1
|
Wang Y, Wang Z, Dong C, Yim WY, Liu Z, Hou J, Li C, Wen S, Peng Y, Zeng Q, Shi J, Liu F, Qiao W, Li F, Dong N. Initial cardioplegic flush with crystalloid cardioplegia improves donor heart preservation and function via NR4A3 upregulation and metabolic reprogramming. Sci Bull (Beijing) 2025; 70:1673-1690. [PMID: 40190001 DOI: 10.1016/j.scib.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/20/2025] [Accepted: 02/06/2025] [Indexed: 05/26/2025]
Abstract
Static cold storage (SCS) remains the gold standard for preserving donor hearts for heart transplantation. The currently used University of Wisconsin (UW) solution has limitations in inducing rapid cardiac arrest and preservation of the heart, especially when a long cold ischemic time is required. Here, we propose a novel donor heart procurement and preservation method-crystalloid cardioplegia (CC)+UW involving an initial cardioplegic flush with crystalloid cardioplegia followed by preservation in UW solution. Our results demonstrated that compared with using UW solution alone, the CC+UW method could effectively reduce metabolite consumption and suppress the activation of the NFκB signaling pathway in a pig model. NR4A3 was found to be upregulated in CC+UW, which could suppress the expression of DUSP2 and thereby decrease p65 phosphorylation. In addition, the CC+UW method increased intraventricular pressure and improved electrical conduction and rhythm in Langendorff-perfused rat hearts. Medium-term survival data for heart transplant patients also confirmed the benefits of this method. In conclusion, our study identifies the CC+UW method as an effective strategy for donor heart procurement and preservation, showing that it can reduce energy consumption and decrease inflammation; therefore, this method is a promising technique for expanding the criteria for heart transplantation and alleviating the shortage of donor hearts.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430022, China
| | - Zihao Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wai Yen Yim
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jincheng Hou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenghao Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuyu Wen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongbu Peng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fayuan Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430022, China.
| |
Collapse
|
2
|
Zhang F, Li B, Su H, Guo Z, Zhu H, Wang A, Jiang K, Cao Y. Progress in the Metabolomics of Acute Coronary Syndrome. Rev Cardiovasc Med 2023; 24:204. [PMID: 39077017 PMCID: PMC11266460 DOI: 10.31083/j.rcm2407204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 07/31/2024] Open
Abstract
Acute coronary syndrome (ACS) is a severe type of coronary heart disease (CHD) with increasing prevalence and significant challenges for prevention and treatment. Metabolomics is an emerging technology with intrinsic dynamics and flexibility to better delineate the phenotypic and metabolic alterations in organisms at the time of altered pathological states. It provides new insights into the complex pathological mechanisms of cardiovascular disease and contributes to the early detection, monitoring and evaluation of ACS. In this review, we analyze and summarize the literature related to ACS metabolomics which has contributed to the diagnosis and prevention of ACS.
Collapse
Affiliation(s)
- Fu Zhang
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| | - Bo Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), 730000 Lanzhou, Gansu, China
| | - Hongling Su
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| | - Zhaoxia Guo
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| | - Hai Zhu
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| | - Aqian Wang
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| | - Kaiyu Jiang
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| | - Yunshan Cao
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| |
Collapse
|
3
|
Hasselbalch RB, Kristensen JH, Strandkjær N, Jørgensen N, Bundgaard H, Malmendal A, Iversen KK. Metabolomics of early myocardial ischemia. Metabolomics 2023; 19:33. [PMID: 37002479 PMCID: PMC10066099 DOI: 10.1007/s11306-023-01999-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023]
Abstract
INTRODUCTION Diagnosing myocardial infarction is difficult during the initial phase. As, acute myocardial ischemia is associated with changes in metabolic pathways, metabolomics may provide ways of identifying early stages of ischemia. We investigated the changes in metabolites after induced ischemia in humans using nuclear magnetic resonance spectroscopy (NMR). METHODS We included patients undergoing elective coronary angiography showing normal coronary arteries. These were randomized into 4 groups and underwent coronary artery occlusion for 0, 30, 60 or 90 s. Blood was collected over the next 3 h and analyzed using NMR. We used 2-way ANOVA of time from baseline- and treatment group to find metabolites that changed significantly following the intervention and principal component analysis (PCA) to investigate changes between the 90 s ischemia- and control groups at 15 and 60 min after intervention. RESULTS We included 34 patients. The most pronounced changes were observed in the lipid metabolism where 38 of 112 lipoprotein parameters (34%) showed a significant difference between the patients exposed to ischemia and the control group. There was a decrease in total plasma triglycerides over the first hour followed by a normalization. The principal component analysis showed a effects of the treatment after just 15 min. These effects were dominated by changes in high-density lipoprotein. An increase in lactic acid levels was detected surprisingly late, 1-2 h after the ischemia. CONCLUSION We investigated the earliest changes in metabolites of patients undergoing brief myocardial ischemia and found that ischemia led to changes throughout the lipid metabolism as early as 15 min post-intervention.
