1
|
Heo HY, Singh M, Mahmud SZ, Blair L, Kamson DO, Zhou J. Unraveling contributions to the Z-spectrum signal at 3.5 ppm of human brain tumors. Magn Reson Med 2024; 92:2641-2651. [PMID: 39086185 PMCID: PMC11436306 DOI: 10.1002/mrm.30241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE To evaluate the influence of the confounding factors, direct water saturation (DWS), and magnetization transfer contrast (MTC) effects on measured Z-spectra and amide proton transfer (APT) contrast in brain tumors. METHODS High-grade glioma patients were scanned using an RF saturation-encoded 3D MR fingerprinting (MRF) sequence at 3 T. For MRF reconstruction, a recurrent neural network was designed to learn free water and semisolid macromolecule parameter mappings of the underlying multiple tissue properties from saturation-transfer MRF signals. The DWS spectra and MTC spectra were synthesized by solving Bloch-McConnell equations and evaluated in brain tumors. RESULTS The dominant contribution to the saturation effect at 3.5 ppm was from DWS and MTC effects, but 25%-33% of the saturated signal in the gadolinium-enhancing tumor (13%-20% for normal tissue) was due to the APT effect. The APT# signal of the gadolinium-enhancing tumor was significantly higher than that of the normal-appearing white matter (10.1% vs. 8.3% at 1 μT and 11.2% vs. 7.8% at 1.5 μT). CONCLUSION The RF saturation-encoded MRF allowed us to separate contributions to the saturation signal at 3.5 ppm in the Z-spectrum. Although free water and semisolid MTC are the main contributors, significant APT contrast between tumor and normal tissues was observed.
Collapse
Affiliation(s)
- Hye-Young Heo
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Munendra Singh
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sultan Z Mahmud
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lindsay Blair
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - David Olayinka Kamson
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jinyuan Zhou
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Stilianu C, Graf C, Huemer M, Diwoky C, Soellradl M, Rund A, Zaiss M, Stollberger R. Enhanced and robust contrast in CEST MRI: Saturation pulse shape design via optimal control. Magn Reson Med 2024; 92:1867-1880. [PMID: 38818538 DOI: 10.1002/mrm.30164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE To employ optimal control for the numerical design of Chemical Exchange Saturation Transfer (CEST) saturation pulses to maximize contrast and stability againstB 0 $$ {\mathrm{B}}_0 $$ inhomogeneities. THEORY AND METHODS We applied an optimal control framework for the design pulse shapes for CEST saturation pulse trains. The cost functional minimized both the pulse energy and the discrepancy between the corresponding CEST spectrum and the target spectrum based on a continuous radiofrequency (RF) pulse. The optimization is subject to hardware limitations. In measurements on a 7 T preclinical scanner, the optimal control pulses were compared to continuous-wave and Gaussian saturation methods. We conducted a comparison of the optimal control pulses with Gaussian, block pulse trains, and adiabatic spin-lock pulses. RESULTS The optimal control pulse train demonstrated saturation levels comparable to continuous-wave saturation and surpassed Gaussian saturation by up to 50 % in phantom measurements. In phantom measurements at 3 T the optimized pulses not only showcased the highest CEST contrast, but also the highest stability against field inhomogeneities. In contrast, block pulse saturation resulted in severe artifacts. Dynamic Bloch-McConnell simulations were employed to identify the source of these artifacts, and underscore theB 0 $$ {\mathrm{B}}_0 $$ robustness of the optimized pulses. CONCLUSION In this work, it was shown that a substantial improvement in pulsed saturation CEST imaging can be achieved by using Optimal Control design principles. It is possible to overcome the sensitivity of saturation to B0 inhomogeneities while achieving CEST contrast close to continuous wave saturation.
