1
|
Wang X, van Westen GJP, Heitman LH, IJzerman AP. G protein-coupled receptors expressed and studied in yeast. The adenosine receptor as a prime example. Biochem Pharmacol 2020; 187:114370. [PMID: 33338473 DOI: 10.1016/j.bcp.2020.114370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 11/25/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest class of membrane proteins with around 800 members in the human genome/proteome. Extracellular signals such as hormones and neurotransmitters regulate various biological processes via GPCRs, with GPCRs being the bodily target of 30-40% of current drugs on the market. Complete identification and understanding of GPCR functionality will provide opportunities for novel drug discovery. Yeast expresses three different endogenous GPCRs regulating pheromone and sugar sensing, with the pheromone pathway offering perspectives for the characterization of heterologous GPCR signaling. Moreover, yeast offers a ''null" background for studies on mammalian GPCRs, including GPCR activation and signaling, ligand identification, and characterization of disease-related mutations. This review focuses on modifications of the yeast pheromone signaling pathway for functional GPCR studies, and on opportunities and usage of the yeast system as a platform for human GPCR studies. Finally, this review discusses in some further detail studies of adenosine receptors heterologously expressed in yeast, and what Geoff Burnstock thought of this approach.
Collapse
Affiliation(s)
- Xuesong Wang
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gerard J P van Westen
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Laura H Heitman
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands; Oncode Institute, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
2
|
The Specificity of Downstream Signaling for A 1 and A 2AR Does Not Depend on the C-Terminus, Despite the Importance of This Domain in Downstream Signaling Strength. Biomedicines 2020; 8:biomedicines8120603. [PMID: 33322210 PMCID: PMC7764039 DOI: 10.3390/biomedicines8120603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Recent efforts to determine the high-resolution crystal structures for the adenosine receptors (A1R and A2AR) have utilized modifications to the native receptors in order to facilitate receptor crystallization and structure determination. One common modification is a truncation of the unstructured C-terminus, which has been utilized for all the adenosine receptor crystal structures obtained to date. Ligand binding for this truncated receptor has been shown to be similar to full-length receptor for A2AR. However, the C-terminus has been identified as a location for protein-protein interactions that may be critical for the physiological function of these important drug targets. We show that variants with A2AR C-terminal truncations lacked cAMP-linked signaling compared to the full-length receptor constructs transfected into mammalian cells (HEK-293). In addition, we show that in a humanized yeast system, the absence of the full-length C-terminus affected downstream signaling using a yeast MAPK response-based fluorescence assay, though full-length receptors showed native-like G-protein coupling. To further study the G protein coupling, we used this humanized yeast platform to explore coupling to human-yeast G-protein chimeras in a cellular context. Although the C-terminus was essential for Gα protein-associated signaling, chimeras of A1R with a C-terminus of A2AR coupled to the A1R-specific Gα (i.e., Gαi1 versus Gαs). This surprising result suggests that the C-terminus is important in the signaling strength, but not specificity, of the Gα protein interaction. This result has further implications in drug discovery, both in enabling the experimental use of chimeras for ligand design, and in the cautious interpretation of structure-based drug design using truncated receptors.
Collapse
|
3
|
Cöster M, Wittkopf D, Kreuchwig A, Kleinau G, Thor D, Krause G, Schöneberg T. Using ortholog sequence data to predict the functional relevance of mutations in G‐protein‐coupled receptors. FASEB J 2012; 26:3273-81. [DOI: 10.1096/fj.12-203737] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maxi Cöster
- Molecular Biochemistry, Institute of Biochemistry, Medical FacultyUniversity of Leipzig Leipzig Germany
| | - Doreen Wittkopf
- Molecular Biochemistry, Institute of Biochemistry, Medical FacultyUniversity of Leipzig Leipzig Germany
| | | | - Gunnar Kleinau
- Institute of Experimental Pediatric EndocrinologyCharité Universitätsmedizin Berlin Berlin Germany
| | - Doreen Thor
- Molecular Biochemistry, Institute of Biochemistry, Medical FacultyUniversity of Leipzig Leipzig Germany
| | - Gerd Krause
- Leibniz Institute for Molecular Pharmacology Berlin Germany
| | - Torsten Schöneberg
- Molecular Biochemistry, Institute of Biochemistry, Medical FacultyUniversity of Leipzig Leipzig Germany
| |
Collapse
|
4
|
Ignatovica V, Megnis K, Lapins M, Schiöth HB, Klovins J. Identification and analysis of functionally important amino acids in human purinergic 12 receptor using a Saccharomyces cerevisiae expression system. FEBS J 2011; 279:180-91. [DOI: 10.1111/j.1742-4658.2011.08410.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
5
|
Kim Y, Klutz AM, Hechler B, Gao ZG, Gachet C, Jacobson KA. Application of the functionalized congener approach to dendrimer-based signaling agents acting through A(2A) adenosine receptors. Purinergic Signal 2008; 5:39-50. [PMID: 18600474 PMCID: PMC2721767 DOI: 10.1007/s11302-008-9113-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 04/30/2008] [Indexed: 11/01/2022] Open
