1
|
van Benthem KJ, Bagawade R, Blüml C, Nabutanyi P, Thon FM, Wittmann MJ. Quantifying the effects of intraspecific trait variation and interspecific trait correlations on interacting populations-A nonlinear averaging approach. J Theor Biol 2025; 609:112134. [PMID: 40345432 DOI: 10.1016/j.jtbi.2025.112134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/27/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025]
Abstract
Interactions between two species, e.g. between a predator species and a prey species, can often be described as the sum of many individual-by-individual interactions whose outcomes depend on the traits of the interacting individuals. These traits often vary substantially among individuals in each species, and individuals do not always interact randomly, e.g. due to plastic responses to a shared environmental factor in a heterogeneous landscape. Here we investigate the impact of intraspecific trait variation (ITV) and such interspecific trait correlations on species interactions via nonlinear averaging. Building on past models that integrate over an interaction kernel to obtain the impacts of ITV, we develop a theoretical framework allowing the modeling of arbitrary species interactions, with interspecific trait correlations as a novel feature. Based on two key ingredients, a joint trait distribution and a two-dimensional interaction function, the average interaction parameters (e.g. average predation rate) can be quantified numerically, approximated using an insightful Taylor approximation, and compared to cases without ITV. We highlight two applications of our framework. First, we study the quantitative and qualitative effects of ITV and trait correlations in a simple predator-prey model and show that even in the absence of evolution, variation and trait correlations among interacting individuals can make or break the coexistence between species. Second, we use simulated field data for a predator-prey system to show how the impact of ITV on an ecological interaction can be estimated from empirical data.
Collapse
Affiliation(s)
- Koen J van Benthem
- Faculty of Science and Engineering, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747 AG, the Netherlands; Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany
| | - Rishabh Bagawade
- Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany
| | - Chantal Blüml
- Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany
| | - Peter Nabutanyi
- Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany
| | - Frans M Thon
- Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany
| | - Meike J Wittmann
- Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany; Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, 33615, Germany.
| |
Collapse
|
2
|
Rallings T, Kempes CP, Yeakel JD. On the Dynamics of Mortality and the Ephemeral Nature of Mammalian Megafauna. Am Nat 2024; 204:274-288. [PMID: 39179233 DOI: 10.1086/731331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
AbstractEnergy flow through consumer-resource interactions is largely determined by body size. Allometric relationships govern the dynamics of populations by impacting rates of reproduction as well as alternative sources of mortality, which have differential impacts on smaller to larger organisms. Here we derive and investigate the timescales associated with four alternative sources of mortality for terrestrial mammals: mortality from starvation, mortality associated with aging, mortality from consumption by predators, and mortality introduced by anthropogenic subsidized harvest. The incorporation of these allometric relationships into a minimal consumer-resource model illuminates central constraints that may contribute to the structure of mammalian communities. Our framework reveals that while starvation largely impacts smaller-bodied species, the allometry of senescence is expected to be more difficult to observe. In contrast, external predation and subsidized harvest have greater impacts on the populations of larger-bodied species. Moreover, the inclusion of predation mortality reveals mass thresholds for mammalian herbivores, where dynamic instabilities may limit the feasibility of megafaunal populations. We show how these thresholds vary with alternative predator-prey mass relationships, which are not well understood within terrestrial systems. Finally, we use our framework to predict the harvest pressure required to induce mass-specific extinctions, which closely align with previous estimates of anthropogenic megafaunal exploitation in both paleontological and historical contexts. Together our results underscore the tenuous nature of megafaunal populations and how different sources of mortality may contribute to their ephemeral nature over evolutionary time.
