1
|
Wiart M, Tavakoli C, Hubert V, Hristovska I, Dumot C, Parola S, Lerouge F, Chauveau F, Canet-Soulas E, Pascual O, Cormode DP, Brun E, Elleaume H. Use of metal-based contrast agents for in vivo MR and CT imaging of phagocytic cells in neurological pathologies. J Neurosci Methods 2023; 383:109729. [PMID: 36272462 DOI: 10.1016/j.jneumeth.2022.109729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
Abstract
The activation of phagocytic cells is a hallmark of many neurological diseases. Imaging them in their 3-dimensional cerebral environment over time is crucial to better understand their role in disease pathogenesis and to monitor their potential therapeutic effects. Phagocytic cells have the ability to internalize metal-based contrast agents both in vitro and in vivo and can thus be tracked by magnetic resonance imaging (MRI) or computed tomography (CT). In this review article, we summarize the different labelling strategies, contrast agents, and in vivo imaging modalities that can be used to monitor cells with phagocytic activity in the central nervous system using MRI and CT, with a focus on clinical applications. Metal-based nanoparticle contrast agents such as gadolinium, gold and iron are ideal candidates for these applications as they have favourable magnetic and/or radiopaque properties and can be fine-tuned for optimal uptake by phagocytic cells. However, they also come with downsides due to their potential toxicity, especially in the brain where they might accumulate. We therefore conclude our review by discussing the pitfalls, safety and potential for clinical translation of these metal-based neuroimaging techniques. Early results in patients with neuropathologies such as multiple sclerosis, stroke, trauma, cerebral aneurysm and glioblastoma are promising. If the challenges represented by safety issues are overcome, phagocytic cells imaging will be a very valuable tool for studying and understanding the inflammatory response and evaluating treatments that aim at mitigating this response in patients with neurological diseases.
Collapse
Affiliation(s)
- Marlène Wiart
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France; CNRS, Lyon, France.
| | - Clément Tavakoli
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France; Univ. Grenoble Alpes, INSERM UA7 STROBE, 38000 Grenoble, France
| | - Violaine Hubert
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | | | - Chloé Dumot
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Stéphane Parola
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, 69364 Lyon, France
| | - Frédéric Lerouge
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, 69364 Lyon, France
| | - Fabien Chauveau
- CNRS, Lyon, France; Univ. Lyon, Lyon Neurosciences Research Center, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | - Emmanuelle Canet-Soulas
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | | | - David P Cormode
- Department of Radiology, University of Pennsylvania, Pennsylvania, United States
| | - Emmanuel Brun
- Univ. Grenoble Alpes, INSERM UA7 STROBE, 38000 Grenoble, France
| | - Hélène Elleaume
- Univ. Grenoble Alpes, INSERM UA7 STROBE, 38000 Grenoble, France
| |
Collapse
|
2
|
Hubert V, Hristovska I, Karpati S, Benkeder S, Dey A, Dumot C, Amaz C, Chounlamountri N, Watrin C, Comte J, Chauveau F, Brun E, Marche P, Lerouge F, Parola S, Berthezène Y, Vorup‐Jensen T, Pascual O, Wiart M. Multimodal Imaging with NanoGd Reveals Spatiotemporal Features of Neuroinflammation after Experimental Stroke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101433. [PMID: 34197055 PMCID: PMC8425862 DOI: 10.1002/advs.202101433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Indexed: 05/09/2023]
Abstract
The purpose of this study is to propose and validate a preclinical in vivo magnetic resonance imaging (MRI) tool to monitor neuroinflammation following ischemic stroke, based on injection of a novel multimodal nanoprobe, NanoGd, specifically designed for internalization by phagocytic cells. First, it is verified that NanoGd is efficiently internalized by microglia in vitro. In vivo MRI coupled with intravenous injection of NanoGd in a permanent middle cerebral artery occlusion mouse model results in hypointense signals in the ischemic lesion. In these mice, longitudinal two-photon intravital microscopy shows NanoGd internalization by activated CX3CR1-GFP/+ cells. Ex vivo analysis, including phase contrast imaging with synchrotron X-ray, histochemistry, and transmission electron microscopy corroborate NanoGd accumulation within the ischemic lesion and uptake by immune phagocytic cells. Taken together, these results confirm the potential of NanoGd-enhanced MRI as an imaging biomarker of neuroinflammation at the subacute stage of ischemic stroke. As far as it is known, this work is the first to decipher the working mechanism of MR signals induced by a nanoparticle passively targeted at phagocytic cells by performing intravital microscopy back-to-back with MRI. Furthermore, using a gadolinium-based rather than an iron-based contrast agent raises future perspectives for the development of molecular imaging with emerging computed tomography technologies.
