1
|
Breusa S, Thomas E, Baldinotti N, Zilio S, Delcros JG, Hernandez-Palomino DM, Qi W, Guérin H, Gibert B, Mehlen P, Marigo I, Kryza D, Lollo G. Anti-Netrin-1 decorated nanoparticles combined with chemotherapy for the treatment of triple-negative breast cancer. BIOMATERIALS ADVANCES 2024; 161:213881. [PMID: 38749213 DOI: 10.1016/j.bioadv.2024.213881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 06/04/2024]
Abstract
Nanoparticle's success as drug delivery systems for cancer treatment has been achieved through passive targeting mechanisms. However, tumor heterogeneity and rapid drug clearance limit the treatment efficacy. Improved outcomes and selective drug release can be achieved by grafting ligands at the surface of nanocarriers that bind molecules overexpressed in the tumor microenvironment (TME). In this work, we developed a docetaxel-loaded nanoemulsions (NEs) binding an anti-netrin-1 monoclonal antibody (NP137) to selectively target the netrin-1 protein overexpressed in many different tumors. The goal is to refine a combined approach utilizing NP137 and docetaxel as an improved tumor-targeting chemotherapeutic agent for addressing triple-negative breast cancer (TNBC). Several factors have been considered for the optimization of the active targeted drug delivery system via the click-chemistry conjugation, as the impact of PEGylated surfactant that stabilize the NEs shell on conjugation efficiency, cytocompatibility with EMT6 cell line and colloidal stability over time of NEs. Results showed that a 660 Da PEG chain length contributed to NEs colloidal stability and had no impact on cell viability or on the antibody binding ability for its ligand after surface conjugation. Moreover, docetaxel was encapsulated into the oily core of NEs, with an encapsulation efficiency of 70 %. To validate our treatment strategy in vivo, the 4T1 murine breast cancer model was used. As a result, the comparison of active-targeted and non-targeted NEs revealed that only active-targeted NE could decrease the tumor growth rate.
Collapse
Affiliation(s)
- Silvia Breusa
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS, Université de Lyon1, 69008 Lyon, France
| | - Eloise Thomas
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Noemi Baldinotti
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Jean-Guy Delcros
- Small molecules for biological targets, Centre de Recherche en Cancérologie de Lyon, INSERM 1052 - CNRS5286, ISPB Rockefeller, Université Lyon 1, 69008 Lyon, France
| | | | - Weisha Qi
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Hanäé Guérin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS, Université de Lyon1, 69008 Lyon, France; Gastroenterology and technologies for health group, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, 69008 Lyon, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS, Université de Lyon1, 69008 Lyon, France; Netris Pharma, Lyon, France
| | - Ilaria Marigo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, 35128 Padua, Italy; Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Imthernat Plateform, Hospices Civils de Lyon, 69437 Lyon, France.
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France.
| |
Collapse
|
2
|
Tang X, Li A, Zuo C, Liu X, Luo X, Chen L, Li L, Lin H, Gao J. Water-Soluble Chemically Precise Fluorinated Molecular Clusters for Interference-Free Multiplex 19F MRI in Living Mice. ACS NANO 2023; 17:5014-5024. [PMID: 36862135 DOI: 10.1021/acsnano.2c12793] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fluorine-19 magnetic resonance imaging (19F MRI) is gaining widespread interest from the fields of biomolecule detection, cell tracking, and diagnosis, benefiting from its negligible background, deep tissue penetration, and multispectral capacity. However, a wide range of 19F MRI probes are in great demand for the development of multispectral 19F MRI due to the limited number of high-performance 19F MRI probes. Herein, we report a type of water-soluble molecular 19F MRI nanoprobe by conjugating fluorine-containing moieties with a polyhedral oligomeric silsesquioxane (POSS) cluster for multispectral color-coded 19F MRI. These chemically precise fluorinated molecular clusters are of excellent aqueous solubility with relatively high 19F contents and of single 19F resonance frequency with suitable longitudinal and transverse relaxation times for high-performance 19F MRI. We construct three POSS-based molecular nanoprobes with distinct 19F chemical shifts at -71.91, -123.23, and -60.18 ppm and achieve interference-free multispectral color-coded 19F MRI of labeled cells in vitro and in vivo. Moreover, in vivo 19F MRI reveals that these molecular nanoprobes could selectively accumulate in tumors and undergo rapid renal clearance afterward, illustrating their favorable in vivo behavior for biomedical applications. This study provides an efficient strategy to expand the 19F probe libraries for multispectral 19F MRI in biomedical research.