Collapse
Affiliation(s)
- Rasmus Bo Hasselbalch
- Department of Emergency Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark.
- Department of Cardiology Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
- Department of Emergency Medicine, Department of Cardiology, Herlev and Gentofte Hospital, Borgmester Ib Juuls vej 1, Herlev, DK-2730, Denmark.
| | - Jonas Henrik Kristensen
- Department of Emergency Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Department of Cardiology Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nina Strandkjær
- Department of Emergency Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Department of Cardiology Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nicoline Jørgensen
- Department of Emergency Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Department of Cardiology Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anders Malmendal
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Kasper Karmark Iversen
- Department of Emergency Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Department of Cardiology Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Rong W, Li J, Pan D, Zhou Q, Zhang Y, Lu Q, Wang L, Wang A, Zhu Y, Zhu Q. Cardioprotective Mechanism of Leonurine against Myocardial Ischemia through a Liver–Cardiac Crosstalk Metabolomics Study. Biomolecules 2022; 12:biom12101512. [PMID: 36291721 PMCID: PMC9599793 DOI: 10.3390/biom12101512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
Abstract
Leonurine has been shown to have excellent anti-myocardial ischemia effects. Our previous studies suggested that cardiac protection by leonurine during myocardial ischemia appeared to be inextricably linked to its regulation of the liver. At present, however, there are few mechanistic studies of leonurine and its regulation of hepatic metabolism against ischemic injury. In this study, a metabolomics approach was developed to give a global view of the metabolic profiles of the heart and liver during myocardial ischemia. Principal component analysis and orthogonal partial least squares discrimination analysis were applied to filter differential metabolites, and a debiased sparse partial correlation analysis was used to analyze the correlation of the differential metabolites between heart and liver. As a result, a total of thirty-one differential metabolites were identified, six in the myocardial tissue and twenty-five in the hepatic tissue, involving multiple metabolic pathways including glycine, serine and threonine, purine, fatty acid, and amino acid metabolic pathways. Correlation analysis revealed a net of these differential metabolites, suggesting an interaction between hepatic and myocardial metabolism. These results suggest that leonurine may reduce myocardial injury during myocardial ischemia by regulating the metabolism of glycine, serine and threonine, purine, fatty acids, and amino acids in the liver and heart.
Collapse
Affiliation(s)
- Weiwei Rong
- School of Pharmacy, Nantong University, Nantong 226001, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, China
| | - Jiejia Li
- School of Pharmacy and State Key Laboratory for the Quality Research of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Dingyi Pan
- School of Pharmacy, Nantong University, Nantong 226001, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, China
| | - Qinbei Zhou
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yexuan Zhang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Qianxing Lu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Liyun Wang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Andong Wang
- School of Pharmacy, Nantong University, Nantong 226001, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, China
| | - Yizhun Zhu
- School of Pharmacy and State Key Laboratory for the Quality Research of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
- Correspondence: (Y.Z.); (Q.Z.)
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, China
- Correspondence: (Y.Z.); (Q.Z.)
| |
Collapse
|
5
|
Rong W, Li J, Wang L, Luo S, Liang T, Qian X, Zhang X, Zhou Q, Zhu Y, Zhu Q. Investigation of the protective mechanism of leonurine against acute myocardial ischemia by an integrated metabolomics and network pharmacology strategy. Front Cardiovasc Med 2022; 9:969553. [PMID: 36072867 PMCID: PMC9441747 DOI: 10.3389/fcvm.2022.969553] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/28/2022] [Indexed: 12/12/2022] Open
Abstract
Background Leonurus japonicus Houtt has an obvious efficacy on cardiovascular diseases. As the most representative component in the herb, leonurine has attracted increasing attention for its potential in myocardial ischemia. However, its protective mechanism against myocardial ischemia remains incompletely elucidated. Objectives The present study aimed to reveal the potential mechanism of leonurine in acute myocardial ischemia using a strategy combining metabolomics and network pharmacology. Methods First, a metabolomics method was proposed to identify the differential metabolites of plasma in rats. Then, network pharmacology was performed to screen candidate targets of leonurine against acute myocardial ischemia. A compound-reaction-enzyme-gene network was thus constructed with the differential metabolites and targets. Finally, molecular docking was carried out to predict the binding capability of leonurine with key targets. Results A total of 32 differential metabolites were identified in rat plasma, and 16 hub genes were detected through network pharmacology. According to the results of compound-reaction-enzyme-gene network and molecular docking, what was screened included six key targets (GSR, CYP2C9, BCHE, GSTP1, TGM2, and PLA2G2A) and seven differential metabolites (glycerylphosphorylcholine, lysophosphatidylcholine, choline phosphate, linoleic acid, 13-HpODE, tryptophan and glutamate) with four important metabolic pathways involved: glycerophospholopid metabolism, linoleic acid metabolism, tryptophan metabolism and glutamate metabolism. Among them, glycerophospholipid and tryptophan metabolism were shown to be important, since the regulation of leonurine on these two pathways was also observed in our previous metabolomics study conducted on clinical hyperlipidemia patients. Conclusion This is the first study of its kind to reveal the underlying mechanism of leonurine against acute myocardial ischemia through a strategy combining metabolomics and network pharmacology, which provides a valuable reference for the research on its future application.