Collapse
Affiliation(s)
- Violaine Hubert
- Univ‐LyonIRIS TeamCarMeN LaboratoryInserm U1060INRA U1397INSA LyonUniversité Claude Bernard Lyon 1Groupement Hospitalier Est59 bd. PinelBron69500France
| | - Ines Hristovska
- SYNATAC TeamInstitut NeuroMyoGèneUniversité Claude Bernard Lyon 1CNRS UMR 5310, INSERM U1217Faculté de Médecine et de Pharmacie8 avenue RockefellerLyon69008France
| | - Szilvia Karpati
- Université de LyonÉcole Normale Supérieure de LyonCNRS UMR 5182Université Claude Bernard Lyon 1Laboratoire de ChimieLyonF69342France
| | - Sarah Benkeder
- SYNATAC TeamInstitut NeuroMyoGèneUniversité Claude Bernard Lyon 1CNRS UMR 5310, INSERM U1217Faculté de Médecine et de Pharmacie8 avenue RockefellerLyon69008France
| | - Arindam Dey
- Institut pour l'Avancée des BiosciencesCentre de Recherche UGA / Inserm U 1209 / CNRS UMR 5309Site Santé ‐ Allée des AlpesLa Tronche38700France
| | - Chloé Dumot
- Univ‐LyonIRIS TeamCarMeN LaboratoryInserm U1060INRA U1397INSA LyonUniversité Claude Bernard Lyon 1Groupement Hospitalier Est59 bd. PinelBron69500France
| | - Camille Amaz
- Clinical Investigation CenterHospices Civils de LyonLouis Pradel Hospital28 avenue Doyen LépineBron69500France
| | - Naura Chounlamountri
- SYNATAC TeamInstitut NeuroMyoGèneUniversité Claude Bernard Lyon 1CNRS UMR 5310, INSERM U1217Faculté de Médecine et de Pharmacie8 avenue RockefellerLyon69008France
| | - Chantal Watrin
- SYNATAC TeamInstitut NeuroMyoGèneUniversité Claude Bernard Lyon 1CNRS UMR 5310, INSERM U1217Faculté de Médecine et de Pharmacie8 avenue RockefellerLyon69008France
| | - Jean‐Christophe Comte
- FORGETTING TeamLyon Neuroscience Research Center (CRNL)CNRS UMR5292INSERM U1028Université Claude Bernard Lyon 1Centre Hospitalier Le Vinatier ‐ Bâtiment 462 ‐ Neurocampus Michel Jouvet95 boulevard PinelBron69675France
| | - Fabien Chauveau
- Université de LyonLyon Neuroscience Research Center (CRNL)CNRS UMR5292INSERM U1028Université Claude Bernard Lyon 1Groupement Hospitalier Est ‐ CERMEP59 bd PinelBron Cedex69677France
| | - Emmanuel Brun
- Synchrotron Radiation for Biomedical Research (STROBE)UA7 INSERMUniversité Grenoble AlpesMedical Beamline at the European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble Cedex 938043France
| | - Patrice Marche
- Institut pour l'Avancée des BiosciencesCentre de Recherche UGA / Inserm U 1209 / CNRS UMR 5309Site Santé ‐ Allée des AlpesLa Tronche38700France
| | - Fréderic Lerouge
- Université de LyonÉcole Normale Supérieure de LyonCNRS UMR 5182Université Claude Bernard Lyon 1Laboratoire de ChimieLyonF69342France
| | - Stéphane Parola
- Université de LyonÉcole Normale Supérieure de LyonCNRS UMR 5182Université Claude Bernard Lyon 1Laboratoire de ChimieLyonF69342France
| | - Yves Berthezène
- Univ‐LyonCreatis LaboratoryCNRS UMR5220Inserm U1044INSA LyonVilleurbanne Cedex69621France
| | - Thomas Vorup‐Jensen
- Department of BiomedicineBiophysical Immunology LaboratoryAarhus UniversityAarhus CDK‐8000Denmark
| | - Olivier Pascual
- SYNATAC TeamInstitut NeuroMyoGèneUniversité Claude Bernard Lyon 1CNRS UMR 5310, INSERM U1217Faculté de Médecine et de Pharmacie8 avenue RockefellerLyon69008France
| | - Marlène Wiart
- Univ‐LyonIRIS TeamCarMeN LaboratoryInserm U1060INRA U1397INSA LyonUniversité Claude Bernard Lyon 1Groupement Hospitalier Est59 bd. PinelBron69500France
| |
Collapse
|
3
|