Collapse
Affiliation(s)
- Xiaoxue Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Renji Medical Research Center, Chengdu Second People's Hospital, Chengdu 610011, China
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cuicui Zuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangjie Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Limin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingxuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Lin Y, Qiu T, Lan Y, Li Z, Wang X, Zhou M, Li Q, Li Y, Liang J, Zhang J. Multi-Modal Optical Imaging and Combined Phototherapy of Nasopharyngeal Carcinoma Based on a Nanoplatform. Int J Nanomedicine 2022; 17:2435-2446. [PMID: 35656166 PMCID: PMC9151321 DOI: 10.2147/ijn.s357493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignant tumor of the head and neck with a high incidence rate worldwide, especially in southern China. Phototheranostics in combination with nanoparticles is an integrated strategy for enabling simultaneous diagnosis, real-time monitoring, and administration of precision therapy for nasopharyngeal carcinoma (NPC). It has shown great potential in the field of cancer diagnosis and treatment owing to its unique noninvasive advantages. Many Chinese and international research teams have applied nano-targeted drugs to optical diagnosis and treatment technology to conduct multimodal imaging and collaborative treatment of NPC, which has become a hot research topic. In this review, we aimed to introduce the recent developments in phototheranostics of NPC based on a nanoplatform. This study aimed to elaborate on the applications of nanoplatform-based optical imaging strategies and treatment modalities, including fluorescence imaging, photoacoustic imaging, Raman spectroscopy imaging, photodynamic therapy, and photothermal therapy. This study is expected to provide a scientific basis for further research and development of NPC diagnosis and treatment.
Collapse
Affiliation(s)
- Yanping Lin
- Department of Radiology, DongGuan Tungwah Hospital, DongGuan, Guangdong, 523000, People's Republic of China
| | - Ting Qiu
- Department of Radiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, People's Republic of China
| | - Yintao Lan
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People's Republic of China
| | - Zhaoyong Li
- Department of Radiology, DongGuan Tungwah Hospital, DongGuan, Guangdong, 523000, People's Republic of China
| | - Xin Wang
- Department of Oncology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511500, People's Republic of China
| | - Mengyu Zhou
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People's Republic of China
| | - Qiuyu Li
- Department of Radiology, DongGuan Tungwah Hospital, DongGuan, Guangdong, 523000, People's Republic of China
| | - Yao Li
- Department of Radiology, DongGuan Tungwah Hospital, DongGuan, Guangdong, 523000, People's Republic of China
| | - Junsheng Liang
- Department of Radiology, DongGuan Tungwah Hospital, DongGuan, Guangdong, 523000, People's Republic of China
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People's Republic of China.,Department of Oncology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511500, People's Republic of China
| |
Collapse
|
4
|
Lin H, Tang X, Li A, Gao J. Activatable 19 F MRI Nanoprobes for Visualization of Biological Targets in Living Subjects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005657. [PMID: 33834558 DOI: 10.1002/adma.202005657] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Visualization of biological targets such as crucial cells and biomolecules in living subjects is critical for the studies of important biological processes. Though 1 H magnetic resonance imaging (MRI) has demonstrated its power in offering detailed anatomical and pathological information, its capacity for in vivo tracking of biological targets is limited by the high biological background of 1 H. 19 F distinguishes itself from its competitors as an exceptional complement to 1 H in MRI through its high sensitivity, low biological background, and broad chemical shift range. The specificity and sensitivity of 19 F MRI can be further boosted with activatable nanoprobes. The advantages of 19 F MRI with activatable nanoprobes enable in vivo detection and imaging at the cellular or even molecular level in deep tissues, rendering this technique appealing as a potential solution for visualization of biological targets in living subjects. Here, recent progress over the past decades on activatable 19 F MRI nanoprobes made from three major 19 F-containing compounds, as well as present challenges and potential opportunities, are summarized to provide a panoramic prospective for the people who are interested in this emerging and exciting field.
