1
|
Olivares-Caro L, Nova-Baza D, Sanhueza F, Contreras H, Alarcón B, Alarcon-Zapata P, Mennickent D, Duran D, Bustamante L, Perez AJ, Enos D, Vergara C, Mardones C. Targeted and untargeted cross-sectional study for sex-specific identification of plasma biomarkers of COVID-19 severity. Anal Bioanal Chem 2024:10.1007/s00216-024-05706-x. [PMID: 39714519 DOI: 10.1007/s00216-024-05706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024]
Abstract
Coronavirus disease 2019 is a highly contagious respiratory illness caused by the coronavirus SARS-CoV-2. Symptoms can range from mild to severe and typically appear 2-14 days after virus exposure. While vaccination has significantly reduced the incidence of severe complications, strategies for the identification of new biomarkers to assess disease severity remains a critical area of research. Severity biomarkers are essential for personalizing treatment strategies and improving patient outcomes. This study aimed to identify sex-specific biomarkers for COVID-19 severity in a Chilean population (n = 123 female, n = 115 male), categorized as control, mild, moderate, or severe. Data were collected using clinical biochemistry parameters and mass spectrometry-based metabolomics and lipidomics to detect alterations in plasma cytokines, metabolites, and lipid profiles related to disease severity. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were performed to select significant characteristic features for each group. The results revealed distinct biomarkers for males and females. In males, COVID-19 severity of was associated with inflammation parameters, triglycerides content, and phospholipids profiles. For females, liver damage parameters, triglycerides content, cholesterol derivatives, and phosphatidylcholine were identified as severity biomarkers. For both sexes, most of the biomarker combinations evaluated got areas under the ROC curve greater than 0.8 and low prediction errors. These findings suggest that sex-specific biomarkers can help differentiate the levels of COVID-19 severity, potentially aiding in the development of tailored treatment approaches.
Collapse
Affiliation(s)
- Lia Olivares-Caro
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Daniela Nova-Baza
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Felipe Sanhueza
- Complejo Asistencial Víctor Ríos Ruiz, Los Ángeles, Bío-Bío, Chile
| | - Hector Contreras
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Barbara Alarcón
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Pedro Alarcon-Zapata
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Daniela Mennickent
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Daniel Duran
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Luis Bustamante
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Andy J Perez
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Daniel Enos
- Complejo Asistencial Víctor Ríos Ruiz, Los Ángeles, Bío-Bío, Chile
- Departamento Medicina Interna, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Carola Vergara
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
2
|
Ou Z, Yang L, Xu M, Weng X, Xu G. Identification of the serum metabolomic profile for acute ischemic preconditioning in athletes. Front Physiol 2024; 15:1492202. [PMID: 39568544 PMCID: PMC11576439 DOI: 10.3389/fphys.2024.1492202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Purpose In recent years, ischemic preconditioning (IPC) has emerged as an effective strategy to increase tissue resistance against long-term ischemic damage and has been increasingly integrated into exercise regimens. However, further research is needed to explore the impact of IPC-mediated metabolic alterations from an exercise standpoint to conduct a comprehensive exploration of metabolic alterations and their exercise-related mechanisms during acute IPC. Methods Nontarget metabolomics was performed on blood samples obtained from 8 male athletes both before and after IPC. The studies included the identification of differentially abundant metabolites, analysis of receiver operating characteristic (ROC) curves, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for differentially abundant metabolites, and metabolite set enrichment analysis (MSEA). Results Nineteen differentially abundant metabolites were identified, with increasing levels of five metabolites, such as O-desmethyltramadol and D-gluconate, whereas 14 metabolites, including 9-hydroxy-10e, 12z-octadecadienoic acid (9-HODE), tetradione, 2-hexenal, (2,4-dichlorophenoxy)acetic acid (2,4-D), and phosphatidylserine (PS), decreased. ROC curve analysis revealed an AUC of 0.9375 for D-gluconate. Both KEGG enrichment analysis and MSEA revealed enrichment in the pentose phosphate pathway (PPP). Conclusion This study revealed that PPP, D-gluconate, O-desmethyltramadol, and D-2-aminobutyric acid could be upregulated within 5 min after acute IPC, whereas 2,4-D, PS, 9-HODE, 2-hexenal, and tetradinone could be downregulated. These identified metabolites show promise for improving physical functional status and could be harnessed to enhance athletic performance.