Hu Q, Cao H, Zhou L, Liu J, Di W, Lv S, Ding G, Tang L. Measurement of BAT activity by targeted molecular magnetic resonance imaging. Magn Reson Imaging 2020; 77:1-6. [PMID: 33309921 DOI: 10.1016/j.mri.2020.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/29/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The aim of this study was to measure brown adipose tissue (BAT) activity by targeted peptide (CKGGRAKDC-NH2)-coupled, polyethylene glycol (PEG)-coated ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles with magnetic resonance imaging (MRI). METHODS The peptide was conjugated with PEG-coated USPIO to obtain targeted probes. Male C57BL/6 J mice were randomly divided into cold exposing and control group (n = 5 per group). T2*-weighted images were obtained pre- and post-contrast probes. Histological and gene expression analyses were carried out. RESULTS T2* relaxation time of BAT in the cold exposing group decreased more significantly compared to the control group. The calculated R2* increased with the reduction of T2* value. The ΔR2* (26.68 s-1) of BAT in the cold exposing group was significantly higher (P < 0.05) than the control group. Iron particle sediments in BAT of the cold exposing group were revealed more than the control group with Prussian blue staining. The UCP1 expression level was up-regulated after cold activation. CONCLUSIONS BAT activity could be measured in vivo by the targeted peptide-coupled, PEG-coated USPIOs with MRI.
Collapse
Affiliation(s)
- Qingqiao Hu
- Departments of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Huixiao Cao
- Departments of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Lu Zhou
- Departments of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Juan Liu
- Department of Geratology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Wenjuan Di
- Department of Geratology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Shan Lv
- Department of Geratology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Guoxian Ding
- Department of Geratology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China.
| | - Lijun Tang
- Departments of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Martínez-Banderas AI, Aires A, Plaza-García S, Colás L, Moreno JA, Ravasi T, Merzaban JS, Ramos-Cabrer P, Cortajarena AL, Kosel J. Magnetic core-shell nanowires as MRI contrast agents for cell tracking. J Nanobiotechnology 2020; 18:42. [PMID: 32164746 PMCID: PMC7069006 DOI: 10.1186/s12951-020-00597-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Identifying the precise location of cells and their migration dynamics is of utmost importance for achieving the therapeutic potential of cells after implantation into a host. Magnetic resonance imaging is a suitable, non-invasive technique for cell monitoring when used in combination with contrast agents. RESULTS This work shows that nanowires with an iron core and an iron oxide shell are excellent materials for this application, due to their customizable magnetic properties and biocompatibility. The longitudinal and transverse magnetic relaxivities of the core-shell nanowires were evaluated at 1.5 T, revealing a high performance as T2 contrast agents. Different levels of oxidation and various surface coatings were tested at 7 T. Their effects on the T2 contrast were reflected in the tailored transverse relaxivities. Finally, the detection of nanowire-labeled breast cancer cells was demonstrated in T2-weighted images of cells implanted in both, in vitro in tissue-mimicking phantoms and in vivo in mouse brain. Labeling the cells with a nanowire concentration of 0.8 μg of Fe/mL allowed the detection of 25 cells/µL in vitro, diminishing the possibility of side effects. This performance enabled an efficient labelling for high-resolution cell detection after in vivo implantation (~ 10 nanowire-labeled cells) over a minimum of 40 days. CONCLUSIONS Iron-iron oxide core-shell nanowires enabled the efficient and longitudinal cellular detection through magnetic resonance imaging acting as T2 contrast agents. Combined with the possibility of magnetic guidance as well as triggering of cellular responses, for instance by the recently discovered strong photothermal response, opens the door to new horizons in cell therapy and make iron-iron oxide core-shell nanowires a promising theranostic platform.