Collapse
Affiliation(s)
- Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoxue Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
5
|
Abstract
Magnetic resonance imaging (MRI) is one of the most powerful imaging tools today, capable of displaying superior soft-tissue contrast. This review discusses developments in the field of 19 F MRI multimodal probes in combination with optical fluorescence imaging (OFI), 1 H MRI, chemical exchange saturation transfer (CEST) MRI, ultrasonography (USG), X-ray computed tomography (CT), single photon emission tomography (SPECT), positron emission tomography (PET), and photoacoustic imaging (PAI). In each case, multimodal 19 F MRI probes compensate for the deficiency of individual techniques and offer improved sensitivity or accuracy of detection over unimodal counterparts. Strategies for designing 19 F MRI multimodal probes are described with respect to their structure, physicochemical properties, biocompatibility, and the quality of images.
Collapse
Affiliation(s)
- Dawid Janasik
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego, 4, 44-100, Gliwice, Poland
| | - Tomasz Krawczyk
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego, 4, 44-100, Gliwice, Poland
| |
Collapse
|
6
|
Mali A, Kaijzel EL, Lamb HJ, Cruz LJ. 19F-nanoparticles: Platform for in vivo delivery of fluorinated biomaterials for 19F-MRI. J Control Release 2021; 338:870-889. [PMID: 34492234 DOI: 10.1016/j.jconrel.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
Fluorine-19 (19F) magnetic resonance imaging (MRI) features one of the most investigated and innovative techniques for quantitative and unambiguous cell tracking, providing information for both localization and number of cells. Because of the relative insensitivity of the MRI technique, a high number of magnetically equivalent fluorine atoms are required to gain detectable signals. However, an increased amount of 19F nuclei induces low solubility in aqueous solutions, making fluorine-based probes not suitable for in vivo imaging applications. In this context, nanoparticle-based platforms play a crucial role, since nanoparticles may carry a high payload of 19F-based contrast agents into the relevant cells or tissues, increase the imaging agents biocompatibility, and provide a highly versatile platform. In this review, we present an overview of the 19F-based nanoprobes for sensitive 19F-MRI, focusing on the main nanotechnologies employed to date, such as fluorine and theranostic nanovectors, including their design and applications.
Collapse
Affiliation(s)
- Alvja Mali
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Eric L Kaijzel
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
7
|
Wu L, Liu F, Liu S, Xu X, Liu Z, Sun X. Perfluorocarbons-Based 19F Magnetic Resonance Imaging in Biomedicine. Int J Nanomedicine 2020; 15:7377-7395. [PMID: 33061385 PMCID: PMC7537992 DOI: 10.2147/ijn.s255084] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Fluorine-19 (19F) magnetic resonance (MR) molecular imaging is a promising noninvasive and quantitative molecular imaging approach with intensive research due to the high sensitivity and low endogenous background signal of the 19F atom in vivo. Perfluorocarbons (PFCs) have been used as blood substitutes since 1970s. More recently, a variety of PFC nanoparticles have been designed for the detection and imaging of physiological and pathological changes. These molecular imaging probes have been developed to label cells, target specific epitopes in tumors, monitor the prognosis and therapy efficacy and quantitate characterization of tumors and changes in tumor microenvironment noninvasively, therefore, significantly improving the prognosis and therapy efficacy. Herein, we discuss the recent development and applications of 19F MR techniques with PFC nanoparticles in biomedicine, with particular emphasis on ligand-targeted and quantitative 19F MR imaging approaches for tumor detection, oxygenation measurement, smart stimulus response and therapy efficacy monitoring, et al.
