1
|
García-Ríos D, Hernández I, Alvaro JE, Pedreschi F, Campos D, Behn A, Pedreschi R. Analysis of Maillard reaction precursors and secondary metabolites in Chilean potatoes and neoformed contaminants during frying. Food Chem 2024; 460:140478. [PMID: 39032302 DOI: 10.1016/j.foodchem.2024.140478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Southern Chile native potatoes are an interesting raw material to produce novel snacks like colored potato chips. These novel products should be comprehensively evaluated for the presence of undesirable compounds such as acrylamide, 5-hydroxymethylfurfural and furan, the main neoformed contaminants in starchy rich fried foods. This study evaluated the neoformed contaminant levels and oil content on chips made from eleven Chilean potato accessions and compared them with commercial samples. The neoformed contaminant contents were related to Maillard reaction precursor levels (reducing sugars and asparagine) and secondary metabolites (phenolic compounds and carotenoids). Neoformed contaminants correlated well among them and were weakly correlated with reducing sugars and asparagine. Acrylamide level in native potato chips ranged from 738.2 to 1998.6 μg kg-1 while from 592.6 to 2390.5 μg kg-1 in commercial samples. Thus, there is need to implement neoformed contaminant mitigation strategies at different steps of the production chain of colored potato chips.
Collapse
Affiliation(s)
- Diego García-Ríos
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Calle San Francisco s/n, La Palma 2260000, Quillota, Chile..
| | - Ignacia Hernández
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Calle San Francisco s/n, La Palma 2260000, Quillota, Chile..
| | - Juan E Alvaro
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Calle San Francisco s/n, La Palma 2260000, Quillota, Chile..
| | - Franco Pedreschi
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, P.O. Box 306, Santiago, Chile..
| | - David Campos
- Instituto de Biotecnología, Universidad Nacional Agraria La Molina, Av. La Molina, La Molina 12056, Lima, Peru..
| | - Anita Behn
- Faculty of Agricultural and Food Sciences, Institute of Plant Production and Protection, Universidad Austral de Chile, Valdivia, Chile..
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Calle San Francisco s/n, La Palma 2260000, Quillota, Chile.; Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile.
| |
Collapse
|
2
|
Behn A, Lizana C, Zapata F, Gonzalez A, Reyes-Díaz M, Fuentes D. Phenolic and anthocyanin content characterization related to genetic diversity analysis of Solanum tuberosum subsp. tuberosum Chilotanum Group in southern Chile. FRONTIERS IN PLANT SCIENCE 2023; 13:1045894. [PMID: 36704150 PMCID: PMC9872146 DOI: 10.3389/fpls.2022.1045894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
The potato (Solanum tuberosum L) is one of the four most important crops worldwide in production and consumption. It originated from South America along the Andes, where six hotspots of diversity known as subcenters of origin are described from Venezuela to Chiloe Island in Chile, and where the greatest diversity of potatoes in the world is found. Today, the use of ancestral genetic resources has gained significant relevance, recovering and producing foods with a greater nutrient content and beneficial to human health. Therefore, native potatoes possess a set of characteristics with great potential for use in potato breeding guided primarily to produce better feed, especially potatoes of the Chilotanum Group that are easily crossed with conventional varieties. The primary objective of this study was to evaluate 290 accessions of S. tuberosum subsp tuberosum belonging to the Chilotanum Group using a set of molecular markers and correlate them to its phenotypic traits for future use in breeding programs. For this purpose, 290 accessions were analysed through 22 specific microsatellites described previously, correlating them with flesh and skin colour, total phenolic content, and anthocyanin content. A division into groups considering all the 290 accessions resulted in two clusters using STRUCTURE analysis and seven different genetic clusters using UPGMA. The latter exhibited common phenotypic characteristics as well as anthocyanin content, strongly supporting a correlation between phenotypic traits and the genetic fingerprint. These results will enable breeders to focus on the development of potatoes with high polyphenol and anthocyanin content.
Collapse
Affiliation(s)
- Anita Behn
- Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Lizana
- Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Valdivia, Chile
| | - Felipe Zapata
- Biocomputing and Applied Genetics, Center for Systems Biotechnology, Fraunhofer Chile Research Foundation, Santiago, Chile
| | - Alvaro Gonzalez
- Biocomputing and Applied Genetics, Center for Systems Biotechnology, Fraunhofer Chile Research Foundation, Santiago, Chile
| | - Marjorie Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Derie Fuentes
- Biocomputing and Applied Genetics, Center for Systems Biotechnology, Fraunhofer Chile Research Foundation, Santiago, Chile
- Centro de Biotecnología de Sistemas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
4
|
Datir SS, Yousf S, Sharma S, Kochle M, Ravikumar A, Chugh J. Cold storage reveals distinct metabolic perturbations in processing and non-processing cultivars of potato (Solanum tuberosum L.). Sci Rep 2020; 10:6268. [PMID: 32286457 PMCID: PMC7156394 DOI: 10.1038/s41598-020-63329-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/27/2020] [Indexed: 11/09/2022] Open
Abstract
Cold-induced sweetening (CIS) causes considerable losses to the potato processing industry wherein the selection of potato genotypes using biochemical information has found to be advantageous. Here, 1H NMR spectroscopy was performed to identify metabolic perturbations from tubers of five potato cultivars (Atlantic, Frito Lay-1533, Kufri Jyoti, Kufri Pukhraj, and PU1) differing in their CIS ability and processing characteristics at harvest and after cold storage (4 °C). Thirty-nine water-soluble metabolites were detected wherein significantly affected metabolites after cold storage were categorized into sugars, sugar alcohols, amino acids, and organic acids. Multivariate statistical analysis indicated significant differences in the metabolic profiles among the potato cultivars. Pathway enrichment analysis revealed that carbohydrates, amino acids, and organic acids are the key players in CIS. Interestingly, one of the processing cultivars, FL-1533, exhibited a unique combination of metabolites represented by low levels of glucose, fructose, and asparagine accompanied by high citrate levels. Conversely, non-processing cultivars (Kufri Pukhraj and Kufri Jyoti) showed elevated glucose, fructose, and malate levels. Our results indicate that metabolites such as glucose, fructose, sucrose, asparagine, glutamine, citrate, malate, proline, 4-aminobutyrate can be potentially utilized for the prediction, selection, and development of potato cultivars for long-term storage, nutritional, as well as processing attributes.
Collapse
Affiliation(s)
- Sagar S Datir
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India. .,Biology Department, Biosciences Complex, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Saleem Yousf
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Mohit Kochle
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Ameeta Ravikumar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, 411008, India. .,Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|