1
|
Lehtonen H, Jokela H, Hofmann J, Tola L, Mehmood A, Ginhoux F, Becher B, Greter M, Yegutkin GG, Salmi M, Gerke H, Rantakari P. Early precursor-derived pituitary gland tissue-resident macrophages play a pivotal role in modulating hormonal balance. Cell Rep 2025; 44:115227. [PMID: 39841599 DOI: 10.1016/j.celrep.2024.115227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/26/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025] Open
Abstract
The pituitary gland is the central endocrine regulatory organ producing and releasing hormones that coordinate major body functions. The physical location of the pituitary gland at the base of the brain, though outside the protective blood-brain barrier, leads to an unexplored special immune environment. Using single-cell transcriptomics, fate mapping, and imaging, we characterize pituitary-resident macrophages (pitMØs), revealing their heterogeneity and spatial specialization. Microglia-like macrophages (ml-MACs) are enriched in the posterior pituitary, while other pitMØs in the anterior pituitary exhibit close interactions with hormone-secreting cells. Importantly, all pitMØs originate from early yolk sac progenitors and maintain themselves through self-renewal, independent of bone marrow-derived monocytes. Macrophage depletion experiments unveil the role of macrophages in regulating intrapituitary hormonal balance through extracellular ATP-mediated intercellular signaling. Altogether, these findings provide information on pituitary gland macrophages and advance our understanding of immune-endocrine system crosstalk.
Collapse
Affiliation(s)
- Henna Lehtonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Heli Jokela
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Julian Hofmann
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Lauriina Tola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Arfa Mehmood
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France; Translational Immunology Institute, SingHealth Duke-NUS, Singapore 169856, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| | - Gennady G Yegutkin
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Heidi Gerke
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Pia Rantakari
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
2
|
Sivcev S, Kudova E, Zemkova H. Neurosteroids as positive and negative allosteric modulators of ligand-gated ion channels: P2X receptor perspective. Neuropharmacology 2023; 234:109542. [PMID: 37040816 DOI: 10.1016/j.neuropharm.2023.109542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023]
Abstract
Neurosteroids are steroids synthesized de novo in the brain from cholesterol in an independent manner from peripheral steroid sources. The term "neuroactive steroid" includes all steroids independent of their origin, and newly synthesized analogs of neurosteroids that modify neuronal activities. In vivo application of neuroactive steroids induces potent anxiolytic, antidepressant, anticonvulsant, sedative, analgesic and amnesic effects, mainly through interaction with the γ-aminobutyric acid type-A receptor (GABAAR). However, neuroactive steroids also act as positive or negative allosteric regulators on several ligand-gated channels including N-methyl-d-aspartate receptors (NMDARs), nicotinic acetylcholine receptors (nAChRs) and ATP-gated purinergic P2X receptors. Seven different P2X subunits (P2X1-7) can assemble to form homotrimeric or heterotrimeric ion channels permeable for monovalent cations and calcium. Among them, P2X2, P2X4, and P2X7 are the most abundant within the brain and can be regulated by neurosteroids. Transmembrane domains are necessary for neurosteroid binding, however, no generic motif of amino acids can accurately predict the neurosteroid binding site for any of the ligand-gated ion channels including P2X. Here, we will review what is currently known about the modulation of rat and human P2X by neuroactive steroids and the possible structural determinants underlying neurosteroid-induced potentiation and inhibition of the P2X2 and P2X4 receptors.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Yin HY, Fan YP, Liu J, Li DT, Guo J, Yu SG. Purinergic ATP triggers moxibustion-induced local anti-nociceptive effect on inflammatory pain model. Purinergic Signal 2023; 19:5-12. [PMID: 34378078 PMCID: PMC9984580 DOI: 10.1007/s11302-021-09815-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022] Open
Abstract
Purinergic signalling adenosine and its A1 receptors have been demonstrated to get involved in the mechanism of acupuncture (needling therapy) analgesia. However, whether purinergic signalling would be responsible for the local analgesic effect of moxibustion therapy, the predominant member in acupuncture family procedures also could trigger analgesic effect on pain diseases, it still remains unclear. In this study, we applied moxibustion to generate analgesic effect on complete Freund's adjuvant (CFA)-induced inflammatory pain rats and detected the purine released from moxibustioned-acupoint by high-performance liquid chromatography (HPLC) approach. Intramuscular injection of ARL67156 into the acupoint Zusanli (ST36) to inhibit the breakdown of ATP showed the analgesic effect of moxibustion was increased while intramuscular injection of ATPase to speed up ATP hydrolysis caused a reduced moxibustion-induced analgesia. These data implied that purinergic ATP at the location of ST36 acupoint is a potentially beneficial factor for moxibustion-induced analgesia.
