1
|
Bjedov D, Mikuška A, Velki M. From wetlands to landfills: white stork ( Ciconia ciconia L., 1758) as a reliable bioindicator of ecosystem health. Arh Hig Rada Toksikol 2025; 76:1-15. [PMID: 40222181 PMCID: PMC11994240 DOI: 10.2478/aiht-2025-76-3958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/01/2025] [Accepted: 03/01/2025] [Indexed: 04/15/2025] Open
Abstract
White storks (Ciconia ciconia L., 1758) and their nestlings have emerged as valuable bioindicators of environmental pollution, particularly in ecosystems affected by human activities. This review explores the role of white storks in biomonitoring, focusing on the use of biomarkers and pollutant analysis to understand the physiological consequences of environmental stressors. Key biomarkers, such as oxidative stress markers, immune responses, and hormonal alterations provide insight into the effects of pollutants like heavy metals, pesticides, and other toxic compounds. The biomarkers are typically measured in matrices such as blood, feathers, eggs, and tissues, each offering unique advantages in assessing pollutant exposure. However, ethical concerns regarding wildlife monitoring and the potential harm caused by invasive sampling techniques call for non-invasive methods. Future research should explore novel non-invasive techniques and employ long-term monitoring programmes to understand the cumulative effects of pollution. Despite challenges such as biological variability and environmental factors, white storks remain reliable indicators of ecological change and pollutant burden, providing critical data that can guide pollution management policies, inform conservation strategies, and protect both wildlife and human health from current environmental threats.
Collapse
Affiliation(s)
- Dora Bjedov
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Osijek, Croatia
| | - Alma Mikuška
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Osijek, Croatia
| | - Mirna Velki
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Osijek, Croatia
| |
Collapse
|
2
|
Pappa A, Papadimitriou-Tsantarliotou A, Kaloyianni M, Kastrinaki G, Dailianis S, Lambropoulou DA, Christodoulou E, Kyzas GZ, Bikiaris DN. Insights into the toxicity of biomaterials microparticles with a combination of cellular and oxidative biomarkers. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125335. [PMID: 33930942 DOI: 10.1016/j.jhazmat.2021.125335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Considering that the extensive biomedical, pharmaceutics, cosmetic and other industrial applications of biomaterials (BMs) is of great concern nowadays, regarding their environmental risk, the present study aimed to investigate the effects of four BMs, poly(ε-caprolactone) (PCL), poly(butylene succinate) (PBSu), chitosan (CS) and modified chitosan (succinic acid grafted chitosan) (CS-Suc) in the form of microplastics (particle sizes less than 1 mm) on biochemical parameters of snails Cornu aspersum hemocytes. Due to the absence of knowledge about the environmentally relevant concentrations of BMs, snails were initially treated through their food with a wide range of nominal concentrations of each BM to define the half maximal effective concentration (NRRT50), according to the destabilization degree of hemocytes' lysosomal membranes (by mean of neutral red retention time/NRRT assay). Thereafter, snails were treated with each BM, at concentrations lower than the estimated NRRT50 values in all cases, for periods up to 15 days. After the end of the exposure period, a battery of stress indices were measured in hemocytes of challenged snails. According to the results, all parameters tested in BMs-treated snails statistically differed from those measured in BMs-free snails, thus indicating the pro-oxidant potential of BMs, as well as their ability to affect animals' physiology. The most considerable effect in most cases seems to be caused by modified chitosan and PCL, while chitosan appears to be the least toxic. A common response mechanism of snails' blood cells against the 4 BMs used in the present study was shown. After exposure to each of the studied BMs a significant augmentation in protein carbonyls, MDA equivalents and DNA damage, while a significant reduction in NRRT values was determined in the snails hemocytes, in relation to the unexposed animals. From the biochemical parameters examined, MDA equivalents and DNA damage seem to be more susceptible than the other parameters studied, to respond to BMs effect, with MDA to react with more sensitivity to PCL and CS, while DNA damage to CS-Suc and PBSu. Our results could suggest the simultaneous use of the latter biomarkers in biomonitoring studies of terrestrial ecosystems against the specific BMs.
Collapse
Affiliation(s)
- Anna Pappa
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Aliki Papadimitriou-Tsantarliotou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | | | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Patras 26 500, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala GR-654 04, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|