1
|
Bangma J, McCord J, Giffard N, Buckman K, Petali J, Chen C, Amparo D, Turpin B, Morrison G, Strynar M. Analytical method interferences for perfluoropentanoic acid (PFPeA) and perfluorobutanoic acid (PFBA) in biological and environmental samples. CHEMOSPHERE 2023; 315:137722. [PMID: 36592832 PMCID: PMC10165721 DOI: 10.1016/j.chemosphere.2022.137722] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 05/10/2023]
Abstract
While high-resolution MS (HRMS) can be used for identification and quantification of novel per- and polyfluorinated alkyl substances (PFAS), low-resolution MS/MS is the more commonly used and affordable approach for routine PFAS monitoring. Of note, perfluoropentanoic acid (PFPeA) and perfluorobutanoic acid (PFBA), two of the smaller carboxylic acid containing-PFAS, have only one major MS/MS transition, preventing the use of qualitative transitions for verification on low-resolution instrumentation. Recently our lab has observed widespread chemical interference in the quantitative ion channel for PFPeA (263 → 219) and PFBA (213 → 169) in numerous matrices. PFPeA interference was investigated using HRMS and putatively assigned as a diprotic unsaturated fatty acid (263.1288 Da) in shellfish and a separate interferent (13C isotope of 262.1087 Da) in hot cocoa, which had been previously described by the FDA. PFBA interference caused by saturated oxo-fatty acids, previously demonstrated in tissue, was also observed in liquid condensate from a residential air conditioning unit. Therefore, in support of PFAS analysis on low-resolution instrumentation, authors recommend several adjustments to analytical methods including altering liquid chromatography (LC) conditions as well as using matched internal standards to investigate and expressly confirm PFBA and PFPeA detections in both biological and environmental samples.
Collapse
Affiliation(s)
- Jacqueline Bangma
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - James McCord
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nathan Giffard
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Kate Buckman
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Jonathan Petali
- Environmental Health Program, New Hampshire Department of Environmental Services, Concord, NH, USA
| | - Celia Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Daniel Amparo
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Barbara Turpin
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Glenn Morrison
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark Strynar
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
2
|
Bangma JT, Reiner J, Fry RC, Manuck T, McCord J, Strynar MJ. Identification of an Analytical Method Interference for Perfluorobutanoic Acid in Biological Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:1085-1090. [PMID: 35127964 PMCID: PMC8811701 DOI: 10.1021/acs.estlett.1c00901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The investigation of per- and polyfluorinated alkyl substances (PFAS) in environmental and biological samples relies on both high- and low-resolution mass spectrometry (MS) techniques. While high-resolution MS (HRMS) can be used for identification and quantification of novel compounds, low-resolution MS is the more commonly used and affordable approach for studies examining previously identified PFAS. Of note, perfluorobutanoic acid (PFBA) is one of the smaller PFAS observed in biological and environmental samples and has only one major MS/MS transition, preventing the use of qualitative transitions for verification. Recently, our laboratories undertook a targeted investigation of PFAS in the human placenta from high-risk pregnancies utilizing low-resolution, targeted MS/MS. Examination of placental samples revealed a widespread (n = 93/122 (76%)) chemical interferent in the quantitative ion channel for PFBA (213 → 169). PFBA concentrations were influenced by up to ∼3 ng/g. Therefore, additional chromatographic and HRMS/MS instrumentation was utilized to investigate the suspect peak and putatively assign the identity of the interfering compound as the saturated oxo-fatty acid (SOFA) 3-oxo-dodecanoic acid.