Collapse
Affiliation(s)
- Ziyue Ou
- College of Martial Arts, Guangzhou Sport University, Guangzhou, China
| | - Liang Yang
- College of Martial Arts, Guangzhou Sport University, Guangzhou, China
| | - Mingxin Xu
- The Fifth College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiquan Weng
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China
| | - Guoqin Xu
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China
| |
Collapse
|
3
|
Zhao J, Pan X, Hao D, Zhao Y, Chen Y, Zhou S, Peng H, Zhuang Y. Causal associations of gut microbiota and metabolites on sepsis: a two-sample Mendelian randomization study. Front Immunol 2023; 14:1190230. [PMID: 37781358 PMCID: PMC10537222 DOI: 10.3389/fimmu.2023.1190230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Background Sepsis stands as a dire medical condition, arising when the body's immune response to infection spirals into overdrive, paving the way for potential organ damage and potential mortality. With intestinal flora's known impact on sepsis but a dearth of comprehensive data, our study embarked on a two-sample Mendelian randomization analysis to probe the causal link between gut microbiota and their metabolites with severe sepsis patients who succumbed within a 28-day span. Methods Leveraging data from Genome-wide association study (GWAS) and combining it with data from 2,076 European descendants in the Framingham Heart Study, single-nucleotide polymorphisms (SNPs) were employed as Instrumental Variables (IVs) to discern gene loci affiliated with metabolites. GWAS summary statistics for sepsis were extracted from the UK Biobank consortium. Results In this extensive exploration, 93 distinct genome-wide significant SNPs correlated with gut microbial metabolites and specific bacterial traits were identified for IVs construction. Notably, a substantial link between Coprococcus2 and both the incidence (OR of 0.80, 95% CI: 0.68-0.94, P=0.007) and the 28-day mortality rate (OR 0.48, 95% CI: 0.27-0.85, P=0.013) of sepsis was observed. The metabolite α-hydroxybutyrate displayed a marked association with sepsis onset (OR=1.08, 95% CI: 1.02-1.15, P=0.006) and its 28-day mortality rate (OR=1.17, 95% CI: 1.01-1.36, P=0.029). Conclusion This research unveils the intricate interplay between the gut microbial consortium, especially the genus Coprococcus, and the metabolite α-hydroxybutyrate in the milieu of sepsis. The findings illuminate the pivotal role of intestinal microbiota and their metabolites in sepsis' pathogenesis, offering fresh insights for future research and hinting at novel strategies for sepsis' diagnosis, therapeutic interventions, and prognostic assessments.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Pan
- Department of Gerontology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Di Hao
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Zhao
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanzhuo Chen
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuqin Zhou
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yugang Zhuang
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Olivares-Caro L, Nova-Baza D, Radojkovic C, Bustamante L, Duran D, Mennickent D, Melin V, Contreras D, Perez AJ, Mardones C. Berberis microphylla G. Forst Intake Reduces the Cardiovascular Disease Plasmatic Markers Associated with a High-Fat Diet in a Mice Model. Antioxidants (Basel) 2023; 12:antiox12020304. [PMID: 36829862 PMCID: PMC9952125 DOI: 10.3390/antiox12020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Polyphenols are bioactive substances that participate in the prevention of chronic illnesses. High content has been described in Berberis microphylla G. Forst (calafate), a wild berry extensively distributed in Chilean-Argentine Patagonia. We evaluated its beneficial effect through the study of mouse plasma metabolome changes after chronic consumption of this fruit. Characterized calafate extract was administered in water, for four months, to a group of mice fed with a high-fat diet and compared with a control diet. Metabolome changes were studied using UHPLC-DAD-QTOF-based untargeted metabolomics. The study was complemented by the analysis of protein biomarkers determined using Luminex technology, and quantification of OH radicals by electron paramagnetic resonance spectroscopy. Thirteen features were identified with a maximum annotation level-A, revealing an increase in succinic acid, activation of tricarboxylic acid and reduction of carnitine accumulation. Changes in plasma biomarkers were related to inflammation and cardiovascular disease, with changes in thrombomodulin (-24%), adiponectin (+68%), sE-selectin (-34%), sICAM-1 (-24%) and proMMP-9 (-31%) levels. The production of OH radicals in plasma was reduced after calafate intake (-17%), especially for the group fed with a high-fat diet. These changes could be associated with protection against atherosclerosis due to calafate consumption, which is discussed from a holistic and integrative point of view.