Collapse
Affiliation(s)
- Weiwei Rong
- School of Pharmacy, Nantong University, Nantong, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Jiejia Li
- School of Pharmacy and State Key Laboratory for the Quality Research of Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Lifeng Wang
- School of Pharmacy, Nantong University, Nantong, China
| | - Shanshan Luo
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Tulu Liang
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China
| | - Xunjia Qian
- School of Pharmacy, Nantong University, Nantong, China
| | - Xiaodan Zhang
- School of Pharmacy, Nantong University, Nantong, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Qinbei Zhou
- School of Pharmacy, Nantong University, Nantong, China
| | - Yizhun Zhu
- School of Pharmacy and State Key Laboratory for the Quality Research of Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- Yizhun Zhu
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
- *Correspondence: Qing Zhu
| |
Collapse
|
6
|
He J, Liu Q, Wang J, Xu F, Fan Y, He R, Yan R, Zhu L. Identification of the metabolic remodeling profile in the early-stage of myocardial ischemia and the contributory role of mitochondrion. Bioengineered 2022; 13:11106-11121. [PMID: 35470774 PMCID: PMC9161979 DOI: 10.1080/21655979.2022.2068882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cardiac remodeling is the primary pathological feature of chronic heart failure. Prompt inhibition of remodeling in acute coronary syndrome has been a standard procedure, but the morbidity and mortality are still high. Exploring the characteristics of ischemia in much earlier stages and identifying its biomarkers are essential for introducing novel mechanisms and therapeutic strategies. Metabolic and structural remodeling of mitochondrion is identified to play key roles in ischemic heart disease. The mitochondrial metabolic features in early ischemia have not previously been described. In the present study, we established a mouse heart in early ischemia and explored the mitochondrial metabolic profile using metabolomics analysis. We also discussed the role of mitochondrion in the global cardiac metabolism. Transmission electron microscopy revealed that mitochondrial structural injury was invoked at 8 minutes post-coronary occlusion. In total, 75 metabolites in myocardium and 26 in mitochondria were screened out. About 23% of the differentiated metabolites in mitochondria overlapped with the differentiated metabolites in myocardium; Total 81% of the perturbed metabolic pathway in mitochondria overlapped with the perturbed pathway in myocardium, and these pathways accounted for 50% of the perturbed pathway in myocardium. Purine metabolism was striking and mechanically important. In conclusion, in the early ischemia, myocardium exacerbated metabolic remodeling. Mitochondrion was a contributor to the myocardial metabolic disorder. Purine metabolism may be a potential biomarker for early ischemia diagnosis. Our study introduced a perspective for prompt identification of ischemia.
Collapse
Affiliation(s)
- Jun He
- Department of Cardiovascular Internal Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Qian Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Jie Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Fangjing Xu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Yucheng Fan
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Ruhua He
- Department of Cardiovascular Internal Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Ru Yan
- Department of Cardiovascular Internal Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Li Zhu
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| |
Collapse
|
7
|
Chacko S, Haseeb YB, Haseeb S. Metabolomics Work Flow and Analytics in Systems Biology. Curr Mol Med 2021; 22:870-881. [PMID: 34923941 DOI: 10.2174/1566524022666211217102105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022]
Abstract
Metabolomics is an omics approach of systems biology that involves the development and assessment of large-scale, comprehensive biochemical analysis tools for metabolites in biological systems. This review describes the metabolomics workflow and provides an overview of current analytic tools used for the quantification of metabolic profiles. We explain analytic tools such as mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy, ionization techniques, and approaches for data extraction and analysis.
Collapse
Affiliation(s)
- Sanoj Chacko
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Yumna B Haseeb
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sohaib Haseeb
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|