Collapse
Affiliation(s)
- Jacqueline T Bangma
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, United States
| | - Jessica Reiner
- Chemical Sciences Division, Hollings Marine Laboratory, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States; Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tracy Manuck
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - James McCord
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Mark J Strynar
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
3
|
Aru V, Khakimov B, Sørensen KM, Chikwati EM, Kortner TM, Midtlyng P, Krogdahl Å, Engelsen SB. The plasma metabolome of Atlantic salmon as studied by 1H NMR spectroscopy using standard operating procedures: effect of aquaculture location and growth stage. Metabolomics 2021; 17:50. [PMID: 33999285 DOI: 10.1007/s11306-021-01797-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Metabolomics applications to the aquaculture research are increasing steadily. The use of standardized proton nuclear magnetic resonance (1H NMR) spectroscopy can provide the aquaculture industry with an unbiased, reproducible, and high-throughput screening tool, which can help to diagnose nutritional and disease-related metabolic disorders in farmed fish. OBJECTIVE Standard operating procedures developed for analysing (human) plasma by 1H NMR were applied to fingerprint the metabolome in plasma samples collected from Atlantic salmon. The aim was to explore the metabolome of salmon plasma in relation to growth stage and sampling site. METHODS A total of 72 salmon were collected from three aquaculture sites in Norway (Lat. 65, 67, and 70 °N) and over two sampling events (December 2017 and November 2018). Plasma drawn from each salmon was measured by 1H NMR and metabolites were quantified using the SigMa software. The NMR data was analysed by principal component analysis (PCA) and ANOVA-simultaneous component analysis (ASCA). RESULTS Important metabolic differences were evidenced, with adult salmon having a much higher content of very low-density lipoproteins and cholesterol in their plasma, while smolts displayed significantly higher levels of propylene glycol. Overall, 24% of the metabolite variation was due to the growth stage, whereas 12% of the metabolite variation was related to the aquaculture site and practice (p < 0.001). CONCLUSION This study provides a baseline investigation of the plasma metabolome of the Atlantic salmon and demonstrates how 1H NMR metabolomics can be used in future investigations for comparing aquaculture practices and their influence on the fish metabolome.
Collapse
Affiliation(s)
- Violetta Aru
- Chemometrics & Analytical Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| | - Bekzod Khakimov
- Chemometrics & Analytical Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Klavs Martin Sørensen
- Chemometrics & Analytical Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Elvis Mashingaidze Chikwati
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- Aquamedic AS, Gaustadallèen 21, 0349, Oslo, Norway
| | - Trond M Kortner
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Åshild Krogdahl
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Søren Balling Engelsen
- Chemometrics & Analytical Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
4
|
Shestakova KM, Moskaleva NE, Mesonzhnik NV, Kukharenko AV, Serkov IV, Lyubimov II, Fomina-Ageeva EV, Bezuglov VV, Akimov MG, Appolonova SA. In Vivo Targeted Metabolomic Profiling of Prostanit, a Novel Anti-PAD NO-Donating Alprostadil-Based Drug. Molecules 2020; 25:E5896. [PMID: 33322104 PMCID: PMC7764275 DOI: 10.3390/molecules25245896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
Prostanit is a novel drug developed for the treatment of peripheral arterial diseases. It consists of a prostaglandin E1 (PGE1) moiety with two nitric oxide (NO) donor fragments, which provide a combined vasodilation effect on smooth muscles and vascular spastic reaction. Prostanit pharmacokinetics, however, remains poorly investigated. Thus, the object of this study was to investigate the pharmacokinetics of Prostanit-related and -affected metabolites in rabbit plasma using the liquid chromatography-mass spectrometry (LC-MS) approach. Besides, NO generation from Prostanit in isolated rat aorta and human smooth muscle cells was studied using the Griess method. In plasma, Prostanit was rapidly metabolized to 1,3-dinitroglycerol (1,3-DNG), PGE1, and 13,14-dihydro-15-keto-PGE1. Simultaneously, the constant growth of amino acid (proline, 4-hydroxyproline, alanine, phenylalanine, etc.), steroid (androsterone and corticosterone), and purine (adenosine, adenosine-5 monophosphate, and guanosine) levels was observed. Glycine, aspartate, cortisol, and testosterone levels were decreased. Ex vivo Prostanit induced both NO synthase-dependent and -independent NO generation. The observed pharmacokinetic properties suggested some novel beneficial activities (i.e., effect prolongation and anti-inflammation). These properties may provide a basis for future research of the effectiveness and safety of Prostanit, as well as for its characterization from a clinical perspective.