Collapse
Affiliation(s)
- Aldo Isaac Martínez-Banderas
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Antonio Aires
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | - Sandra Plaza-García
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | - Lorena Colás
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | - Julián A Moreno
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Timothy Ravasi
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Jasmeen S Merzaban
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Pedro Ramos-Cabrer
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, Mª Díaz de Haro 3, 48013, Bilbao, Spain.
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, Mª Díaz de Haro 3, 48013, Bilbao, Spain.
- IMDEA Nanociencia and Nanobiotechnology Unit Associated to Centro Nacional de Biotecnología (CNB-CSIC), Campus Universitario de Cantoblanco, 28049, Madrid, Spain.
| | - Jürgen Kosel
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia.
| |
Collapse
|
5
|
MRI coupled with clinically-applicable iron oxide nanoparticles reveals choroid plexus involvement in a murine model of neuroinflammation. Sci Rep 2019; 9:10046. [PMID: 31296913 PMCID: PMC6624288 DOI: 10.1038/s41598-019-46566-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Choroid plexus (ChPs) are involved in the early inflammatory response that occurs in many brain disorders. However, the activation of immune cells within the ChPs in response to neuroinflammation is still largely unexplored in-vivo. There is therefore a crucial need for developing imaging tool that would allow the non-invasive monitoring of ChP involvement in these diseases. Magnetic resonance imaging (MRI) coupled with superparamagnetic particles of iron oxide (SPIO) is a minimally invasive technique allowing to track phagocytic cells in inflammatory diseases. Our aim was to investigate the potential of ultrasmall SPIO (USPIO)-enhanced MRI to monitor ChP involvement in-vivo in a mouse model of neuroinflammation obtained by intraperitoneal administration of lipopolysaccharide. Using high resolution MRI, we identified marked USPIO-related signal drops in the ChPs of animals with neuroinflammation compared to controls. We confirmed these results quantitatively using a 4-points grading system. Ex-vivo analysis confirmed USPIO accumulation within the ChP stroma and their uptake by immune cells. We validated the translational potential of our approach using the clinically-applicable USPIO Ferumoxytol. MR imaging of USPIO accumulation within the ChPs may serve as an imaging biomarker to study ChP involvement in neuroinflammatory disorders that could be applied in a straightforward way in clinical practice.
Collapse
|
6
|
Narkhede AA, Sherwood JA, Antone A, Coogan KR, Bolding MS, Deb S, Bao Y, Rao SS. Role of Surface Chemistry in Mediating the Uptake of Ultrasmall Iron Oxide Nanoparticles by Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17157-17166. [PMID: 31017392 DOI: 10.1021/acsami.9b00606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrasmall iron oxide nanoparticles (USIONPs) (<4 nm) have recently attracted significant attention because of their potential as positive T1 magnetic resonance imaging (MRI) contrast agent contrary to larger superparamagnetic iron oxide nanoparticles (>6 nm) which act as negative T2 MRI contrast agents. However, studies on the cellular uptake behavior of these nanoparticles are very limited compared to their counterpart, larger-sized superparamagnetic iron oxide nanoparticles. In particular, the effects of specific nanoparticle parameters on the cellular uptake behavior of USIONPs by various cancer cells are not available. Here, we specifically investigated the role of USIONPs' surface functionalities [tannic acid (TA) and quinic acid (QA)] in mediating cellular uptake behavior of cancer cells pertaining to primary (U87 cells) and metastatic (MDA-MB-231Br cells) brain malignancies. Here, we chose TA and QA as representative capping molecules, wherein TA coating provides a general negatively charged nontargeting surface while QA provides a tumor-targeting surface as QA and its derivatives are known to interact with selectin receptors expressed on tumor cells and tumor endothelium. We observed differential cellular uptake in the case of TA- and QA-coated USIONPs by cancer cells. Both the cell types showed significantly higher cellular uptake of QA-coated USIONPs compared to TA-coated USIONPs at 4, 24, and 72 h. Blocking studies indicated that P-selectin cell surface receptors, in part, mediated the cellular uptake of QA-coated USIONPs. Given that P-selectin is overexpressed in cancer cells, tumor microenvironment, and at the metastatic niche, QA-coated USIONPs hold potential to be utilized as a platform for tumor-targeted drug delivery and in imaging and detection of primary and metastatic tumors.