Abstract
As a continued effort to develop multivalent ligands to enhance the pharmacological effects of monomeric drugs, DITC-APEC, a chemically reactive nucleoside A(2A) adenosine receptor (AR) agonist, was employed to derivatize the surface of third-generation (G3) polyamidoamine (PAMAM) dendrimers. The resulting conjugates carried multiple copies of the agonist attached through a thiourea linkage and differed in the number of attachments and in the presence of a fluorophore or additional surface modification. Computer modeling studies suggested that these DITC-APEC-loaded dendrimers extended the overall diameter of the previously reported PAMAM-CGS21680 dendrimer derivatives (Kim et al., Bioconjugate Chem 2008 19:406-411) by ca. 20 A, potentially increasing the conformational flexibility of the appended ligands to achieve optimal geometry for efficient binding at A(2A) ARs. Increased affinity and selectivity in binding in comparison to the CGS21680 conjugate were envisioned, due to the presence of an extended linker, i.e., a dithioureylenephenyl functionality. In vitro radioligand competition experiments showed effective binding of these PAMAM-DITC-APEC dendrimer conjugates at the human A(2A) and A(3) ARs with submicromolar K (i) values and selectivity in comparison to the human A(1) AR. Furthermore, these nucleoside-loaded dendrimers exhibited an A(2A) AR-mediated inhibitory effect on ADP-induced aggregation of human platelets. The present study demonstrates the potential of applying the functionalized congener concept to engineer dendrimer-based multivalent ligands for G protein-coupled receptors.
Collapse
Affiliation(s)
- Yoonkyung Kim
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | | | | | |
Collapse
|
6
|
Generation of an agonistic binding site for blockers of the M(3) muscarinic acetylcholine receptor. Biochem J 2008; 412:103-12. [PMID: 18237275 DOI: 10.1042/bj20071366] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GPCRs (G-protein-coupled receptors) exist in a spontaneous equilibrium between active and inactive conformations that are stabilized by agonists and inverse agonists respectively. Because ligand binding of agonists and inverse agonists often occurs in a competitive manner, one can assume an overlap between both binding sites. Only a few studies report mutations in GPCRs that convert receptor blockers into agonists by unknown mechanisms. Taking advantage of a genetically modified yeast strain, we screened libraries of mutant M(3)Rs {M(3) mAChRs [muscarinic ACh (acetylcholine) receptors)]} and identified 13 mutants which could be activated by atropine (EC50 0.3-10 microM), an inverse agonist on wild-type M(3)R. Many of the mutations sensitizing M(3)R to atropine activation were located at the junction of intracellular loop 3 and helix 6, a region known to be involved in G-protein coupling. In addition to atropine, the pharmacological switch was found for other M(3)R blockers such as scopolamine, pirenzepine and oxybutynine. However, atropine functions as an agonist on the mutant M(3)R only when expressed in yeast, but not in mammalian COS-7 cells, although high-affinity ligand binding was comparable in both expression systems. Interestingly, we found that atropine still blocks carbachol-induced activation of the M(3)R mutants in the yeast expression system by binding at the high-affinity-binding site (Ki approximately 10 nM). Our results indicate that blocker-to-agonist converting mutations enable atropine to function as both agonist and antagonist by interaction with two functionally distinct binding sites.
Collapse
|
7
|
Hawkes C, Amritraj A, Macdonald RG, Jhamandas JH, Kar S. Heterotrimeric G proteins and the single-transmembrane domain IGF-II/M6P receptor: functional interaction and relevance to cell signaling. Mol Neurobiol 2008; 35:329-45. [PMID: 17917122 DOI: 10.1007/s12035-007-0021-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 11/30/1999] [Accepted: 04/02/2007] [Indexed: 12/11/2022]
Abstract
The G protein-coupled receptor (GPCR) family represents the largest and most versatile group of cell surface receptors. Classical GPCR signaling constitutes ligand binding to a seven-transmembrane domain receptor, receptor interaction with a heterotrimeric G protein, and the subsequent activation or inhibition of downstream intracellular effectors to mediate a cellular response. However, recent reports on direct, receptor-independent G protein activation, G protein-independent signaling by GPCRs, and signaling of nonheptahelical receptors via trimeric G proteins have highlighted the intrinsic complexities of G protein signaling mechanisms. The insulin-like growth factor-II/mannose-6 phosphate (IGF-II/M6P) receptor is a single-transmembrane glycoprotein whose principal function is the intracellular transport of lysosomal enzymes. In addition, the receptor also mediates some biological effects in response to IGF-II binding in both neuronal and nonneuronal systems. Multidisciplinary efforts to elucidate the intracellular signaling pathways that underlie these effects have generated data to suggest that the IGF-II/M6P receptor might mediate transmembrane signaling via a G protein-coupled mechanism. The purpose of this review is to outline the characteristics of traditional and nontraditional GPCRs, to relate the IGF-II/M6P receptor's structure with its role in G protein-coupled signaling and to summarize evidence gathered over the years regarding the putative signaling of the IGF-II/M6P receptor mediated by a G protein.