Collapse
Affiliation(s)
- Lina Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Fang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,Department of Medical Imaging, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Shuang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Xiuan Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,Department of Medical Imaging, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Zhaoxi Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| |
Collapse
|
8
|
Bouvain P, Temme S, Flögel U. Hot spot 19 F magnetic resonance imaging of inflammation. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1639. [PMID: 32380579 DOI: 10.1002/wnan.1639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
Among the preclinical molecular imaging approaches, lately fluorine (19 F) magnetic resonance imaging (MRI) has garnered significant scientific interest in the biomedical research community, due to the unique properties of fluorinated materials and the 19 F nucleus. Fluorine is an intrinsically sensitive nucleus for MRI-there is negligible endogenous 19 F in the body and, thus, no background signal which allows the detection of fluorinated materials as "hot spots" by combined 1 H/19 F MRI and renders fluorine-containing molecules as ideal tracers with high specificity. In addition, perfluorocarbons are a family of compounds that exhibit a very high fluorine payload and are biochemically as well as physiologically inert. Perfluorocarbon nanoemulsions (PFCs) are well known to be readily taken up by immunocompetent cells, which can be exploited for the unequivocal identification of inflammatory foci by tracking the recruitment of PFC-loaded immune cells to affected tissues using 1 H/19 F MRI. The required 19 F labeling of immune cells can be accomplished either ex vivo by PFC incubation of isolated endogenous immune cells followed by their re-injection or by intravenous application of PFCs for in situ uptake by circulating immune cells. With both approaches, inflamed tissues can unambiguously be detected via background-free 19 F signals due to trafficking of PFC-loaded immune cells to affected organs. To extend 19 F MRI tracking beyond cells with phagocytic properties, the PFC surface can further be equipped with distinct ligands to generate specificity against epitopes and/or types of immune cells independent of phagocytosis. Recent developments also allow for concurrent detection of different PFCs with distinct spectral signatures allowing the simultaneous visualization of several targets, such as various immune cell subtypes labeled with these PFCs. Since ligands and targets can easily be adapted to a variety of problems, this approach provides a general and versatile platform for inflammation imaging which will strongly extend the frontiers of molecular MRI. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease.
Collapse
Affiliation(s)
- Pascal Bouvain
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Temme
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
9
|
Tripathi CB, Parashar P, Arya M, Singh M, Kanoujia J, Kaithwas G, Saraf SA. Biotin anchored nanostructured lipid carriers for targeted delivery of doxorubicin in management of mammary gland carcinoma through regulation of apoptotic modulator. J Liposome Res 2020; 30:21-36. [PMID: 30741049 DOI: 10.1080/08982104.2019.1579839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 02/01/2023]
Abstract
Mammary gland tumour has the highest incidence rate and mortality in women, worldwide. The present study envisaged a molecularly targeted nanostructured lipid carrier (NLCs) for doxorubicin (Dox) delivery capable of inducing cellular apoptosis in mammary gland tumour. NLCs were prepared utilizing Perilla frutescens oil (54-69% ω3-fatty acid) as liquid lipid to enhance entrapment of Dox through molecular ion pairing. Biotin decorated NLCs (b-Dox-NLCs) were evaluated in vitro and in vivo. The b-Dox-NLCs showed particle size of 105.2 ± 3.5 nm, zeta potential -35 ± 2 mV, entrapment 99.15 ± 1.71%, drug content 19.67 ± 2.6 mg.g-1, biotin content 5.85 ± 0.64 µg.g-1 and drug release 98.67 ± 2.43% (facilitated by acidic microenvironment) respectively. MTT assay and Flow cytometric analysis revealed higher anti-proliferative capability of b-Dox-NLCs to force apoptosis in MCF-7 cell line vis-à-vis marketed Dox, evidenced by reactive oxygen species level and mitochondrial membrane potential mediated apoptosis. Enhanced antitumor targeting, therapeutic safety and efficacy was exhibited by b-Dox-NLCs, as investigated through tumour volume, animal survival, weight variation, cardiotoxicity and biodistribution studies in 7,12-Dimethylbenz[a]anthracene induced mammary gland tumour. Immunoblotting assay demonstrated b-Dox-NLCs downregulated anti-apoptotic proteins, i.e. bcl-2, MMP-9 while upregulated pro-apoptotic proteins, i.e. caspase-9, p16 and BAX. The experimental results suggest that biotinylated ω3-fatty acid augmented NLCs loaded with Dox are capable of inducing programmed cell death in mammary tumour and can be utilized as safe and effective delivery system with enhanced potential for mammary gland carcinoma therapy.