Collapse
Affiliation(s)
- Clemens Stilianu
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
| | - Christina Graf
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
| | - Markus Huemer
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
| | - Clemens Diwoky
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martin Soellradl
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
- Department of Radiology and Radiological Sciences, Monash University, Melbourne, Australia
| | - Armin Rund
- Institute for Mathematics and Scientific Computing, University of Graz, Graz, Austria
| | - Moritz Zaiss
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
- High-Field Magnetic Resonance Center, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Rudolf Stollberger
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
3
|
Wu M, Jiang T, Guo M, Duan Y, Zhuo Z, Weng J, Xie C, Sun J, Li J, Cheng D, Liu X, Du J, Zhang X, Zhang Y, Liu Y. Amide proton transfer-weighted imaging and derived radiomics in the classification of adult-type diffuse gliomas. Eur Radiol 2024; 34:2986-2996. [PMID: 37855851 DOI: 10.1007/s00330-023-10343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES To evaluate the utility of amide proton transfer-weighted (APTw) MRI imaging and its derived radiomics in classifying adult-type diffuse glioma. MATERIALS AND METHODS In this prospective study, APTw imaging was performed on 129 patients with adult-type diffuse gliomas. The mean APTw-related metrics (chemical exchange saturation transfer ratio (CESTR), CESTR normalized with the reference value (CESTRnr), and relaxation-compensated inverse magnetization transfer ratio (MTRRex)) and radiomic features within 3D tumor masks were extracted. APTw-radiomics models were developed using a support vector machine (SVM) classifier. Sensitivity analysis with tumor area of interest, different histogram cutoff values, and other classifiers were conducted. RESULTS CESTR, CESTRnr, and MTRRex in glioblastomas were all significantly higher (p < 0.0003) than those of oligodendrogliomas and astrocytomas, with no significant difference between oligodendrogliomas and astrocytomas. The APTw-related metrics for IDH-wildtype and high-grade gliomas were significantly higher (p < 0.001) than those for the IDH-mutant and low-grade gliomas, with area under the curve (AUCs) of 0.88 for CESTR. The CESTR-radiomics models demonstrated accuracies of 84% (AUC 0.87), 83% (AUC 0.83), 90% (AUC 0.95), and 84% (AUC 0.86) in predicting the IDH mutation status, differentiating glioblastomas from astrocytomas, distinguishing glioblastomas from oligodendrogliomas, and determining high/low grade prediction, respectively, but showed poor performance in distinguishing oligodendrogliomas from astrocytomas (accuracy 63%, AUC 0.63). The sensitivity analysis affirmed the robustness of the APTw signal and APTw-derived radiomics prediction models. CONCLUSION APTw imaging, along with its derived radiomics, presents a promising quantitative approach for prediction IDH mutation and grading adult-type diffuse glioma. CLINICAL RELEVANCE STATEMENT Amide proton transfer-weighted imaging, a quantitative imaging biomarker, coupled with its derived radiomics, offers a promising non-invasive approach for predicting IDH mutation status and grading adult-type diffuse gliomas, thereby informing individualized clinical diagnostics and treatment strategies. KEY POINTS • This study evaluates the differences of different amide proton transfer-weighted metrics across three molecular subtypes and their efficacy in classifying adult-type diffuse glioma. • Chemical exchange saturation transfer ratio normalized with the reference value and relaxation-compensated inverse magnetization transfer ratio effectively predicts IDH mutation/grading, notably the first one. • Amide proton transfer-weighted imaging and its derived radiomics holds potential to be used as a diagnostic tool in routine clinical characterizing adult-type diffuse glioma.
Collapse
Affiliation(s)
- Minghao Wu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tongling Jiang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Guo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyuan Weng
- Department of Medical Imaging Product, Neusoft, Group Ltd, Shenyang, 110179, China
| | - Cong Xie
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Sun
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junjie Li
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dan Cheng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing Liu
- Department of Neuropathology, Beijing Neurosurgical Institute, Beijing, 10070, China
| | - Jiang Du
- Department of Neuropathology, Beijing Neurosurgical Institute, Beijing, 10070, China
| | | | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Dan Q, Jiang X, Wang R, Dai Z, Sun D. Biogenic Imaging Contrast Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207090. [PMID: 37401173 PMCID: PMC10477908 DOI: 10.1002/advs.202207090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/08/2023] [Indexed: 07/05/2023]
Abstract
Imaging contrast agents are widely investigated in preclinical and clinical studies, among which biogenic imaging contrast agents (BICAs) are developing rapidly and playing an increasingly important role in biomedical research ranging from subcellular level to individual level. The unique properties of BICAs, including expression by cells as reporters and specific genetic modification, facilitate various in vitro and in vivo studies, such as quantification of gene expression, observation of protein interactions, visualization of cellular proliferation, monitoring of metabolism, and detection of dysfunctions. Furthermore, in human body, BICAs are remarkably helpful for disease diagnosis when the dysregulation of these agents occurs and can be detected through imaging techniques. There are various BICAs matched with a set of imaging techniques, including fluorescent proteins for fluorescence imaging, gas vesicles for ultrasound imaging, and ferritin for magnetic resonance imaging. In addition, bimodal and multimodal imaging can be realized through combining the functions of different BICAs, which helps overcome the limitations of monomodal imaging. In this review, the focus is on the properties, mechanisms, applications, and future directions of BICAs.
