1
|
Wang T, Wang H, Chu Y, Bao M, Li X, Zhang G, Feng J. Daily Brain Metabolic Rhythms of Wild Nocturnal Bats. Int J Mol Sci 2024; 25:9850. [PMID: 39337348 PMCID: PMC11432702 DOI: 10.3390/ijms25189850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Circadian rhythms are found in a wide range of organisms and have garnered significant research interest in the field of chronobiology. Under normal circadian function, metabolic regulation is temporally coordinated across tissues and behaviors within a 24 h period. Metabolites, as the closest molecular regulation to physiological phenotype, have dynamic patterns and their relationship with circadian regulation remains to be fully elucidated. In this study, untargeted brain metabolomics was employed to investigate the daily rhythms of metabolites at four time points corresponding to four typical physiological states in Vespertilio sinensis. Key brain metabolites and associated physiological processes active at different time points were detected, with 154 metabolites identified as rhythmic. Analyses of both metabolomics and transcriptomics revealed that several important physiological processes, including the pentose phosphate pathway and oxidative phosphorylation, play key roles in regulating rhythmic physiology, particularly in hunting and flying behaviors. This study represents the first exploration of daily metabolic dynamics in the bat brain, providing insights into the complex regulatory network of circadian rhythms in mammals at a metabolic level. These findings serve as a valuable reference for future studies on circadian rhythms in nocturnal mammals.
Collapse
Affiliation(s)
- Tianhui Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Hui Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Yujia Chu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Mingyue Bao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Xintong Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Guoting Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
2
|
Buijink MR, van Weeghel M, Harms A, Murli DS, Meijer JH, Hankemeier T, Michel S, Kervezee L. Loss of temporal coherence in the circadian metabolome across multiple tissues during ageing in mice. Eur J Neurosci 2024; 60:3843-3857. [PMID: 38802069 DOI: 10.1111/ejn.16428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Circadian clock function declines with ageing, which can aggravate ageing-related diseases such as type 2 diabetes and neurodegenerative disorders. Understanding age-related changes in the circadian system at a systemic level can contribute to the development of strategies to promote healthy ageing. The goal of this study was to investigate the impact of ageing on 24-h rhythms in amine metabolites across four tissues in young (2 months of age) and old (22-25 months of age) mice using a targeted metabolomics approach. Liver, plasma, the suprachiasmatic nucleus (SCN; the location of the central circadian clock in the hypothalamus) and the paraventricular nucleus (PVN; a downstream target of the SCN) were collected from young and old mice every 4 h during a 24-h period (n = 6-7 mice per group). Differential rhythmicity analysis revealed that ageing impacts 24-h rhythms in the amine metabolome in a tissue-specific manner. Most profound changes were observed in the liver, in which rhythmicity was lost in 60% of the metabolites in aged mice. Furthermore, we found strong correlations in metabolite levels between the liver and plasma and between the SCN and the PVN in young mice. These correlations were almost completely abolished in old mice. These results indicate that ageing is accompanied by a severe loss of the circadian coordination between tissues and by disturbed rhythmicity of metabolic processes. The tissue-specific impact of ageing may help to differentiate mechanisms of ageing-related disorders in the brain versus peripheral tissues and thereby contribute to the development of potential therapies for these disorders.
Collapse
Affiliation(s)
- M Renate Buijink
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel van Weeghel
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Amy Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Devika S Murli
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H Meijer
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Stephan Michel
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Kervezee
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
He Y, van Mever M, Yang W, Huang L, Ramautar R, Rijksen Y, Vermeij WP, Hoeijmakers JHJ, Harms AC, Lindenburg PW, Hankemeier T. A Sample Preparation Method for the Simultaneous Profiling of Signaling Lipids and Polar Metabolites in Small Quantities of Muscle Tissues from a Mouse Model for Sarcopenia. Metabolites 2022; 12:metabo12080742. [PMID: 36005613 PMCID: PMC9413361 DOI: 10.3390/metabo12080742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The metabolic profiling of a wide range of chemical classes relevant to understanding sarcopenia under conditions in which sample availability is limited, e.g., from mouse models, small muscles, or muscle biopsies, is desired. Several existing metabolomics platforms that include diverse classes of signaling lipids, energy metabolites, and amino acids and amines would be informative for suspected biochemical pathways involved in sarcopenia. The sample limitation requires an optimized sample preparation method with minimal losses during isolation and handling and maximal accuracy and reproducibility. Here, two developed sample preparation methods, BuOH-MTBE-Water (BMW) and BuOH-MTBE-More-Water (BMMW), were evaluated and compared with previously reported methods, Bligh-Dyer (BD) and BuOH-MTBE-Citrate (BMC), for their suitability for these classes. The most optimal extraction was found to be the BMMW method, with the highest extraction recovery of 63% for the signaling lipids and 81% for polar metabolites, and an acceptable matrix effect (close to 1.0) for all metabolites of interest. The BMMW method was applied on muscle tissues as small as 5 mg (dry weight) from the well-characterized, prematurely aging, DNA repair-deficient Ercc1∆/- mouse mutant exhibiting multiple-morbidities, including sarcopenia. We successfully detected 109 lipids and 62 polar targeted metabolites. We further investigated whether fast muscle tissue isolation is necessary for mouse sarcopenia studies. A muscle isolation procedure involving 15 min at room temperature revealed a subset of metabolites to be unstable; hence, fast sample isolation is critical, especially for more oxidative muscles. Therefore, BMMW and fast muscle tissue isolation are recommended for future sarcopenia studies. This research provides a sensitive sample preparation method for the simultaneous extraction of non-polar and polar metabolites from limited amounts of muscle tissue, supplies a stable mouse muscle tissue collection method, and methodologically supports future metabolomic mechanistic studies of sarcopenia.