Collapse
Affiliation(s)
- Lia Olivares-Caro
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Daniela Nova-Baza
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Claudia Radojkovic
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Luis Bustamante
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Daniel Duran
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Daniela Mennickent
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Victoria Melin
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica 1000007, Chile
| | - David Contreras
- Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070386, Chile
| | - Andy J. Perez
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción, Coronel 4191996, Chile
- Correspondence: ; Tel.: +56-983616340
| |
Collapse
|
5
|
Tzanakis K, Nattkemper TW, Niehaus K, Albaum SP. MetHoS: a platform for large-scale processing, storage and analysis of metabolomics data. BMC Bioinformatics 2022; 23:267. [PMID: 35804309 PMCID: PMC9270834 DOI: 10.1186/s12859-022-04793-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Modern mass spectrometry has revolutionized the detection and analysis of metabolites but likewise, let the data skyrocket with repositories for metabolomics data filling up with thousands of datasets. While there are many software tools for the analysis of individual experiments with a few to dozens of chromatograms, we see a demand for a contemporary software solution capable of processing and analyzing hundreds or even thousands of experiments in an integrative manner with standardized workflows. RESULTS Here, we introduce MetHoS as an automated web-based software platform for the processing, storage and analysis of great amounts of mass spectrometry-based metabolomics data sets originating from different metabolomics studies. MetHoS is based on Big Data frameworks to enable parallel processing, distributed storage and distributed analysis of even larger data sets across clusters of computers in a highly scalable manner. It has been designed to allow the processing and analysis of any amount of experiments and samples in an integrative manner. In order to demonstrate the capabilities of MetHoS, thousands of experiments were downloaded from the MetaboLights database and used to perform a large-scale processing, storage and statistical analysis in a proof-of-concept study. CONCLUSIONS MetHoS is suitable for large-scale processing, storage and analysis of metabolomics data aiming at untargeted metabolomic analyses. It is freely available at: https://methos.cebitec.uni-bielefeld.de/ . Users interested in analyzing their own data are encouraged to apply for an account.
Collapse
Affiliation(s)
- Konstantinos Tzanakis
- International Research Training Group "Computational Methods for the Analysis of the Diversity and Dynamics of Genomes", Faculty of Technology, Bielefeld University, Bielefeld, Germany.
| | - Tim W Nattkemper
- Biodata Mining Group, Center for Biotechnology (CeBiTec), Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Karsten Niehaus
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Stefan P Albaum
- Bioinformatics Resource Facility, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
6
|
Martins AMA, Paiva MUB, Paiva DVN, de Oliveira RM, Machado HL, Alves LJSR, Picossi CRC, Faccio AT, Tavares MFM, Barbas C, Giraldez VZR, Santos RD, Monte GU, Atik FA. Innovative Approaches to Assess Intermediate Cardiovascular Risk Subjects: A Review From Clinical to Metabolomics Strategies. Front Cardiovasc Med 2021; 8:788062. [PMID: 35004898 PMCID: PMC8727773 DOI: 10.3389/fcvm.2021.788062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
Current risk stratification strategies for coronary artery disease (CAD) have low predictive value in asymptomatic subjects classified as intermediate cardiovascular risk. This is relevant because not all coronary events occur in individuals with traditional multiple risk factors. Most importantly, the first manifestation of the disease may be either sudden cardiac death or acute coronary syndrome, after rupture and thrombosis of an unstable non-obstructive atherosclerotic plaque, which was previously silent. The inaccurate stratification using the current models may ultimately subject the individual to excessive or insufficient preventive therapies. A breakthrough in the comprehension of the molecular mechanisms governing the atherosclerosis pathology has driven many researches toward the necessity for a better risk stratification. In this Review, we discuss how metabolomics screening integrated with traditional risk assessments becomes a powerful approach to improve non-invasive CAD subclinical diagnostics. In addition, this Review highlights the findings of metabolomics studies performed by two relevant analytical platforms in current use-mass spectrometry (MS) hyphenated to separation techniques and nuclear magnetic resonance spectroscopy (NMR) -and evaluates critically the challenges for further clinical implementation of metabolomics data. We also discuss the modern understanding of the pathophysiology of atherosclerosis and the limitations of traditional analytical methods. Our aim is to show how discriminant metabolites originated from metabolomics approaches may become promising candidate molecules to aid intermediate risk patient stratification for cardiovascular events and how these tools could successfully meet the demands to translate cardiovascular metabolic biomarkers into clinical settings.