Collapse
Affiliation(s)
- Akshay A Narkhede
- Department of Chemical and Biological Engineering , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Jennifer A Sherwood
- Department of Chemical and Biological Engineering , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Angelo Antone
- Department of Chemical and Biological Engineering , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Kasie R Coogan
- Department of Chemical and Biological Engineering , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Mark S Bolding
- Department of Radiology , The University of Alabama at Birmingham , Birmingham , Alabama 35233 , United States
| | - Sanghamitra Deb
- Central Analytical Facility , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Yuping Bao
- Department of Chemical and Biological Engineering , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| |
Collapse
|
7
|
A reliable protocol for colorimetric determination of iron oxide nanoparticle uptake by cells. Anal Bioanal Chem 2017; 409:6663-6675. [DOI: 10.1007/s00216-017-0622-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/28/2017] [Accepted: 09/02/2017] [Indexed: 12/25/2022]
|
8
|
Sherwood J, Rich M, Lovas K, Warram J, Bolding MS, Bao Y. T 1-Enhanced MRI-visible nanoclusters for imaging-guided drug delivery. NANOSCALE 2017; 9:11785-11792. [PMID: 28786462 DOI: 10.1039/c7nr04181k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Iron oxide nanoparticles with extremely low dimensions have recently been explored as positive (T1) contrast agent for magnetic resonance imaging (MRI). However, their small sizes lead to fast renal clearance and limit their use in elongated in vivo tracking or therapy monitoring. In this paper, we present a state of art approach to forming nanoclusters by crosslinking ultrasmall iron oxide nanoparticles with bovine serum albumin. This novel design not only maintains the T1 performance of the ultrasmall nanoparticles, but also significantly increases their blood circulation times from 15 minutes to over two hours. Our breast tumor model study also exhibited enhanced contrast at tumor sites for more than 24 hours. The ability of maintaining the T1 performance of the ultrasmall nanoparticles is significant, because previous studies have shown complete T1 loss or signal decrease upon polymer encapsulation. This design also shows great potential in encapsulating model drug molecules, which will greatly benefit the field of imaging-guided drug delivery.
Collapse
Affiliation(s)
- J Sherwood
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Quantifying tumor associated macrophages in breast cancer: a comparison of iron and fluorine-based MRI cell tracking. Sci Rep 2017; 7:42109. [PMID: 28176853 PMCID: PMC5296729 DOI: 10.1038/srep42109] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/06/2017] [Indexed: 12/26/2022] Open
Abstract
Tumor associated macrophages (TAMs) are associated with tumor growth and metastasis. MRI can detect TAMs labeled with iron oxide (USPIO) or perfluorocarbon (PFC) agents. This study compared these two cell tracking approaches for imaging TAMs in vivo. 4T1 tumors were imaged with MRI at 4 days or 3 weeks post cell implantation after intravenous (i.v.) administration of either USPIO or PFC. Signal loss was detected within tumors at both time points post USPIO. Images acquired at 4 days demonstrated signal loss encompassing the entire tumor and around the periphery at 3 weeks. Number of black voxels suggested higher numbers of TAMs in the tumor at the later time point. After PFC administration, Fluorine-19 (19F) signal was detected in a similar spatial distribution as signal loss post USPIO. 19F signal quantification revealed that the number of 19F spins was not significantly different at the two time points, suggesting a similar number of TAMs were present in tumors but accumulated in different regions. 19F signal was higher centrally in tumors at 4 days and heterogenous around the periphery at 3 weeks. This study revealed that 19F-based cell tracking methods better represent TAM density and provides additional information not achievable with iron-based methods.