Collapse
|
3
|
Nakagawa H. Diel and seasonal changes in gut contents of omnivorous–carnivorous macroinvertebrates in the Yura River, Japan. Ecol Res 2022. [DOI: 10.1111/1440-1703.12372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hikaru Nakagawa
- Aqua Restoration Research Center Public Works Research Institute Kakamigahara Japan
| |
Collapse
|
4
|
Victor NR, Costa‐Pereira R. Trophic allometry in a predator that carries corpses of its prey. Biotropica 2022. [DOI: 10.1111/btp.13148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Raul Costa‐Pereira
- Departamento de Biologia Animal, Instituto de Biologia Universidade Estadual de Campinas Campinas Brazil
| |
Collapse
|
5
|
Kim SL, Yeakel JD, Balk MA, Eberle JJ, Zeichner S, Fieman D, Kriwet J. Decoding the dynamics of dental distributions: insights from shark demography and dispersal. Proc Biol Sci 2022; 289:20220808. [PMID: 35765842 PMCID: PMC9240680 DOI: 10.1098/rspb.2022.0808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Shark teeth are one of the most abundant vertebrate fossils, and because tooth size generally correlates with body size, their accumulations document the size structure of populations. Understanding how ecological and environmental processes influence size structure, and how this extends to influence these dental distributions, may offer a window into the ecological and environmental dynamics of past and present shark populations. Here, we examine the dental distributions of sand tigers, including extant Carcharias taurus and extinct Striatolamia macrota, to reconstruct the size structure for a contemporary locality and four Eocene localities. We compare empirical distributions against expectations from a population simulation to gain insight into potential governing ecological processes. Specifically, we investigate the influence of dispersal flexibility to and from protected nurseries. We show that changing the flexibility of initial dispersal of juveniles from the nursery and annual migration of adults to the nursery explains a large amount of dental distribution variability. Our framework predicts dispersal strategies of an extant sand tiger population, and supports nurseries as important components of sand tiger life history in both extant and Eocene populations. These results suggest nursery protection may be vital for shark conservation with increasing anthropogenic impacts and climate change.
Collapse
Affiliation(s)
- Sora L. Kim
- School of Natural Science, University of California Merced, Merced, CA, USA,Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Justin D. Yeakel
- School of Natural Science, University of California Merced, Merced, CA, USA
| | - Meghan A. Balk
- Paleobiology, National Ecological Observatory Network, Boulder, CO, USA
| | - Jaelyn J. Eberle
- Department of Geological Sciences and Museum of Natural History, University of Colorado, Boulder, CO, USA
| | - Sarah Zeichner
- Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Dina Fieman
- School of Geography, Environment, and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jürgen Kriwet
- Department of Paleontology, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Coghlan AR, Blanchard JL, Heather FJ, Stuart‐Smith R, Edgar GJ, Audzijonyte A. Community size structure varies with predator-prey size relationships and temperature across Australian reefs. Ecol Evol 2022; 12:e8789. [PMID: 35414896 PMCID: PMC8987491 DOI: 10.1002/ece3.8789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022] Open
Abstract
Climate change and fisheries exploitation are dramatically changing the abundances, species composition, and size spectra of fish communities. We explore whether variation in 'abundance size spectra', a widely studied ecosystem feature, is influenced by a parameter theorized to govern the shape of size-structured ecosystems-the relationship between the sizes of predators and their prey (predator-prey mass ratios, or PPMRs). PPMR estimates are lacking for avast number of fish species, including at the scale of trophic guilds. Using measurements of 8128 prey items in gut contents of 97 reef fish species, we established predator-prey mass ratios (PPMRs) for four major trophic guilds (piscivores, invertivores, planktivores, and herbivores) using linear mixed effects models. To assess the theoretical predictions that higher community-level PPMRs leads to shallower size spectrum slopes, we compared observations of both ecosystem metrics for ~15,000 coastal reef sites distributed around Australia. PPMRs of individual fishes were remarkably high (median ~71,000), with significant variation between different trophic guilds (~890 for piscivores; ~83,000 for planktivores), and ~8700 for whole communities. Community-level PPMRs were positively related to size spectrum slopes, broadly consistent with theory, however, this pattern was also influenced by the latitudinal temperature gradient. Tropical reefs showed a stronger relationship between community-level PPMRs and community size spectrum slopes than temperate reefs. The extent that these patterns apply outside Australia and consequences for community structure and dynamics are key areas for future investigation.