Collapse
Affiliation(s)
- Hai-Yan Yin
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China. .,Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China.
| | - Ya-Peng Fan
- Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, 471000, China
| | - Juan Liu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Dao-Tong Li
- Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, 471000, China
| | - Jing Guo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Shu-Guang Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
4
|
Zhang Y, Chen Q, Chen D, Zhao W, Wang H, Yang M, Xiang Z, Yuan H. SerpinA3N attenuates ischemic stroke injury by reducing apoptosis and neuroinflammation. CNS Neurosci Ther 2021; 28:566-579. [PMID: 34897996 PMCID: PMC8928918 DOI: 10.1111/cns.13776] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/14/2021] [Accepted: 11/27/2021] [Indexed: 11/30/2022] Open
Abstract
Objective To assess the effect of serine protein inhibitor A3N (serpinA3N) in ischemic stroke and to explore its mechanism of action. Methods Mouse ischemic stroke model was induced by transient middle cerebral artery occlusion followed by reperfusion. The expression pattern of serpinA3N was assessed using immunofluorescence, Western blot analysis, and real‐time quantitative PCR. An adeno‐associated virus (AAV) and recombinant serpinA3N were administered. Additionally, co‐immunoprecipitation‐mass spectrometry and immunofluorescence co‐staining were used to identify protein interactions. Results SerpinA3N was upregulated in astrocytes and neurons within the ischemic penumbra after stroke in the acute phase. The expression of serpinA3N gradually increased 6 h after reperfusion, peaked on the day 2–3, and then decreased by day 7. Overexpression of serpinA3N by AAV significantly reduced the infarct size and improved motor function, associated with alleviated inflammation and oxidative stress. SerpinA3N treatment also reduced apoptosis both in vivo and in vitro. Co‐immunoprecipitation‐mass spectrometry and Western blotting revealed that clusterin interacts with serpinA3N, and Akt‐mTOR pathway members were upregulated by serpinA3N both in vivo and in vitro. Conclusions SerpinA3N is expressed in astrocytes and penumbra neurons after stroke in mice. It reduces brain damage possibly via interacting with clusterin and inhibiting neuronal apoptosis and neuroinflammation.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Qianbo Chen
- Department of Anesthesiology, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Dashuang Chen
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wenqi Zhao
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Haowei Wang
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Mei Yang
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhenghua Xiang
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Naval Medical University, Shanghai, China
| | - Hongbin Yuan
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Zhou L, Liu H, Liu K, Wei S. Gold Compounds and the Anticancer Immune Response. Front Pharmacol 2021; 12:739481. [PMID: 34588987 PMCID: PMC8473785 DOI: 10.3389/fphar.2021.739481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Gold compounds are not only well-explored for cytotoxic effects on tumors, but are also known to interact with the cancer immune system. The immune system deploys innate and adaptive mechanisms to protect against pathogens and prevent malignant transformation. The combined action of gold compounds with the activated immune system has shown promising results in cancer therapy through in vivo and in vitro experiments. Gold compounds are known to induce innate immune responses; however, these responses may contribute to adaptive immune responses. Gold compounds play the role of a major hapten that acts synergistically in innate immunity. Gold compounds support cancer cell antigenicity and promote anti-tumor immune response by inducing the release of CRT, ATP, HMGB1, HSP, and NKG2D to enhance immunogenicity. Gold compounds affect various immune cells (including suppressor regulatory T cells), inhibit myeloid derived suppressor cells, and enhance the function and number of dendritic cells. Gold nanoparticles (AuNPs) have potential for improving the effect of immunotherapy and reducing the toxicity and side effects of the treatment process. Thus, AuNPs provide an ideal opportunity for exploring the combination of anticancer gold compounds and immunotherapeutic interventions.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Kui Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