Collapse
|
10
|
Gimenez U, Lajous H, El Atifi M, Bidart M, Auboiroux V, Fries PH, Berger F, Lahrech H. In vivoquantification of magnetically labelled cells by MRI relaxometry. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:535-543. [DOI: 10.1002/cmmi.1715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 07/21/2016] [Accepted: 08/19/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Ulysse Gimenez
- CLINATEC Translational Technology Lab INSERM U1205; CEA Grenoble France
| | - Hélène Lajous
- CLINATEC Translational Technology Lab INSERM U1205; CEA Grenoble France
| | - Michèle El Atifi
- CLINATEC Translational Technology Lab INSERM U1205; CEA Grenoble France
| | - Marie Bidart
- CLINATEC Translational Technology Lab INSERM U1205; CEA Grenoble France
| | | | | | - François Berger
- CLINATEC Translational Technology Lab INSERM U1205; CEA Grenoble France
| | - Hana Lahrech
- CLINATEC Translational Technology Lab INSERM U1205; CEA Grenoble France
| |
Collapse
|
11
|
Sherwood J, Lovas K, Rich M, Yin Q, Lackey K, Bolding MS, Bao Y. Shape-dependent cellular behaviors and relaxivity of iron oxide-based T 1 MRI contrast agents. NANOSCALE 2016; 8:17506-17515. [PMID: 27714177 DOI: 10.1039/c6nr06158c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent research efforts about iron oxide nanoparticles has focused on the development of iron oxide-based T1 contrast agents for magnetic resonance imaging (MRI), such as ultrasmall iron oxide nanospheres (USNPs <4 nm) and ultrathin nanowires (NW, diameter <4 nm). In this paper, we report the cellular uptake behaviors of these two types of ultrasmall scale nanostructures on HepG2 cells. Both these two nanostructures were functionalized with tannic acid and their physical and chemical properties were carefully analyzed before cellular tests. Both USNPs and NWs exhibited strong paramagnetic signals, a property suitable for T1 MRI contrast agents. The distinct shapes also caused much difference in their cellular uptake behaviors. Specifically, the uptake of USNPs was five times higher than that of NWs after 72 hours incubation. The shape-dependent cellular uptake can potentially lead to different blood circulation times, and subsequently different applications of these two types of ultrasmall nanostructures.
Collapse
Affiliation(s)
- J Sherwood
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - K Lovas
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - M Rich
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Q Yin
- Alabama Innovation and Mentoring of Entrepreneurs, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - K Lackey
- Department of Biological Science, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - M S Bolding
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Y Bao
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
12
|
Bao Y, Wen T, Samia ACS, Khandhar A, Krishnan KM. Magnetic Nanoparticles: Material Engineering and Emerging Applications in Lithography and Biomedicine. JOURNAL OF MATERIALS SCIENCE 2016; 51:513-553. [PMID: 26586919 PMCID: PMC4646229 DOI: 10.1007/s10853-015-9324-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/31/2015] [Indexed: 05/05/2023]
Abstract
We present an interdisciplinary overview of material engineering and emerging applications of iron oxide nanoparticles. We discuss material engineering of nanoparticles in the broadest sense, emphasizing size and shape control, large-area self-assembly, composite/hybrid structures, and surface engineering. This is followed by a discussion of several non-traditional, emerging applications of iron oxide nanoparticles, including nanoparticle lithography, magnetic particle imaging, magnetic guided drug delivery, and positive contrast agents for magnetic resonance imaging. We conclude with a succinct discussion of the pharmacokinetics pathways of iron oxide nanoparticles in the human body -- an important and required practical consideration for any in vivo biomedical application, followed by a brief outlook of the field.
