1
|
Liu H, Ni B, Duan A, He C, Zhang J. High Frankia abundance and low diversity of microbial community are associated with nodulation specificity and stability of sea buckthorn root nodule. FRONTIERS IN PLANT SCIENCE 2024; 15:1301447. [PMID: 38450407 PMCID: PMC10915256 DOI: 10.3389/fpls.2024.1301447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Introduction Actinorhizal symbioses are gaining attention due to the importance of symbiotic nitrogen fixation in sustainable agriculture. Sea buckthorn (Hippophae L.) is an important actinorhizal plant, yet research on the microbial community and nitrogen cycling in its nodules is limited. In addition, the influence of environmental differences on the microbial community of sea buckthorn nodules and whether there is a single nitrogen-fixing actinomycete species in the nodules are still unknown. Methods We investigated the diversity, community composition, network associations and nitrogen cycling pathways of the microbial communities in the root nodule (RN), nodule surface soil (NS), and bulk soil (BS) of Mongolian sea buckthorn distributed under three distinct ecological conditions in northern China using 16S rRNA gene and metagenomic sequencing. Combined with the data of environmental factors, the effects of environmental differences on different sample types were analyzed. Results The results showed that plants exerted a clear selective filtering effect on microbiota, resulting in a significant reduction in microbial community diversity and network complexity from BS to NS to RN. Proteobacteria was the most abundant phylum in the microbiomes of BS and NS. While RN was primarily dominated by Actinobacteria, with Frankia sp. EAN1pec serving as the most dominant species. Correlation analysis indicated that the host determined the microbial community composition in RN, independent of the ecological and geographical environmental changes of the sea buckthorn plantations. Nitrogen cycle pathway analyses showed that RN microbial community primarily functions in nitrogen fixation, and Frankia sp. EAN1pec was a major contributor to nitrogen fixation genes in RN. Discussion This study provides valuable insights into the effects of eco-geographical environment on the microbial communities of sea buckthorn RN. These findings further prove that the nodulation specificity and stability of sea buckthorn root and Frankia sp. EAN1pec may be the result of their long-term co-evolution.
Collapse
Affiliation(s)
- Hong Liu
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Bingbing Ni
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Aiguo Duan
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Caiyun He
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Moura FT, Helene LCF, Ribeiro RA, Nogueira MA, Hungria M. The outstanding diversity of rhizobia microsymbionts of common bean (Phaseolus vulgaris L.) in Mato Grosso do Sul, central-western Brazil, revealing new Rhizobium species. Arch Microbiol 2023; 205:325. [PMID: 37659972 DOI: 10.1007/s00203-023-03667-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/04/2023]
Abstract
Common bean is considered a legume of great socioeconomic importance, capable of establishing symbioses with a wide variety of rhizobial species. However, the legume has also been recognized for its low efficiency in fixing atmospheric nitrogen. Brazil is a hotspot of biodiversity, and in a previous study, we identified 13 strains isolated from common bean (Phaseolus vulgaris) nodules in three biomes of Mato Grosso do Sul state, central-western Brazil, that might represent new phylogenetic groups, deserving further polyphasic characterization. The phylogenetic tree of the 16S rRNA gene split the 13 strains into two large clades, seven in the R. etli and six in the R. tropici clade. The MLSA with four housekeeping genes (glnII, gyrB, recA, and rpoA) confirmed the phylogenetic allocation. Genomic comparisons indicated eight strains in five putative new species and the remaining five as R. phaseoli. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) comparing the putative new species and the closest neighbors ranged from 81.84 to 92.50% and 24.0 to 50.7%, respectively. Other phenotypic, genotypic, and symbiotic features were evaluated. Interestingly, some strains of both R. etli and R. tropici clades lost their nodulation capacity. The data support the description of the new species Rhizobium cerradonense sp. nov. (CNPSo 3464T), Rhizobium atlanticum sp. nov. (CNPSo 3490T), Rhizobium aureum sp. nov. (CNPSo 3968T), Rhizobium pantanalense sp. nov. (CNPSo 4039T), and Rhizobium centroccidentale sp. nov. (CNPSo 4062T).