Collapse
Affiliation(s)
- Amy Rose Coghlan
- Institute for Marine and Antarctic Studies (IMAS)University of TasmaniaHobartTasmaniaAustralia
| | - Julia L. Blanchard
- Institute for Marine and Antarctic Studies (IMAS)University of TasmaniaHobartTasmaniaAustralia
- Centre for Marine SocioecologyUniversity of TasmaniaHobartTasmaniaAustralia
| | - Freddie J. Heather
- Institute for Marine and Antarctic Studies (IMAS)University of TasmaniaHobartTasmaniaAustralia
| | - Rick D. Stuart‐Smith
- Institute for Marine and Antarctic Studies (IMAS)University of TasmaniaHobartTasmaniaAustralia
| | - Graham J. Edgar
- Institute for Marine and Antarctic Studies (IMAS)University of TasmaniaHobartTasmaniaAustralia
| | - Asta Audzijonyte
- Institute for Marine and Antarctic Studies (IMAS)University of TasmaniaHobartTasmaniaAustralia
- Centre for Marine SocioecologyUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
7
|
Kuile AM, Apigo A, Bui A, DiFiore B, Forbes ES, Lee M, Orr D, Preston DL, Behm R, Bogar T, Childress J, Dirzo R, Klope M, Lafferty KD, McLaughlin J, Morse M, Motta C, Park K, Plummer K, Weber D, Young R, Young H. Predator–prey interactions of terrestrial invertebrates are determined by predator body size and species identity. Ecology 2022; 103:e3634. [DOI: 10.1002/ecy.3634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ana Miller‐ter Kuile
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Austen Apigo
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - An Bui
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Bartholomew DiFiore
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Elizabeth S. Forbes
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Michelle Lee
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Devyn Orr
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Daniel L. Preston
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado United States
| | - Rachel Behm
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Taylor Bogar
- School of Biological Sciences University of Hong Kong Hong Kong HK
| | - Jasmine Childress
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Rodolfo Dirzo
- Department of Biology Stanford University, Gilbert Biology Building, 371 Jane Stanford Way Stanford California United States
| | - Maggie Klope
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Kevin D. Lafferty
- Western Ecological Research Center U.S. Geological Survey, at Marine Science Institute, University of California Santa Barbara United States
| | - John McLaughlin
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Marisa Morse
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Carina Motta
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Kevin Park
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Katherine Plummer
- Department of Biology Stanford University, Gilbert Biology Building, 371 Jane Stanford Way Stanford California United States
| | - David Weber
- Warnell School of Forestry and Natural Resources University of Georgia Athens Georgia United States
| | - Ronny Young
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Hillary Young
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| |
Collapse
|
8
|
Henriques JF, Lacava M, Guzmán C, Gavín-Centol MP, Ruiz-Lupión D, De Mas E, Magalhães S, Moya-Laraño J. The sources of variation for individual prey-to-predator size ratios. Heredity (Edinb) 2021; 126:684-694. [PMID: 33452465 PMCID: PMC8115045 DOI: 10.1038/s41437-020-00395-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
The relative body size at which predators are willing to attack prey, a key trait for predator-prey interactions, is usually considered invariant. However, this ratio can vary widely among individuals or populations. Identifying the range and origin of such variation is key to understanding the strength and constraints on selection in both predators and prey. Still, these sources of variation remain largely unknown. We filled this gap by measuring the genetic, maternal and environmental variation of the maximum prey-to-predator size ratio (PPSRmax) in juveniles of the wolf spider Lycosa fasciiventris using a paternal half-sib split-brood design, in which each male was paired with two females and the offspring reared in two food environments: poor and rich. Each juvenile spider was then sequentially offered crickets of decreasing size and the maximum prey size killed was determined. We also measured body size and body condition of spiders upon emergence and just before the trial. We found low, but significant heritability (h2 = 0.069) and dominance and common environmental variance (d2 + 4c2 = 0.056). PPSRmax was also partially explained by body condition (during trial) but there was no effect of the rearing food environment. Finally, a maternal correlation between body size early in life and PPSRmax indicated that offspring born larger were less predisposed to feed on larger prey later in life. Therefore, PPSRmax, a central trait in ecosystems, can vary widely and this variation is due to different sources, with important consequences for changes in this trait in the short and long terms.