Collapse
Affiliation(s)
- Chandra B Tripathi
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Poonam Parashar
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Malti Arya
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Mahendra Singh
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Jovita Kanoujia
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| |
Collapse
|
10
|
Cho MH, Shin SH, Park SH, Kadayakkara DK, Kim D, Choi Y. Targeted, Stimuli-Responsive, and Theranostic 19F Magnetic Resonance Imaging Probes. Bioconjug Chem 2019; 30:2502-2518. [DOI: 10.1021/acs.bioconjchem.9b00582] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mi Hyeon Cho
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Soo Hyun Shin
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Sang Hyun Park
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Deepak Kana Kadayakkara
- Department of Medicine, Bridgeport Hospital−Yale New Haven Health, Bridgeport, Connecticut 06610, United States
| | - Daehong Kim
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Yongdoo Choi
- National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| |
Collapse
|
11
|
QbD-based development of α-linolenic acid potentiated nanoemulsion for targeted delivery of doxorubicin in DMBA-induced mammary gland carcinoma: in vitro and in vivo evaluation. Drug Deliv Transl Res 2018; 8:1313-1334. [DOI: 10.1007/s13346-018-0525-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Elgqvist J. Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applications-Focus on Prostate and Breast Cancer. Int J Mol Sci 2017; 18:E1102. [PMID: 28531102 PMCID: PMC5455010 DOI: 10.3390/ijms18051102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 12/27/2022] Open
Abstract
Prostate and breast cancer are the second most and most commonly diagnosed cancer in men and women worldwide, respectively. The American Cancer Society estimates that during 2016 in the USA around 430,000 individuals were diagnosed with one of these two types of cancers, and approximately 15% of them will die from the disease. In Europe, the rate of incidences and deaths are similar to those in the USA. Several different more or less successful diagnostic and therapeutic approaches have been developed and evaluated in order to tackle this issue and thereby decrease the death rates. By using nanoparticles as vehicles carrying both diagnostic and therapeutic molecular entities, individualized targeted theranostic nanomedicine has emerged as a promising option to increase the sensitivity and the specificity during diagnosis, as well as the likelihood of survival or prolonged survival after therapy. This article presents and discusses important and promising different kinds of nanoparticles, as well as imaging and therapy options, suitable for theranostic applications. The presentation of different nanoparticles and theranostic applications is quite general, but there is a special focus on prostate cancer. Some references and aspects regarding breast cancer are however also presented and discussed. Finally, the prostate cancer case is presented in more detail regarding diagnosis, staging, recurrence, metastases, and treatment options available today, followed by possible ways to move forward applying theranostics for both prostate and breast cancer based on promising experiments performed until today.
Collapse
Affiliation(s)
- Jörgen Elgqvist
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden.
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden.