任 文, 唐 勇. [A Review of the State of Purinergic Signaling and Psychological Stress]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:33-38. [PMID: 33474886 PMCID: PMC10408934 DOI: 10.12182/20210160102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 11/23/2022]
Abstract
Purinergic signaling is involved in multiple physiological and pathological processes. Psychological stress, as an inharmonious state in response to stressors, is closely related to the function or dysfunction of purinergic signaling. Abnormal expression of ATP interceptors caused by stress leads to psychological stress-related diseases, such as anxiety, depression, post-traumatic stress disorder and schizophrenia. Recent studies demonstrate that a complex network of purinergic signaling (such as ATP, adenosine and P2X2R, P2X3R, P2X4R, P2X7R, A1R, A2AR) plays a key role in psychological stress, but the specific mechanism remains to be further studied. And few studies focus on the application of ATP real-time detecting to psychological stress animal models, so the specific biological role of ATP in the process of stress is still unknown. This review will summarize the relationship between purinergic signaling and psychological stress and propose to apply the duplicate ATP real-time detection technology and purinergic compounds on psychological stress research in order to provide novel potential targets for the treatment of stress-related diseases.
Collapse
Affiliation(s)
- 文静 任
- 成都中医药大学 (成都 610075)Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- 针灸与时间生物学四川省重点实验室 (成都 610075)Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu 610075, China
| | - 勇 唐
- 成都中医药大学 (成都 610075)Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- 针灸与时间生物学四川省重点实验室 (成都 610075)Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu 610075, China
| |
Collapse
|
7
|
Mancinelli R, Fanò-Illic G, Pietrangelo T, Fulle S. Guanosine-Based Nucleotides, the Sons of a Lesser God in the Purinergic Signal Scenario of Excitable Tissues. Int J Mol Sci 2020; 21:ijms21051591. [PMID: 32111063 PMCID: PMC7084674 DOI: 10.3390/ijms21051591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022] Open
Abstract
Purines are nitrogen compounds consisting mainly of a nitrogen base of adenine (ABP) or guanine (GBP) and their derivatives: nucleosides (nitrogen bases plus ribose) and nucleotides (nitrogen bases plus ribose and phosphate). These compounds are very common in nature, especially in a phosphorylated form. There is increasing evidence that purines are involved in the development of different organs such as the heart, skeletal muscle and brain. When brain development is complete, some purinergic mechanisms may be silenced, but may be reactivated in the adult brain/muscle, suggesting a role for purines in regeneration and self-repair. Thus, it is possible that guanosine-5′-triphosphate (GTP) also acts as regulator during the adult phase. However, regarding GBP, no specific receptor has been cloned for GTP or its metabolites, although specific binding sites with distinct GTP affinity characteristics have been found in both muscle and neural cell lines. Finally, even if the cross regulation mechanisms between the two different purines (ABP and GBP) are still largely unknown, it is now possible to hypothesize the existence of specific signal paths for guanosine-based nucleotides that are capable of modulating the intensity and duration of the intracellular signal, particularly in excitable tissues such as brain and muscle.
Collapse
Affiliation(s)
- Rosa Mancinelli
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (T.P.)
- Interuniversity Institute of Miology (IIM), 66100 Chieti, Italy;
| | - Giorgio Fanò-Illic
- Interuniversity Institute of Miology (IIM), 66100 Chieti, Italy;
- Libera Università di Alcatraz, Santa Cristina di Gubbio, 06024 Gubbio, Italy
| | - Tiziana Pietrangelo
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (T.P.)
- Interuniversity Institute of Miology (IIM), 66100 Chieti, Italy;
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (T.P.)
- Interuniversity Institute of Miology (IIM), 66100 Chieti, Italy;
- Correspondence:
| |
Collapse
|