Collapse
Affiliation(s)
- Yupeng He
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marlien van Mever
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Wei Yang
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Luojiao Huang
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Rawi Ramautar
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Yvonne Rijksen
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Wilbert P. Vermeij
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Jan H. J. Hoeijmakers
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Institute for Genome Stability in Aging and Disease, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Amy C. Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Peter W. Lindenburg
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Research Group Metabolomics, Leiden Center for Applied Bioscience, University of Applied Sciences Leiden, 2333 CK Leiden, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Correspondence: ; Tel.: +31-71-527-1340
| |
Collapse
|
4
|
Singer R, Alia A. Evaluation of suprachiasmatic nucleus in Alzheimer's disease with non-invasive magnetic resonance methods. Neural Regen Res 2022; 17:1753-1754. [PMID: 35017432 PMCID: PMC8820719 DOI: 10.4103/1673-5374.332136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Rico Singer
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - A Alia
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands; Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
5
|
Towards Standards for Human Fecal Sample Preparation in Targeted and Untargeted LC-HRMS Studies. Metabolites 2021; 11:metabo11060364. [PMID: 34200487 PMCID: PMC8230323 DOI: 10.3390/metabo11060364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota and their metabolic products are increasingly being recognized as important modulators of human health. The fecal metabolome provides a functional readout of the interactions between human metabolism and the gut microbiota in health and disease. Due to the high complexity of the fecal matrix, sample preparation often introduces technical variation, which must be minimized to accurately detect and quantify gut bacterial metabolites. Here, we tested six different representative extraction methods (single-phase and liquid–liquid extractions) and compared differences due to fecal amount, extraction solvent type and solvent pH. Our results indicate that a minimum fecal (wet) amount of 0.50 g is needed to accurately represent the complex texture of feces. The MTBE method (MTBE/methanol/water, 3.6/2.8/3.5, v/v/v) outperformed the other extraction methods, reflected by the highest extraction efficiency for 11 different classes of compounds, the highest number of extracted features (97% of the total identified features in different extracts), repeatability (CV < 35%) and extraction recovery (≥70%). Importantly, optimization of the solvent volume of each step to the initial dried fecal material (µL/mg feces) offers a major step towards standardization, which enables confident assessment of the contributions of gut bacterial metabolites to human health.
Collapse
|
6
|
Eeza MN, Singer R, Höfling C, Matysik J, de Groot HJ, Roβner S, Alia A. Metabolic Profiling of Suprachiasmatic Nucleus Reveals Multifaceted Effects in an Alzheimer's Disease Mouse Model. J Alzheimers Dis 2021; 81:797-808. [PMID: 33843677 PMCID: PMC8203226 DOI: 10.3233/jad-201575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Circadian rhythm disturbance is commonly observed in Alzheimer's disease (AD). In mammals, these rhythms are orchestrated by the superchiasmatic nucleus (SCN). Our previous study in the Tg2576 AD mouse model suggests that inflammatory responses, most likely manifested by low GABA production, may be one of the underlying perpetrators for the changes in circadian rhythmicity and sleep disturbance in AD. However, the mechanistic connections between SCN dysfunction, GABA modulation, and inflammation in AD is not fully understood. OBJECTIVE To reveal influences of amyloid pathology in Tg2576 mouse brain on metabolism in SCN and to identify key metabolic sensors that couple SCN dysfunction with GABA modulation and inflammation. METHODS High resolution magic angle spinning (HR-MAS) NMR in conjunction with multivariate analysis was applied for metabolic profiling in SCN of control and Tg2576 female mice. Immunohistochemical analysis was used to detect neurons, astrocytes, expression of GABA transporter 1 (GAT1) and Bmal1. RESULTS Metabolic profiling revealed significant metabolic deficits in SCN of Tg2576 mice. Reductions in glucose, glutamate, GABA, and glutamine provide hints toward an impaired GABAergic glucose oxidation and neurotransmitter cycling in SCN of AD mice. In addition, decreased redox co-factor NADPH and glutathione support a redox disbalance. Immunohistochemical examinations showed low expression of the core clock protein, Bmal1, especially in activated astrocytes. Moreover, decreased expression of GAT1 in astrocytes indicates low GABA recycling in this cell type. CONCLUSION Our results suggest that redox disbalance and compromised GABA signaling are important denominators and connectors between neuroinflammation and clock dysfunction in AD.
Collapse
Affiliation(s)
- Muhamed N.H. Eeza
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Rico Singer
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Jörg Matysik
- Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Huub J.M. de Groot
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Steffen Roβner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - A. Alia
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
7
|
Ch R, Chevallier O, Elliott CT. Metabolomics reveal circadian control of cellular metabolism. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|