| |
Collapse
|
13
|
Liu Y, Yu XM, Sun RJ, Pan XL. Folate-Functionalized Lipid Nanoemulsion to Deliver Chemo-Radiotherapeutics Together for the Effective Treatment of Nasopharyngeal Carcinoma. AAPS PharmSciTech 2017; 18:1374-1381. [PMID: 27520563 DOI: 10.1208/s12249-016-0595-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/20/2016] [Indexed: 11/30/2022] Open
Abstract
Aim of the investigation was to develop folate-functionalized lipid nanoemulsion (LNE) comprising chemo-radiotherapeutics for targeted delivery to nasopharyngeal carcinoma (NPC). Soy lecithin nanoemulsion of doxorubicin (Dox) and yittrium-90 (90Y) was prepared by nanoprecipitation using ultrasonic homogenization technique followed by folic acid conjugation. Nanoemulsion (Dox-LNE) was characterized as positively charged (zeta potential), spherical shape (transmission electron microscopy) nano-droplets of uniform size distribution (polydispersity index). No significant variation in parameters such as particle size, zeta potential, and polydispersity index was observed when the stability of Dox-LNE was assessed during long-term storage at room temperature and at 8000 rpm, 121°C temperature, and 5000 time dilution in water. In vitro release of Dox from Dox-LNE was observed to be controlled for at least 48 h. Folate decoration over Dox-LNE surface (FD-Dox-LNE) and incorporation of 90Y in FD-Dox-LNE (FD-Dox + 90Y-LNE) changed droplet size up to 50 nm; however, surface charge of Dox-LNE did not change significantly. FD-Dox + 90Y-LNE inhibited growth of cancerous cell line like CNE1 (folate receptor rich) in vitro and alleviated tumor volume in NPC-induced nude mice significantly as compared to Dox + 90Y-LNE. Massive necrosis and hemorrhage of CNE1 cells were observed by FD-Dox + 90Y-LNE (89.9%); however, inhibition of growth of nasal epithelial cells (RPMI 2650; folate deficient) by FD-Dox + 90Y-LNE and Dox + 90Y-LNE was observed to be 21.5 and 43.65%, respectively. The investigation highlights the vast utility of folate-decorated lipid emulsion in delivering chemo-radiotherapeutics to the specific NPC site. FD-Dox + 90Y-LNE might offer a cost-effective, safe, efficacious, and clinically pertinent option to the available therapeutics.
Collapse
|
14
|
Lim EK, Bae P, Kim H, Jung J. A leucine zipper pair-based lipid vesicle for image-guided therapy in breast cancer. Chem Commun (Camb) 2016; 52:2687-90. [DOI: 10.1039/c5cc08659k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a controllable image-guided therapy system as a powerful tool for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Eun-Kyung Lim
- BioNanotechnology Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
| | - Panki Bae
- BioNano Health Guard Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
| | - Haeran Kim
- BioNano Health Guard Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
| | - Juyeon Jung
- BioNanotechnology Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
- Nanobiotechnology Major
| |
Collapse
|
15
|
Patel SK, Beaino W, Anderson CJ, Janjic JM. Theranostic nanoemulsions for macrophage COX-2 inhibition in a murine inflammation model. Clin Immunol 2015; 160:59-70. [PMID: 25959685 DOI: 10.1016/j.clim.2015.04.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022]
Abstract
Targeting macrophages for therapeutic and diagnostic purposes is an attractive approach applicable to multiple diseases. Here, we present a theranostic nanoemulsion platform for simultaneous delivery of an anti-inflammatory drug (celecoxib) to macrophages and monitoring of macrophage migration patterns by optical imaging, as measurement of changes in inflammation. The anti-inflammatory effect of the theranostic nanoemulsions was evaluated in a mouse inflammation model induced with complete Freund's adjuvant (CFA). Nanoemulsions showed greater accumulation in the inflamed vs. control paw, with histology confirming their specific localization in CD68 positive macrophages expressing cyclooxygenase-2 (COX-2) compared to neutrophils. With a single dose administration of the celecoxib-loaded theranostic, we observed a reduction in fluorescence in the paw with time, corresponding to a reduction in macrophage infiltration. Our data strongly suggest that delivery of select agents to infiltrating macrophages can potentially lead to new treatments of inflammatory diseases where macrophage behavior changes are monitored in vivo.