Collapse
Affiliation(s)
- Jorge F. Henriques
- grid.9983.b0000 0001 2181 4263cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal ,grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Mariángeles Lacava
- grid.11630.350000000121657640CENUR Noreste Sede Rivera, Universidad de la República, Ituzaingó, 667 Rivera Uruguay
| | - Celeste Guzmán
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Maria Pilar Gavín-Centol
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Dolores Ruiz-Lupión
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Eva De Mas
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Sara Magalhães
- grid.9983.b0000 0001 2181 4263cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Jordi Moya-Laraño
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| |
Collapse
|
9
|
Nakadai R. Degrees of compositional shift in tree communities vary along a gradient of temperature change rates over one decade: Application of an individual-based temporal beta-diversity concept. Ecol Evol 2020; 10:13613-13623. [PMID: 33391667 PMCID: PMC7771126 DOI: 10.1002/ece3.6579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Temporal patterns in communities have gained widespread attention recently, to the extent that temporal changes in community composition are now termed "temporal beta-diversity." Previous studies of beta-diversity have made use of two classes of dissimilarity indices: incidence-based (e.g., Sørensen and Jaccard dissimilarity) and abundance-based (e.g., Bray-Curtis and Ružička dissimilarity). However, in the context of temporal beta-diversity, the persistence of identical individuals and turnover among other individuals within the same species over time have not been considered, despite the fact that both will affect compositional changes in communities. To address this issue, I propose new index concepts for beta-diversity and the relative speed of compositional shifts in relation to individual turnover based on individual identity information. Individual-based beta-diversity indices are novel dissimilarity indices that consider individual identity information to quantitatively evaluate temporal change in individual turnover and community composition. I applied these new indices to individually tracked tree monitoring data in deciduous and evergreen broad-leaved forests across the Japanese archipelago with the objective of quantifying the effect of climate change trends (i.e., rates of change in both annual mean temperature and annual precipitation) on individual turnover and compositional shifts at each site. A new index explored the relative contributions of mortality and recruitment processes to temporal changes in community composition. Clear patterns emerged showing that an increase in the temperature change rate facilitated the relative contribution of mortality components. The relative speed of compositional shift increased with increasing temperature change rates in deciduous forests but decreased with increasing warming rates in evergreen forests. These new concepts provide a way to identify novel and high-resolution temporal patterns in communities.