Collapse
Affiliation(s)
- Qing Dan
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Xinpeng Jiang
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Run Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Desheng Sun
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| |
Collapse
|
5
|
Cui J, Zhao Y, Sun C, Xu J, Zu Z. Evaluation of contributors to amide proton transfer-weighted imaging and nuclear Overhauser enhancement-weighted imaging contrast in tumors at a high magnetic field. Magn Reson Med 2023; 90:596-614. [PMID: 37093984 PMCID: PMC10616782 DOI: 10.1002/mrm.29675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE The purpose is to evaluate the relative contribution from confounding factors (T1 weighting and magnetization transfer) to the CEST ratio (CESTR)-quantified amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) (-3.5) in tumors as well as whether the CESTR can reflect the distribution of the solute concentration (fs ). METHODS We first provided a signal model that shows the separate dependence of CESTR on these confounding factors and the clean CEST/NOE effects quantified by an apparent exchange-dependent relaxation (AREX) method. We then measured the change in these effects in the 9-L tumor model in rats, through which we calculated the relative contribution of each confounding factor. fs was also fitted, and its correlations with the CESTR and AREX were assessed to evaluate their capabilities to reflect fs . RESULTS The CESTR-quantified APT shows "positive" contrast in tumors, which arises primarily from R1w at low powers and both R1w and magnetization transfer at high powers. CESTR-quantified NOE (-3.5) shows no or weak contrast in tumors, which is due to the cancelation of R1w and NOE (-3.5), which have opposite contributions. CESTR-quantified APT has a stronger correlation with APT fs than AREX-quantified APT. CESTR-quantified NOE (-3.5) has a weaker correlation with NOE (-3.5) fs than AREX-quantified NOE (-3.5). CONCLUSION CESTR reflects a combined effect of T1 weighting and CEST/NOE. Both factors depend on fs , which contributes positively to the dependence of CESTR on fs in APT imaging and enhances its correlation with fs . In contrast, these factors have opposite contributions to its dependence on fs in NOE (-3.5) imaging, thereby weakening the correlation.
Collapse
Affiliation(s)
- Jing Cui
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| | - Casey Sun
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Chemistry, University of Florida, Gainesville, US
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
- Department of Biomedical Engineering, Vanderbilt University, Nashville, US
- Department of Physics and Astronomy, Vanderbilt University, Nashville, US
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
- Department of Biomedical Engineering, Vanderbilt University, Nashville, US
| |
Collapse
|
6
|
Scola E, Del Vecchio G, Busto G, Bianchi A, Desideri I, Gadda D, Mancini S, Carlesi E, Moretti M, Desideri I, Muscas G, Della Puppa A, Fainardi E. Conventional and Advanced Magnetic Resonance Imaging Assessment of Non-Enhancing Peritumoral Area in Brain Tumor. Cancers (Basel) 2023; 15:cancers15112992. [PMID: 37296953 DOI: 10.3390/cancers15112992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The non-enhancing peritumoral area (NEPA) is defined as the hyperintense region in T2-weighted and fluid-attenuated inversion recovery (FLAIR) images surrounding a brain tumor. The NEPA corresponds to different pathological processes, including vasogenic edema and infiltrative edema. The analysis of the NEPA with conventional and advanced magnetic resonance imaging (MRI) was proposed in the differential diagnosis of solid brain tumors, showing higher accuracy than MRI evaluation of the enhancing part of the tumor. In particular, MRI assessment of the NEPA was demonstrated to be a promising tool for distinguishing high-grade gliomas from primary lymphoma and brain metastases. Additionally, the MRI characteristics of the NEPA were found to correlate with prognosis and treatment response. The purpose of this narrative review was to describe MRI features of the NEPA obtained with conventional and advanced MRI techniques to better understand their potential in identifying the different characteristics of high-grade gliomas, primary lymphoma and brain metastases and in predicting clinical outcome and response to surgery and chemo-irradiation. Diffusion and perfusion techniques, such as diffusion tensor imaging (DTI), diffusional kurtosis imaging (DKI), dynamic susceptibility contrast-enhanced (DSC) perfusion imaging, dynamic contrast-enhanced (DCE) perfusion imaging, arterial spin labeling (ASL), spectroscopy and amide proton transfer (APT), were the advanced MRI procedures we reviewed.