Collapse
Affiliation(s)
- Ksenia M. Shestakova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., 119991 Moscow, Russia; (K.M.S.); (N.E.M.); (N.V.M.); (A.V.K.); (S.A.A.)
| | - Natalia E. Moskaleva
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., 119991 Moscow, Russia; (K.M.S.); (N.E.M.); (N.V.M.); (A.V.K.); (S.A.A.)
| | - Natalia V. Mesonzhnik
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., 119991 Moscow, Russia; (K.M.S.); (N.E.M.); (N.V.M.); (A.V.K.); (S.A.A.)
| | - Alexey V. Kukharenko
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., 119991 Moscow, Russia; (K.M.S.); (N.E.M.); (N.V.M.); (A.V.K.); (S.A.A.)
| | - Igor V. Serkov
- Institute of Physiologically Active Compounds RAS, Severniy pr., 1, 142432 Chernogolovka, Russia;
| | - Igor I. Lyubimov
- Territory of Skolkovo Innovation Center, LLC “Gurus BioPharm”, Bolshoy Boulevard, 42 Building 1, 143026 Moscow, Russia;
| | - Elena V. Fomina-Ageeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, St. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (E.V.F.-A.); (V.V.B.)
| | - Vladimir V. Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, St. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (E.V.F.-A.); (V.V.B.)
| | - Mikhail G. Akimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, St. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (E.V.F.-A.); (V.V.B.)
| | - Svetlana A. Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., 119991 Moscow, Russia; (K.M.S.); (N.E.M.); (N.V.M.); (A.V.K.); (S.A.A.)
| |
Collapse
|
5
|
Markin PA, Brito A, Moskaleva N, Lartsova EV, Shpot YV, Lerner YV, Mikhajlov VY, Potoldykova NV, Enikeev DV, La Frano MR, Appolonova SA. Plasma metabolomic profile in prostatic intraepithelial neoplasia and prostate cancer and associations with the prostate-specific antigen and the Gleason score. Metabolomics 2020; 16:74. [PMID: 32556743 DOI: 10.1007/s11306-020-01694-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/05/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The metabolic alterations reflecting the influence of prostate cancer cells can be captured through metabolomic profiling. OBJECTIVE To characterize the plasma metabolomic profile in prostatic intraepithelial neoplasia (PIN) and prostate cancer (PCa). METHODS Metabolomics analyses were performed in plasma samples from individuals classified as non-cancerous control (n = 36), with PIN (n = 16), or PCa (n = 27). Untargeted [26 moieties identified after pre-processing by gas chromatography/mass spectrometry (GC/MS)] and targeted [46 amino acids, carbohydrates, organic acids and fatty acids by GC/MS, and 16 nucleosides and amino acids by ultra performance liquid chromatography-triple quadrupole/mass spectrometry (UPLC-TQ/MS)] analyses were performed. Prostate specific antigen (PSA) concentrations were measured in all samples. In PCa patients, the Gleason scores were determined. RESULTS The metabolites that were best discriminated (p < 0.05, FDR < 0.2) for the Kruskal-Wallis test with Dunn's post-hoc comparing the control versus the PIN and PCa groups included isoleucine, serine, threonine, cysteine, sarcosine, glyceric acid, among several others. PIN was mainly characterized by alterations on steroidogenesis, glycine and serine metabolism, methionine metabolism and arachidonic acid metabolism, among others. In the case of PCa, the most predominant metabolic alterations were ubiquinone biosynthesis, catecholamine biosynthesis, thyroid hormone synthesis, porphyrin and purine metabolism. In addition, we identified metabolites that were correlated to the PSA [i.e. hypoxanthine (r = - 0.60, p < 0.05; r = - 0.54, p < 0.01) and uridine (r = - 0.58, p < 0.05; r = - 0.50, p < 0.01) in PIN and PCa groups, respectively] and metabolites that were significantly different in PCa patients with Gleason score < 7 and ≥ 7 [i.e. arachidonic acid, median (P25-P75) = 883.0 (619.8-956.4) versus 570.8 (505.6-651.8), respectively (p < 0.01)]. CONCLUSIONS This human plasma metabolomic assessment contributes to the understanding of the unique metabolic features exhibited in PIN and PCa and provides a list of metabolites that can have the potential to be used as biomarkers for early detection of disease progression and management.
Collapse
Affiliation(s)
- Pavel A Markin
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, Russia, 119991
- PhD Program in Nanosciences and Advanced Technologies, University of Verona, Verona, Italy
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, Russia, 119991.
| | - Natalia Moskaleva
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, Russia, 119991
| | - Ekaterina V Lartsova
- University Clinical Hospital, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yevgeny V Shpot
- Research Institute of Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yulia V Lerner
- Department of Pathological Anatomy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vasily Y Mikhajlov
- University Clinical Hospital, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Natalia V Potoldykova
- Research Institute of Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Dimitry V Enikeev
- Research Institute of Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA
- Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Svetlana A Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, Russia, 119991.
| |
Collapse
|