Root-knot nematode (RKN) disease is a destructive soil disease that affects crop health and causes huge losses in crop production. To explore the relationships between soil environments, rhizobacterial communities, and plant health, rhizosphere bacterial communities were analyzed using metagenomic sequencing in tobacco samples with different grades of RKN disease. The results showed that the community structure and function of the plant rhizosphere were significantly correlated to the RKN disease. RKN density and urease content were key factors affecting the rhizosphere bacterial community. Urease accelerated the catabolism of urea and led to the production of high concentrations of ammonia, which directly suppressed the development of RKNs or by improving the nutritional and growth status of microorganisms that were antagonistic to RKNs. Further experiments showed that the suppression role of ammonia should be attributed to the direct inhibition of NH3. The bacterial members that were positively correlated with RKN density, contained many plant cell wall degrading enzymes, which might destroy plant cell walls and promote the colonization of RKN in tobacco roots. The analysis of metatranscriptome and metabolism demonstrated the role of these cell wall degrading enzymes. This study offers a comprehensive insight into the relationships between RKNs, bacteria, and soil environmental factors and provides new ideas for the biological control of RKNs.
Collapse
Affiliation(s)
- Peng Lu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Heli Shi
- Enshi Tobacco Company of Hubei Province, Enshi, Hubei, China
| | - Jiemeng Tao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Sujie Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Qingxia Zheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Bikun Xiang
- Enshi Tobacco Company of Hubei Province, Enshi, Hubei, China
| | - Qiansi Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jun Tan
- Enshi Tobacco Company of Hubei Province, Enshi, Hubei, China.
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China.
| |
Collapse
|
9
|
Díaz Rodríguez CA, Díaz-García L, Bunk B, Spröer C, Herrera K, Tarazona NA, Rodriguez-R LM, Overmann J, Jiménez DJ. Novel bacterial taxa in a minimal lignocellulolytic consortium and their potential for lignin and plastics transformation. ISME COMMUNICATIONS 2022; 2:89. [PMID: 37938754 PMCID: PMC9723784 DOI: 10.1038/s43705-022-00176-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2023]
Abstract
The understanding and manipulation of microbial communities toward the conversion of lignocellulose and plastics are topics of interest in microbial ecology and biotechnology. In this study, the polymer-degrading capability of a minimal lignocellulolytic microbial consortium (MELMC) was explored by genome-resolved metagenomics. The MELMC was mostly composed (>90%) of three bacterial members (Pseudomonas protegens; Pristimantibacillus lignocellulolyticus gen. nov., sp. nov; and Ochrobactrum gambitense sp. nov) recognized by their high-quality metagenome-assembled genomes (MAGs). Functional annotation of these MAGs revealed that Pr. lignocellulolyticus could be involved in cellulose and xylan deconstruction, whereas Ps. protegens could catabolize lignin-derived chemical compounds. The capacity of the MELMC to transform synthetic plastics was assessed by two strategies: (i) annotation of MAGs against databases containing plastic-transforming enzymes; and (ii) predicting enzymatic activity based on chemical structural similarities between lignin- and plastics-derived chemical compounds, using Simplified Molecular-Input Line-Entry System and Tanimoto coefficients. Enzymes involved in the depolymerization of polyurethane and polybutylene adipate terephthalate were found to be encoded by Ps. protegens, which could catabolize phthalates and terephthalic acid. The axenic culture of Ps. protegens grew on polyhydroxyalkanoate (PHA) nanoparticles and might be a suitable species for the industrial production of PHAs in the context of lignin and plastic upcycling.
Collapse
Affiliation(s)
- Carlos Andrés Díaz Rodríguez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Laura Díaz-García
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Department of Chemical and Biological Engineering, Advanced Biomanufacturing Centre, University of Sheffield, Sheffield, UK
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Katherine Herrera
- Department of Civil and Environmental Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | - Luis M Rodriguez-R
- Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig University of Technology, Braunschweig, Germany
| | - Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
10
|
Rapid biodegradation of high molecular weight semi-crystalline polylactic acid at ambient temperature via enzymatic and alkaline hydrolysis by a defined bacterial consortium. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Singh AK, Gupta RK, Purohit HJ, Khardenavis AA. Genomic characterization of denitrifying methylotrophic Pseudomonas aeruginosa strain AAK/M5 isolated from municipal solid waste landfill soil. World J Microbiol Biotechnol 2022; 38:140. [PMID: 35705700 DOI: 10.1007/s11274-022-03311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/15/2022] [Indexed: 11/26/2022]
Abstract
Municipal landfills are known for methane production and a source of nitrate pollution leading to various environmental issues. Therefore, this niche was selected for the isolation of one-carbon (C1) utilizing bacteria with denitrifying capacities using anaerobic enrichment on nitrate mineral salt medium supplemented with methanol as carbon source. Eight axenic cultures were isolated of which, isolate AAK/M5 demonstrated the highest methanol removal (73.28%) in terms of soluble chemical oxygen demand and methane removal (41.27%) at the expense of total nitrate removal of 100% and 33% respectively. The whole genome characterization with phylogenomic approach suggested that the strain AAK/M5 could be assigned to Pseudomonas aeruginosa with close neighbours as type strains DVT779, AES1M, W60856, and LES400. The circular genome annotation showed the presence of complete set of genes essential for methanol utilization and complete denitrification process. The study demonstrates the potential of P. aeruginosa strain AAK/M5 in catalysing methane oxidation thus serving as a methane sink vis-à-vis utilization of nitrate. Considering the existence of such bacteria at landfill site, the study highlights the need to develop strategies for their enrichment and designing of efficient catabolic activity for such environments.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440020, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|