Collapse
Affiliation(s)
- Elisa Scola
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Guido Del Vecchio
- Radiodiagnostic Unit N. 2, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50121 Florence, Italy
| | - Giorgio Busto
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Andrea Bianchi
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Ilaria Desideri
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Davide Gadda
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Sara Mancini
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Edoardo Carlesi
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Marco Moretti
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Isacco Desideri
- Radiation Oncology, Oncology Department, Careggi University Hospital, University of Florence, 50121 Florence, Italy
| | - Giovanni Muscas
- Neurosurgery Unit, Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi University Hospital, University of Florence, 50121 Florence, Italy
| | - Alessandro Della Puppa
- Neurosurgery Unit, Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi University Hospital, University of Florence, 50121 Florence, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
- Neuroradiology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50121 Florence, Italy
| |
Collapse
|
7
|
Cui J, Sun C, Zu Z. NOE-weighted imaging in tumors using low-duty-cycle 2π-CEST. Magn Reson Med 2023; 89:636-651. [PMID: 36198015 PMCID: PMC9792266 DOI: 10.1002/mrm.29475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Nuclear Overhauser enhancement (NOE)-mediated CEST imaging at -3.5 ppm has shown clinical interest in diagnosing tumors. Multiple-pool Lorentzian fit has been used to quantify NOE, which, however, requires a long scan time. Asymmetric analysis of CEST signals could be a simple and fast method to quantify this NOE, but it has contamination from the amide proton transfer (APT) at 3.5 ppm. This work proposes a new method using an asymmetric analysis of a low-duty-cycle pulsed-CEST sequence with a flip angle of 360°, termed 2π-CEST, to reduce the contribution from APT. METHODS Simulations were used to evaluate the capability of the 2π-CEST to reduce APT. Experiments on animal tumor models were performed to show its advantages compared with the conventional asymmetric analysis. Samples of reconstituted phospholipids and proteins were used to evaluate the molecular origin of this NOE. RESULTS The 2π-CEST has reduced contribution from APT. In tumors where we show that the NOE is comparable to the APT effect, reducing the contamination from APT is crucial. The results show that the NOE signal obtained with 2π-CEST in tumor regions appears more homogeneous than that obtained with the conventional method. The phantom study showed that both phospholipids and proteins contribute to the NOE at -3.5 ppm. CONCLUSION The NOE at -3.5 ppm has a different contrast mechanism from APT and other CEST/NOE effects. The proposed 2π-CEST is more accurate than the conventional asymmetric analysis in detecting NOE, and requires much less scan time than the multiple-pool Lorentzian fit.
Collapse
Affiliation(s)
- Jing Cui
- Vanderbilt University Institute of Imaging Science, Nashville, US,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| | - Casey Sun
- Vanderbilt University Institute of Imaging Science, Nashville, US,Department of Chemistry, University of Florida, Gainesville, US
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Nashville, US,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| |
Collapse
|
8
|
Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Rep (Hoboken) 2023; 6:e1764. [PMID: 36607830 PMCID: PMC9940009 DOI: 10.1002/cnr2.1764] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/20/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cancer is characterized by the rampant proliferation, growth, and infiltration of malignantly transformed cancer cells past their normal boundaries into adjacent tissues. It is the leading cause of death worldwide, responsible for approximately 19.3 million new diagnoses and 10 million deaths globally in 2020. In the United States alone, the estimated number of new diagnoses and deaths is 1.9 million and 609 360, respectively. Implementation of currently existing cancer diagnostic techniques such as positron emission tomography (PET), X-ray computed tomography (CT), and magnetic resonance spectroscopy (MRS), and molecular diagnostic techniques, have enabled early detection rates and are instrumental not only for the therapeutic management of cancer patients, but also for early detection of the cancer itself. The effectiveness of these cancer screening programs are heavily dependent on the rate of accurate precursor lesion identification; an increased rate of identification allows for earlier onset treatment, thus decreasing the incidence of invasive cancer in the long-term, and improving the overall prognosis. Although these diagnostic techniques are advantageous due to lack of invasiveness and easier accessibility within the clinical