Collapse
Affiliation(s)
- Aline M. A. Martins
- Centre of Metabolomics and Bioanalysis (CEMBIO), San Pablo CEU University, Madrid, Spain
- School of Medicine, University of Brasilia, Brasilia, Brazil
- School of Medicine, University Center of Brasilia (UniCeub), Brasilia, Brazil
| | | | | | | | - Henrique L. Machado
- School of Medicine, University Center of Brasilia (UniCeub), Brasilia, Brazil
| | | | - Carolina R. C. Picossi
- Centre of Metabolomics and Bioanalysis (CEMBIO), San Pablo CEU University, Madrid, Spain
- Center for Multiplatform Metabolomics Studies (CEMM), University of Sao Paulo, São Paulo, Brazil
| | - Andréa T. Faccio
- Center for Multiplatform Metabolomics Studies (CEMM), University of Sao Paulo, São Paulo, Brazil
| | - Marina F. M. Tavares
- Center for Multiplatform Metabolomics Studies (CEMM), University of Sao Paulo, São Paulo, Brazil
| | - Coral Barbas
- Centre of Metabolomics and Bioanalysis (CEMBIO), San Pablo CEU University, Madrid, Spain
| | - Viviane Z. R. Giraldez
- Lipid Clinic, Heart Institute (InCor), University of Sao Paulo Medical School, São Paulo, Brazil
| | - Raul D. Santos
- Lipid Clinic, Heart Institute (InCor), University of Sao Paulo Medical School, São Paulo, Brazil
| | - Guilherme U. Monte
- Department of Heart Transplant, Federal District Institute of Cardiology (ICDF), Brasilia, Brazil
| | - Fernando A. Atik
- School of Medicine, University of Brasilia, Brasilia, Brazil
- Department of Heart Transplant, Federal District Institute of Cardiology (ICDF), Brasilia, Brazil
| |
Collapse
|
7
|
Liang J, Han R, Zhou B. Metabolic Reprogramming: Strategy for Ischemic Stroke Treatment by Ischemic Preconditioning. BIOLOGY 2021; 10:biology10050424. [PMID: 34064579 PMCID: PMC8151271 DOI: 10.3390/biology10050424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/15/2023]
Abstract
Stroke is one of the leading causes of death and permanent disability worldwide. Ischemic preconditioning (IPC) is an endogenous protective strategy, which has been reported to exhibit a significant neuroprotective effect in reducing the incidence of ischemic stroke. However, the underlying neuroprotective mechanisms of IPC remain elusive. An increased understanding of the pathogenic mechanisms of stroke and IPC serves to highlight the importance of metabolic reprogramming. In this review, we summarize the metabolic disorder and metabolic plasticity in the incidence and progression of ischemic stroke. We also elaborate how IPC fully mobilizes the metabolic reprogramming to maintain brain metabolic homeostasis, especially for energy and redox homeostasis, and finally protects brain function in the event of an ischemic stroke.
Collapse
Affiliation(s)
- Jing Liang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China; (J.L.); (R.H.)
| | - Rongrong Han
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China; (J.L.); (R.H.)
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China; (J.L.); (R.H.)