Collapse
Affiliation(s)
- Fernanda Terezinha Moura
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, PR-445, Km 380, Cx. Postal 6001, Londrina, Paraná, CP 86.051-970, Brazil
- Soil Biotechnology Laboratory, Embrapa Soja, Cx. Postal 4006, Londrina, Paraná, 86.085-981, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, Brasília, Distrito Federal, 70.040-020, Brazil
| | - Luisa Caroline Ferraz Helene
- Soil Biotechnology Laboratory, Embrapa Soja, Cx. Postal 4006, Londrina, Paraná, 86.085-981, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, Brasília, Distrito Federal, 71605-001, Brazil
- Vittia Fertilizantes e Biológicos, São Joaquim da Barra, São Paulo, Brazil
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, Brasília, Distrito Federal, 71605-001, Brazil
| | - Marco Antonio Nogueira
- Soil Biotechnology Laboratory, Embrapa Soja, Cx. Postal 4006, Londrina, Paraná, 86.085-981, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, Brasília, Distrito Federal, 71605-001, Brazil
| | - Mariangela Hungria
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, PR-445, Km 380, Cx. Postal 6001, Londrina, Paraná, CP 86.051-970, Brazil.
- Soil Biotechnology Laboratory, Embrapa Soja, Cx. Postal 4006, Londrina, Paraná, 86.085-981, Brazil.
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, Brasília, Distrito Federal, 71605-001, Brazil.
| |
Collapse
|
3
|
Carezzano ME, Paletti Rovey MF, Cappellari LDR, Gallarato LA, Bogino P, Oliva MDLM, Giordano W. Biofilm-Forming Ability of Phytopathogenic Bacteria: A Review of its Involvement in Plant Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112207. [PMID: 37299186 DOI: 10.3390/plants12112207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Phytopathogenic bacteria not only affect crop yield and quality but also the environment. Understanding the mechanisms involved in their survival is essential to develop new strategies to control plant disease. One such mechanism is the formation of biofilms; i.e., microbial communities within a three-dimensional structure that offers adaptive advantages, such as protection against unfavorable environmental conditions. Biofilm-producing phytopathogenic bacteria are difficult to manage. They colonize the intercellular spaces and the vascular system of the host plants and cause a wide range of symptoms such as necrosis, wilting, leaf spots, blight, soft rot, and hyperplasia. This review summarizes up-to-date information about saline and drought stress in plants (abiotic stress) and then goes on to focus on the biotic stress produced by biofilm-forming phytopathogenic bacteria, which are responsible for serious disease in many crops. Their characteristics, pathogenesis, virulence factors, systems of cellular communication, and the molecules implicated in the regulation of these processes are all covered.
Collapse
Affiliation(s)
- María Evangelina Carezzano
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Córdoba X5804BYA, Argentina
- Departamento de Biología Molecular; Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba X5804BYA, Argentina
- Departamento de Microbiología e Inmunología, UNRC, Río Cuarto, Córdoba X5804BYA, Argentina
| | - María Fernanda Paletti Rovey
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Córdoba X5804BYA, Argentina
- Departamento de Microbiología e Inmunología, UNRC, Río Cuarto, Córdoba X5804BYA, Argentina
| | - Lorena Del Rosario Cappellari
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Córdoba X5804BYA, Argentina
- Departamento de Biología Molecular; Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba X5804BYA, Argentina
| | | | - Pablo Bogino
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Córdoba X5804BYA, Argentina
- Departamento de Biología Molecular; Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba X5804BYA, Argentina
| | - María de Las Mercedes Oliva
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Córdoba X5804BYA, Argentina
- Departamento de Microbiología e Inmunología, UNRC, Río Cuarto, Córdoba X5804BYA, Argentina
| | - Walter Giordano
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Córdoba X5804BYA, Argentina
- Departamento de Biología Molecular; Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba X5804BYA, Argentina
| |
Collapse
|