Collapse
Affiliation(s)
- Yuping Bao
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487
| | - Tianlong Wen
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | | | | | - Kannan M. Krishnan
- Materials Science and Engineering, University of Washington, Seattle, 98195
| |
Collapse
|
13
|
Martínez Vera NP, Schmidt R, Langer K, Zlatev I, Wronski R, Auer E, Havas D, Windisch M, von Briesen H, Wagner S, Stab J, Deutsch M, Pietrzik C, Fazekas F, Ropele S. Tracking of magnetite labeled nanoparticles in the rat brain using MRI. PLoS One 2014; 9:e92068. [PMID: 24633006 PMCID: PMC3954869 DOI: 10.1371/journal.pone.0092068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/07/2014] [Indexed: 11/18/2022] Open
Abstract
This study was performed to explore the feasibility of tracing nanoparticles for drug transport in the healthy rat brain with a clinical MRI scanner. Phantom studies were performed to assess the R1 ( = 1/T1) relaxivity of different magnetically labeled nanoparticle (MLNP) formulations that were based on biodegradable human serum albumin and that were labeled with magnetite of different size. In vivo MRI measurements in 26 rats were done at 3T to study the effect and dynamics of MLNP uptake in the rat brain and body. In the brain, MLNPs induced T1 changes were quantitatively assessed by T1 relaxation time mapping in vivo and compared to post-mortem results from fluorescence imaging. Following intravenous injection of MLNPs, a visible MLNP uptake was seen in the liver and spleen while no visual effect was seen in the brain. However a histogram analysis of T1 changes in the brain demonstrated global and diffuse presence of MLNPs. The magnitude of these T1 changes scaled with post-mortem fluorescence intensity. This study demonstrates the feasibility of tracking even small amounts of magnetite labeled NPs with a sensitive histogram technique in the brain of a living rodent.
Collapse
Affiliation(s)
| | - Reinhold Schmidt
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Muenster, Germany
| | - Iavor Zlatev
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Muenster, Germany
| | | | - Ewald Auer
- JSW-Live Sciences GmbH, Grambach, Austria
| | | | | | - Hagen von Briesen
- Department of Cell Biology & Applied Virology, Fraunhofer Institute for Biomedical Engineering, St. Ingbert, Germany
| | - Sylvia Wagner
- Department of Cell Biology & Applied Virology, Fraunhofer Institute for Biomedical Engineering, St. Ingbert, Germany
| | - Julia Stab
- Department of Cell Biology & Applied Virology, Fraunhofer Institute for Biomedical Engineering, St. Ingbert, Germany
| | - Motti Deutsch
- Physics Department, Schottenstein Center for the Research and Technology of the Cellome, Bar Ilan University, Ramat Gan, Israel
| | - Claus Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| |
Collapse
|
14
|
Deligianni X, Jirák D, Berková Z, Hájek M, Scheffler K, Bieri O. In vivo visualization of cells labeled with superparamagnetic iron oxides by a sub-millisecond gradient echo sequence. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2013; 27:329-37. [DOI: 10.1007/s10334-013-0422-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 10/30/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
|
15
|
Marinescu M, Chauveau F, Durand A, Riou A, Cho TH, Dencausse A, Ballet S, Nighoghossian N, Berthezène Y, Wiart M. Monitoring therapeutic effects in experimental stroke by serial USPIO-enhanced MRI. Eur Radiol 2012; 23:37-47. [DOI: 10.1007/s00330-012-2567-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/25/2012] [Accepted: 06/02/2012] [Indexed: 01/28/2023]
|
16
|
Sigovan M, Hamoudeh M, Al Faraj A, Charpigny D, Fessi H, Canet-Soulas E. Positive contrast with therapeutic iron nanoparticles at 4.7 T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2011; 24:259-65. [DOI: 10.1007/s10334-011-0258-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 04/13/2011] [Accepted: 05/06/2011] [Indexed: 01/24/2023]
|