Collapse
Affiliation(s)
- Ryosuke Nakadai
- Department of Environmental and Biological Sciences, Faculty of Science and ForestryUniversity of Eastern FinlandJoensuuFinland
- Department of Ecosystem Studies, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
10
|
Nakazawa T, Katayama N. Stage-Specific Parasitism by a Mutualistic Partner Can Increase the Host Abundance. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.602675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Meyer JM, Leempoel K, Losapio G, Hadly EA. Molecular Ecological Network Analyses: An Effective Conservation Tool for the Assessment of Biodiversity, Trophic Interactions, and Community Structure. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.588430] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
12
|
Affiliation(s)
- Takefumi Nakazawa
- Department of Life Sciences National Cheng Kung University Tainan City Taiwan
| |
Collapse
|
13
|
Keppeler FW, Montaña CG, Winemiller KO. The relationship between trophic level and body size in fishes depends on functional traits. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1415] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Friedrich W. Keppeler
- Department of Ecology and Conservation Biology Texas A&M University College Station Texas USA
| | - Carmen G. Montaña
- Department of Biology Stephen F. Austin State University Nacogdoches Texas USA
| | - Kirk O. Winemiller
- Department of Ecology and Conservation Biology Texas A&M University College Station Texas USA
| |
Collapse
|
14
|
Veelenturf CA, Peters WS. Size-dependent locomotory performance creates a behaviorally mediated prey size refuge in the marine snail Olivella semistriata: a study in the natural habitat. Curr Zool 2020; 66:57-62. [PMID: 32467705 PMCID: PMC7245010 DOI: 10.1093/cz/zoz022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/23/2019] [Indexed: 11/16/2022] Open
Abstract
The effects of the variability of individual prey locomotory performance on the vulnerability to predation are poorly understood, partly because individual performance is difficult to determine in natural habitats. To gain insights into the role(s) of individual variation in predatory relationships, we study a convenient model system, the neotropical sandy beach gastropod Olivella semistriata and its main predator, the carnivorous snail Agaronia propatula. The largest size class of O. semistriata is known to be missing from A. propatula’s spectrum of subdued prey, although the predator regularly captures much larger individuals of other taxa. To resolve this conundrum, we analyzed predation attempts in the wild. While A. propatula attacked O. semistriata of all sizes, large prey specimens usually escaped by ‘sculling’, an accelerated, stepping mode of locomotion. Olivella semistriata performed sculling locomotion regardless of size, but sculling velocities determined in the natural environment increased strongly with size. Thus, growth in size as such does not establish a prey size refuge in which O. semistriata is safe from predation. Rather, a behaviorally mediated size refuge is created through the size-dependence of sculling performance. Taken together, this work presents a rare quantitative characterization in the natural habitat of the causal sequence from the size-dependence of individual performance, to the prey size-dependent outcome of predation attempts, to the size bias in the predator’s prey spectrum.
Collapse
Affiliation(s)
- Callie A Veelenturf
- Biology Department, Purdue University Fort Wayne, Fort Wayne, IN 46805, USA.,Goldring-Gund Marine Biology Station, Playa Grande, Santa Cruz, Guanacaste, Costa Rica
| | - Winfried S Peters
- Goldring-Gund Marine Biology Station, Playa Grande, Santa Cruz, Guanacaste, Costa Rica.,School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
15
|
Affiliation(s)
- Takefumi Nakazawa
- Dept of Life Sciences, National Cheng Kung Univ. No.1, University Road Tainan City 701 Taiwan
| |
Collapse
|
16
|
Reum JCP, Holsman KK, Aydin KY, Blanchard JL, Jennings S. Energetically relevant predator-prey body mass ratios and their relationship with predator body size. Ecol Evol 2019; 9:201-211. [PMID: 30680107 PMCID: PMC6342185 DOI: 10.1002/ece3.4715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 12/03/2022] Open
Abstract
Food web structure and dynamics depend on relationships between body sizes of predators and their prey. Species-based and community-wide estimates of preferred and realized predator-prey mass ratios (PPMR) are required inputs to size-based size spectrum models of marine communities, food webs, and ecosystems. Here, we clarify differences between PPMR definitions in different size spectrum models, in particular differences between PPMR measurements weighting prey abundance in individual predators by biomass (r bio) and numbers (r num). We argue that the former weighting generates PPMR as usually conceptualized in equilibrium (static) size spectrum models while the latter usually applies to dynamic models. We use diet information from 170,689 individuals of 34 species of fish in Alaskan marine ecosystems to calculate both PPMR metrics. Using hierarchical models, we examine how explained variance in these metrics changed with predator body size, predator taxonomic resolution, and spatial resolution. In the hierarchical analysis, variance in both metrics emerged primarily at the species level and substantially less variance was associated with other (higher) taxonomic levels or with spatial resolution. This suggests that changes in species composition are the main drivers of community-wide mean PPMR. At all levels of analysis, relationships between weighted mean r bio or weighted mean r num and predator mass tended to be dome-shaped. Weighted mean r num values, for species and community-wide, were approximately an order of magnitude higher than weighted mean r bio, reflecting the consistent numeric dominance of small prey in predator diets. As well as increasing understanding of the drivers of variation in PPMR and providing estimates of PPMR in the north Pacific Ocean, our results demonstrate that that r bio or r num, as well as their corresponding weighted means for any defined group of predators, are not directly substitutable. When developing equilibrium size-based models based on bulk energy flux or comparing PPMR estimates derived from the relationship between body mass and trophic level with those based on diet analysis, weighted mean r bio is a more appropriate measure of PPMR. When calibrating preference PPMR in dynamic size spectrum models then weighted mean r num will be a more appropriate measure of PPMR.