Collapse
Affiliation(s)
- C Hawkes
- Department of Psychiatry, Centre for Alzheimer and Neurodegenerative Research, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | | | | | | | | |
Collapse
|
8
|
Caged agonist of P2Y1 and P2Y12 receptors for light-directed facilitation of platelet aggregation. Biochem Pharmacol 2007; 75:1341-7. [PMID: 18199424 DOI: 10.1016/j.bcp.2007.10.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/25/2007] [Accepted: 10/27/2007] [Indexed: 11/21/2022]
Abstract
We have prepared a caged form (MRS2703) of a potent dual agonist of the P2Y(1) and P2Y(12) nucleotide receptors, 2-MeSADP, by blocking the beta-phosphate group with a 1-(3,4-dimethyloxyphenyl)eth-1-yl phosphoester. Although MRS2703 is itself inactive at human P2Y(1) and P2Y(12) receptors expressed heterologously in 1321N1 astrocytoma cells or in washed human platelets, this derivative readily regenerates the parent agonist upon mild irradiation with long-wave UV light (360 nm). The functional effect of the regenerated agonist was demonstrated by a rise in intracellular calcium mediated by either P2Y(1) or P2Y(12) receptors in transfected cells. Washed human platelets exposed to a solution of MRS2703 were induced to aggregate upon UV irradiation. At 1.0 microM MRS2703, full aggregation was achieved within 1 min of irradiation. Thus, this caged nucleotide promises to be a useful probe for potent P2Y receptor activation with light-directed spatial and temporal control.
Collapse
|
9
|
Tonazzini I, Trincavelli ML, Storm-Mathisen J, Martini C, Bergersen LH. Co-localization and functional cross-talk between A1 and P2Y1 purine receptors in rat hippocampus. Eur J Neurosci 2007; 26:890-902. [PMID: 17672857 PMCID: PMC2121138 DOI: 10.1111/j.1460-9568.2007.05697.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Adenosine and ATP, via their specific P1 and P2 receptors, modulate a wide variety of cellular and tissue functions, playing a neuroprotective or neurodegenerative role in brain damage conditions. Although, in general, adenosine inhibits excitability and ATP functions as an excitatory transmitter in the central nervous system, recent data suggest the existence of a heterodimerization and a functional interaction between P1 and P2 receptors in the brain. In particular, interactions of adenosine A1 and P2Y1 receptors may play important roles in the purinergic signalling cascade. In the present work, we investigated the subcellular localization/co-localization of the receptors and their functional cross-talk at the membrane level in Wistar rat hippocampus. This is a particularly vulnerable brain area, which is sensitive to adenosine- and ATP-mediated control of glutamatergic transmission. The postembedding immunogold electron microscopy technique showed that the two receptors are co-localized at the synaptic membranes and surrounding astroglial membranes of glutamatergic synapses. To investigate the functional cross-talk between the two types of purinergic receptors, we evaluated the reciprocal effects of their activation on their G protein coupling. P2Y1 receptor stimulation impaired the potency of A1 receptor coupling to G protein, whereas the stimulation of A1 receptors increased the functional responsiveness of P2Y1 receptors. The results demonstrated an A1-P2Y1 receptor co-localization at glutamatergic synapses and surrounding astrocytes and a functional interaction between these receptors in hippocampus, suggesting ATP and adenosine can interact in purine-mediated signalling. This may be particularly important during pathological conditions, when large amounts of these mediators are released.
Collapse
Affiliation(s)
- I Tonazzini
- Department of Psychiatry Neurobiology Pharmacology and Biotechnology, University of Pisa, 56126, Pisa, Italy
| | | | | | | | | |
Collapse
|
10
|
Moaddel R, Calleri E, Massolini G, Frazier CR, Wainer IW. The synthesis and initial characterization of an immobilized purinergic receptor (P2Y1) liquid chromatography stationary phase for online screening. Anal Biochem 2007; 364:216-8. [PMID: 17391632 PMCID: PMC1931501 DOI: 10.1016/j.ab.2007.02.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/18/2007] [Accepted: 02/15/2007] [Indexed: 11/15/2022]
Affiliation(s)
- Ruin Moaddel
- Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|