Collapse
Affiliation(s)
- Sravan Kumar Patel
- Graduate School of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Wissam Beaino
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Carolyn J Anderson
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, 15219, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15219, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA.,Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, 15218, USA
| |
Collapse
|
16
|
Talegaonkar S, Negi LM. Nanoemulsion in Drug Targeting. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Pinney JR, Melkus G, Cerchiari A, Hawkins J, Desai TA. Novel functionalization of discrete polymeric biomaterial microstructures for applications in imaging and three-dimensional manipulation. ACS APPLIED MATERIALS & INTERFACES 2014; 6:14477-14485. [PMID: 25068888 PMCID: PMC4149329 DOI: 10.1021/am503778t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/14/2014] [Indexed: 05/30/2023]
Abstract
Adapting ways to functionalize polymer materials is becoming increasingly important to their implementation in translational biomedical sciences. By tuning the mechanical, chemical, and biological qualities of these materials, their applications can be broadened, opening the door for more advanced integration into modern medical techniques. Here, we report on a method to integrate chemical functionalizations into discrete, microscale polymer structures, which are used for tissue engineering applications, for in vivo localization, and three-dimensional manipulation. Iron oxide nanoparticles were incorporated into the polymer matrix using common photolithographic techniques to create stably functional microstructures with magnetic potential. Using magnetic resonance imaging (MRI), we can promote visualization of microstructures contained in small collections, as well as facilitate the manipulation and alignment of microtopographical cues in a realistic tissue environment. Using similar polymer functionalization techniques, fluorine-containing compounds were also embedded in the polymer matrix of photolithographically fabricated microstructures. The incorporation of fluorine-containing compounds enabled highly sensitive and specific detection of microstructures in physiologic settings using fluorine MRI techniques ((19)F MRI). These functionalization strategies will facilitate more reliable noninvasive tracking and characterization of microstructured polymer implants as well as have implications for remote microstructural scaffolding alignment for three-dimensional tissue engineering applications.
Collapse
Affiliation(s)
- James R. Pinney
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, 1700 Fourth Street, Byers Hall Room 203, San Francisco, California 94158, United States
- UC Berkeley-UCSF Graduate Program in Bioengineering, 1700 Fourth Street, Byers Hall
Room 216, San Francisco, California 94158, United States
| | - Gerd Melkus
- Department
of Radiology, UCSF Imaging Center at China Basin, University of California, San Francisco, 185 Berry Street, Suite 190, Lobby 6, San Francisco, California 94107, United States
- Department
of Medical Imaging, Ottawa Hospital, 1053 Carling Avenue, Ottawa K1Y 4E9, Ontario, Canada
| | - Alec Cerchiari
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, 1700 Fourth Street, Byers Hall Room 203, San Francisco, California 94158, United States
- UC Berkeley-UCSF Graduate Program in Bioengineering, 1700 Fourth Street, Byers Hall
Room 216, San Francisco, California 94158, United States
| | - James Hawkins
- Department
of Radiology, UCSF Imaging Center at China Basin, University of California, San Francisco, 185 Berry Street, Suite 190, Lobby 6, San Francisco, California 94107, United States
| | - Tejal A. Desai
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, 1700 Fourth Street, Byers Hall Room 203, San Francisco, California 94158, United States
| |
Collapse
|
18
|
Ganta S, Talekar M, Singh A, Coleman TP, Amiji MM. Nanoemulsions in translational research-opportunities and challenges in targeted cancer therapy. AAPS PharmSciTech 2014; 15:694-708. [PMID: 24510526 DOI: 10.1208/s12249-014-0088-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/17/2014] [Indexed: 12/29/2022] Open
Abstract
Nanoemulsion dosage form serves as a vehicle for the delivery of active pharmaceutical ingredients and has attracted great attention in drug delivery and pharmacotherapy. In particular, nanoemulsions act as an excellent vehicle for poorly aqueous soluble drugs, which are otherwise difficult to formulate in conventional dosage forms. Nanoemulsions are submicron emulsions composed of generally regarded as safe grade excipients. Particle size at the nanoscale and larger surface area lead to some very interesting physical properties that can be exploited to overcome anatomical and physiological barriers associated in drug delivery to the complex diseases such as cancer. Along these lines, nanoemulsions have been engineered with specific attributes such as size, surface charge, prolonged blood circulation, target specific binding ability, and imaging capability. These attributes can be tuned to assist in delivering drug/imaging agents to the specific site of interest, based on active and passive targeting mechanisms. This review focuses on the current state of nanoemulsions in the translational research and its role in targeted cancer therapy. In addition, the production, physico-chemical characterization, and regulatory aspects of nanoemulsion are addressed.
Collapse
|