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- Correspondence:
| |
Collapse
|
8
|
van Zyl CDW, Loots DT, Solomons R, van Reenen M, Mason S. Metabolic characterization of tuberculous meningitis in a South African paediatric population using 1H NMR metabolomics. J Infect 2020; 81:743-752. [PMID: 32712206 DOI: 10.1016/j.jinf.2020.06.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To better characterize the cerebrospinal fluid (CSF) metabolic profile of tuberculous meningitis (TBM) cases using a South African paediatric cohort. METHODS 1H NMR metabolomics was used to analyse the CSF of a South African paediatric cohort. Univariate and multivariate statistical analyses were performed to compare a homogeneous control group with a well-defined TBM group. RESULTS Twenty metabolites were identified to discriminate TBM cases from controls. As expected, reduced glucose and elevated lactate were the dominating discriminators. A closer investigation of the CSF metabolic profile yielded 18 metabolites of statistical significance. Ten metabolites (acetate, alanine, choline, citrate, creatinine, isoleucine, lysine, myo-inositol, pyruvate and valine) overlapped with two other prior investigations. Eight metabolites (2-hydroxybutyrate, carnitine, creatine, creatine phosphate, glutamate, glutamine, guanidinoacetate and proline) were unique to our paediatric TBM cohort. CONCLUSIONS Through strict exclusion criteria, quality control checks and data filtering, eight unique CSF metabolites associated with TBM were identified for the first time and linked to: uncontrolled glucose metabolism, upregulated proline and creatine metabolism, detoxification and disrupted glutamate-glutamine cycle in the TBM samples. Associated with oxidative stress and chronic neuroinflammation, our findings collectively imply destabilization, and hence increased permeability, of the blood-brain barrier in the TBM cases.
Collapse
Affiliation(s)
- Christiaan De Wet van Zyl
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa
| | - Du Toit Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa
| | - Regan Solomons
- Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Mari van Reenen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa.
| |
Collapse
|
9
|
Hansen J, Johnsen J, Nielsen JM, Sørensen CB, Elkjær CC, Jespersen NR, Bøtker HE. Impact of Administration Time and Kv7 Subchannels on the Cardioprotective Efficacy of Kv7 Channel Inhibition. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2549-2560. [PMID: 32669836 PMCID: PMC7337438 DOI: 10.2147/dddt.s226406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/15/2020] [Indexed: 01/12/2023]
Abstract
Purpose The mechanism of cardioprotection by Kv7.1-5 (KCNQ1-5) channels inhibition by XE991 is unclear. We examined the impact of administration time on the cardioprotective efficacy of XE991, the involvement of key pro-survival kinases, and the importance of the Kv7 subchannels. Methods Isolated perfused rat hearts were divided into five groups: 1) vehicle, 2) pre-, 3) post- or 4) pre- and post-ischemic administration of XE991 or 5) chromanol 293B (Kv7.1 inhibitor) followed by infarct size quantification. HL-1 cells undergoing simulated ischemia/reperfusion were exposed to either a) vehicle, b) pre-, c) per-, d) post-ischemic administration of XE991 or pre-, per- and post-ischemic administration of e) XE991, f) Chromanol 293B or g) HMR1556 (Kv7.1 inhibitor). HL-1 cell injury was evaluated by propidium iodide/Hoechst staining. Pro-survival kinase activation of Akt, Erk and STAT3 in XE991-mediated HL-1 cell protection was evaluated using phosphokinase inhibitors. Kv7 subtype expression was examined by RT-PCR and qPCR. Results XE991, but not Chromanol 293B, reduced infarct size and improved hemodynamic recovery in all isolated heart groups. XE991 protected HL-1 cells when administered during simulated ischemia. Minor activation of the survival kinases was observed in cells exposed to XE991 but pharmacological inhibition of kinase activation did not reduce XE991-mediated protection. Kv7 subchannels 1-5 were all present in rat hearts but predominately Kv7.1 and Kv7.4 were present in HL-1 cells and selective Kv7.1 did not reduce ischemia/reperfusion injury. Conclusion The cardioprotective efficacy of XE991 seems to depend on its presence during ischemia and early reperfusion and do not rely on RISK (p-Akt and p-Erk) and SAFE (p-STAT3) pathway activation. The protective effect of XE991 seems mainly mediated through the Kv7.4 subchannel.