Collapse
Affiliation(s)
- Jonathan C. P. Reum
- School of Aquatic and Fishery SciencesUniversity of Washington SeattleSeattleWashington
| | - Kirstin K. Holsman
- Alaska Fisheries Science CenterNational Marine Fisheries Service, NOAASeattleWashington
| | - Kerim Y. Aydin
- Alaska Fisheries Science CenterNational Marine Fisheries Service, NOAASeattleWashington
| | - Julia L. Blanchard
- Institute for Marine and Antarctic Studies and Centre for Marine SocioecologyUniversity of TasmaniaHobartTasmaniaAustralia
| | - Simon Jennings
- International Council for the Exploration of the SeaKøbenhavn VDenmark
| |
Collapse
|
17
|
Salmon M, Mott CR, Bresette MJ. Biphasic allometric growth in juvenile green turtles Chelonia mydas. ENDANGER SPECIES RES 2018. [DOI: 10.3354/esr00930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Costa-Pereira R, Araújo MS, Olivier RDS, Souza FL, Rudolf VHW. Prey Limitation Drives Variation in Allometric Scaling of Predator-Prey Interactions. Am Nat 2018; 192:E139-E149. [DOI: 10.1086/698726] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Robinson NJ, Peters WS. Complexity of the prey spectrum of Agaronia propatula (Caenogastropoda: Olividae), a dominant predator in sandy beach ecosystems of Pacific Central America. PeerJ 2018; 6:e4714. [PMID: 29736346 PMCID: PMC5933343 DOI: 10.7717/peerj.4714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/16/2018] [Indexed: 11/20/2022] Open
Abstract
Olivid gastropods of the genus Agaronia are dominant predators within invertebrate communities on sandy beaches throughout Pacific Central America. At Playa Grande, on the Pacific Coast of Costa Rica, we observed 327 natural predation events by Agaronia propatula. For each predation event, we documented prey taxa and body size of both predator and prey. The relationship between predator and prey size differed for each of the four main prey taxa: bivalves, crustaceans, heterospecific gastropods, and conspecific gastropods (representing cannibalism). For bivalve prey, there was increased variance in prey size with increasing predator size. Crustaceans were likely subdued only if injured or otherwise incapacitated. Heterospecific gastropods (mostly Olivella semistriata) constituted half of all prey items, but were only captured by small and intermediately sized A. propatula. Large O. semistriata appeared capable of avoiding predation by A. propatula. Cannibalism was more prevalent among large A. propatula than previously estimated. Our findings suggested ontogenetic niche shifts in A. propatula and a significant role of cannibalism in its population dynamics. Also indicated were size-dependent defensive behavior in some prey taxa and a dynamic, fine-scale zonation of the beach. The unexpected complexity of the trophic relations of A. propatula was only revealed though analysis of individual predation events. This highlights the need for detailed investigations into the trophic ecology of marine invertebrates to understand the factors driving ecosystem structuring in sandy beaches.
Collapse
Affiliation(s)
- Nathan J Robinson
- Cape Eleuthera Island School, Cape Eleuthera Institute, Eleuthera, The Bahamas.,Goldring-Gund Marine Biology Station, Playa Grande, Santa Cruz, Guanacaste, Costa Rica
| | - Winfried S Peters
- Goldring-Gund Marine Biology Station, Playa Grande, Santa Cruz, Guanacaste, Costa Rica.,School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
20
|
Comay O, Dayan T. What determines prey selection in owls? Roles of prey traits, prey class, environmental variables, and taxonomic specialization. Ecol Evol 2018; 8:3382-3392. [PMID: 29607033 PMCID: PMC5869362 DOI: 10.1002/ece3.3899] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 12/12/2017] [Accepted: 01/14/2018] [Indexed: 12/01/2022] Open
Abstract
Ecological theory suggests that prey size should increase with predator size, but this trend may be masked by other factors affecting prey selection, such as environmental constraints or specific prey preferences of predator species. Owls are an ideal case study for exploring how predator body size affects prey selection in the presence of other factors due to the ease of analyzing their diets from owl pellets and their widespread distributions, allowing interspecific comparisons between variable habitats. Here, we analyze various dimensions of prey resource selection among owls, including prey size, taxonomy (i.e., whether or not particular taxa are favored regardless of their size), and prey traits (movement type, social structure, activity pattern, and diet). We collected pellets of five sympatric owl species (Athene noctua, Tyto alba, Asio otus, Strix aluco, and Bubo bubo) from 78 sites across the Mediterranean Levant. Prey intake was compared between sites, with various environmental variables and owl species as predictors of abundance. Despite significant environmental impacts on prey intake, some key patterns emerge among owl species studied. Owls select prey by predator body size: Larger owls tend to feed on wider ranges of prey sizes, leading to higher means. In addition, guild members show both specialization and generalism in terms of prey taxa, sometimes in contrast with the expectations of the predator–prey body size hypothesis. Our results suggest that while predator body size is an important factor in prey selection, taxon specialization by predator species also has considerable impact.
Collapse
Affiliation(s)
- Orr Comay
- Department of Zoology and the Steinhardt Museum of Natural History Tel Aviv University Tel Aviv Israel
| | - Tamar Dayan
- Department of Zoology and the Steinhardt Museum of Natural History Tel Aviv University Tel Aviv Israel
| |
Collapse
|
21
|
Schmitz O. Predator and prey functional traits: understanding the adaptive machinery driving predator-prey interactions. F1000Res 2017; 6:1767. [PMID: 29043073 PMCID: PMC5621104 DOI: 10.12688/f1000research.11813.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2017] [Indexed: 12/16/2022] Open
Abstract
Predator–prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator–prey relationships. Recent approaches have begun to explore predator–prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator–prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator–prey interaction, causing predator and prey to adapt their traits—through phenotypically plastic or rapid evolutionary responses—and the nature of their interaction. Research shows that examining predator–prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator–prey interactions observed in different ecological contexts.
Collapse
Affiliation(s)
- Oswald Schmitz
- School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, CT, 06515, USA
| |
Collapse
|
22
|
Ke PJ, Nakazawa T. Ontogenetic antagonism-mutualism coupling: perspectives on resilience of stage-structured communities. OIKOS 2017. [DOI: 10.1111/oik.04702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Po-Ju Ke
- Dept of Biology; Stanford Univ.; Stanford CA USA
| | - Takefumi Nakazawa
- Dept of Life Sciences; National Cheng Kung Univ., No.1, University Road; Tainan 701 Taiwan
| |
Collapse
|
23
|
Behavioural and life history responses to predation risk by common frog tadpoles exposed to two predators during ontogeny. Acta Ethol 2017. [DOI: 10.1007/s10211-017-0266-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|