Collapse
Affiliation(s)
- Jan Hansen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob Johnsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jan Møller Nielsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Charlotte Brandt Sørensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Casper Carlsen Elkjær
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nichlas Riise Jespersen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Zheng J, Zheng SJ, Qi CB, Wu DM, Feng YQ. 4-Plex Chemical Labeling Strategy Based on Cinchona Alkaloid-Derived Primary Amines for the Analysis of Chiral Carboxylic Acids by Liquid Chromatography-Mass Spectrometry. Anal Chem 2019; 91:11440-11446. [DOI: 10.1021/acs.analchem.9b02909] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jie Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Shu-Jian Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Chu-Bo Qi
- Department of Pathology, Hubei Cancer Hospital, Wuhan 430079, People’s Republic of China
| | - Dong-Mei Wu
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, People’s Republic of China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
11
|
Abstract
Rapid admission and acute interventional treatment combined with modern antithrombotic pharmacologic therapy have improved outcomes in patients with ST elevation myocardial infarction. The next major target to further advance outcomes needs to address ischemia-reperfusion injury, which may contribute significantly to the final infarct size and hence mortality and postinfarction heart failure. Mechanical conditioning strategies including local and remote ischemic pre-, per-, and postconditioning have demonstrated consistent cardioprotective capacities in experimental models of acute ischemia-reperfusion injury. Their translation to the clinical scenario has been challenging. At present, the most promising mechanical protection strategy of the heart seems to be remote ischemic conditioning, which increases myocardial salvage beyond acute reperfusion therapy. An additional aspect that has gained recent focus is the potential of extended conditioning strategies to improve physical rehabilitation not only after an acute ischemia-reperfusion event such as acute myocardial infarction and cardiac surgery but also in patients with heart failure. Experimental and preliminary clinical evidence suggests that remote ischemic conditioning may modify cardiac remodeling and additionally enhance skeletal muscle strength therapy to prevent muscle waste, known as an inherent component of a postoperative period and in heart failure. Blood flow restriction exercise and enhanced external counterpulsation may represent cardioprotective corollaries. Combined with exercise, remote ischemic conditioning or, alternatively, blood flow restriction exercise may be of aid in optimizing physical rehabilitation in populations that are not able to perform exercise practice at intensity levels required to promote optimal outcomes.
Collapse
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital , Aarhus , Denmark
| | | | | |
Collapse
|
12
|
Koronowski KB, Khoury N, Morris-Blanco KC, Stradecki-Cohan HM, Garrett TJ, Perez-Pinzon MA. Metabolomics Based Identification of SIRT5 and Protein Kinase C Epsilon Regulated Pathways in Brain. Front Neurosci 2018; 12:32. [PMID: 29440987 PMCID: PMC5797631 DOI: 10.3389/fnins.2018.00032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022] Open
Abstract
The role of Sirtuins in brain function is emerging, yet little is known about SIRT5 in this domain. Our previous work demonstrates that protein kinase C epsilon (PKCε)-induced protection from focal ischemia is lost in SIRT5-/- mice. Thus, metabolic regulation by SIRT5 contributes significantly to ischemic tolerance. The aim of this study was to identify the SIRT5-regulated metabolic pathways in the brain and determine which of those pathways are linked to PKCε. Our results show SIRT5 is primarily expressed in neurons and endothelial cells in the brain, with mitochondrial and extra-mitochondrial localization. Pathway and enrichment analysis of non-targeted primary metabolite profiles from Sirt5-/- cortex revealed alterations in several pathways including purine metabolism (urea, adenosine, adenine, xanthine), nitrogen metabolism (glutamic acid, glycine), and malate-aspartate shuttle (malic acid, glutamic acid). Additionally, perturbations in β-oxidation and carnitine transferase (pentadecanoic acid, heptadecanoic acid) and glutamate transport and glutamine synthetase (urea, xylitol, adenine, adenosine, glycine, glutamic acid) were predicted. Metabolite changes in SIRT5-/- coincided with alterations in expression of amino acid (SLC7A5, SLC7A7) and glutamate (EAAT2) transport proteins as well as key enzymes in purine (PRPS1, PPAT), fatty acid (ACADS, HADHB), glutamine-glutamate (GAD1, GLUD1), and malate-aspartate shuttle (MDH1) metabolic pathways. Moreover, PKCε activation induced alternations in purine metabolites (urea, glutamine) that overlapped with putative SIRT5 pathways in WT but not in SIRT5-/- mice. Finally, we found that purine metabolism is a common metabolic pathway regulated by SIRT5, PKCε and ischemic preconditioning. These results implicate Sirt5 in the regulation of pathways central to brain metabolism, with links to ischemic tolerance.
Collapse
Affiliation(s)
- Kevin B. Koronowski
- Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, FL, United States
- Neuroscience Program, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nathalie Khoury
- Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, FL, United States
- Neuroscience Program, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Kahlilia C. Morris-Blanco
- Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, FL, United States
- Neuroscience Program, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Holly M. Stradecki-Cohan
- Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, FL, United States
- Neuroscience Program, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Timothy J. Garrett
- Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, United States
| | - Miguel A. Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, FL, United States
- Neuroscience Program, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|