setting, several limitations such as optimal target definition, high signal to background ratio and associated artifacts hinder the accurate diagnosis of specific types of deep-seated tumors, besides associated high cost. In this review we discuss various imaging, molecular, and low-cost diagnostic tools and related technological advancements, to provide a better understanding of cancer diagnostics, unraveling new opportunities for effective management of cancer, particularly in low- and middle-income countries (LMICs). RECENT FINDINGS Herein we discuss various technological advancements that are being utilized to construct an assortment of new diagnostic techniques that incorporate hardware, image reconstruction software, imaging devices, biomarkers, and even artificial intelligence algorithms, thereby providing a reliable diagnosis and analysis of the tumor. Also, we provide a brief account of alternative low cost-effective cancer therapy devices (CryoPop®, LumaGEM®, MarginProbe®) and picture archiving and communication systems (PACS), emphasizing the need for multi-disciplinary collaboration among radiologists, pathologists, and other involved specialties for improving cancer diagnostics. CONCLUSION Revolutionary technological advancements in cancer imaging and molecular biology techniques are indispensable for the accurate diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Akhil Pulumati
- University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Anika Pulumati
- University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Bilikere S. Dwarakanath
- Central Research FacilitySri Ramachandra Institute of Higher Education and Research PorurChennaiIndia
- Department of BiotechnologyIndian Academy Degree CollegeBangaloreIndia
| | | | - Rao V. L. Papineni
- PACT & Health LLCBranfordConnecticutUSA
- Department of SurgeryUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
9
|
Whole-tumor amide proton transfer-weighted imaging histogram analysis to predict pathological extramural venous invasion in rectal adenocarcinoma: a preliminary study. Eur Radiol 2023:10.1007/s00330-023-09418-1. [PMID: 36700956 DOI: 10.1007/s00330-023-09418-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/19/2022] [Accepted: 01/01/2023] [Indexed: 01/27/2023]
Abstract
OBJECTIVES To evaluate amide proton transfer-weighted (APTw)-derived whole-tumor histogram analysis parameters in predicting pathological extramural venous invasion (pEMVI) positive status of rectal adenocarcinoma (RA). METHODS Preoperative MR including APTw imaging of 125 patients with RA (mean 61.4 ± 11.6 years) were retrospectively analyzed. Two radiologists reviewed each case's EMVI status based on the MR-based modified 5-point scale system with conventional MR images. The APTw histogram parameters of primary tumors were obtained automatically using whole-tumor volume histogram analysis. The independent risk factors markedly correlated with pEMVI-positive status were assessed using univariate and multivariate logistic regression analyses. Diagnosis performance was assessed by receiver operating characteristic curve (ROC) analysis. The AUCs were compared using the Delong method. RESULTS Univariate analysis demonstrated that MR-tumor (T) stage, MR-lymph node (N) stage, APTw-10%, APTw-90%, interquartile range, APTw-minimum, APTw-maximum, APTw-mean, APTw-median, entropy, kurtosis, mean absolute deviation (MAD), and robust MAD were significantly related to pEMVI-positive status (all p < 0.05). Multivariate analysis demonstrated that MR-T stage (OR = 4.864, p = 0.018), MR-N stage (OR = 4.967, p = 0.029), interquartile range (OR = 0.892, p = 0.037), APT-minimum (OR = 1.046, p = 0.031), entropy (OR = 11.604, p = 0.006), and kurtosis (OR = 1.505, p = 0.007) were the independent risk factors enabling prediction of pEMVI-positive status. The AUCs for diagnostic ability of conventional MRI assessment, the APTw histogram model, and the combined model (including APTw histogram and clinical variables) were 0.785, 0.853, and 0.918, respectively. The combined model outperformed the APTw histogram model (p = 0.013) and the conventional MRI assessment (p = 0.006). CONCLUSIONS Whole-tumor histogram analysis of APTw images combined with clinical factors showed better diagnosis efficiency in predicting EMVI involvement in RA. KEY POINTS • Rectal adenocarcinomas with pEMVI-positive status are typically associated with higher APTw-SI values. • APTw-minimum, interquartile range, entropy, kurtosis, MR-T stage, and MR-N stage are the independent risk factors for EMVI involvement. • The best prediction for EMVI involvement was obtained with a combined model of APTw histogram and clinical variables (area under the curve, 0.918).
Collapse
|
10
|
Yuan Y, Yu Y, Guo Y, Chu Y, Chang J, Hsu Y, Liebig PA, Xiong J, Yu W, Feng D, Yang B, Chen L, Wang H, Yue Q, Mao Y. Noninvasive Delineation of Glioma Infiltration with Combined 7T Chemical Exchange Saturation Transfer Imaging and MR Spectroscopy: A Diagnostic Accuracy Study. Metabolites 2022; 12:901. [PMID: 36295803 PMCID: PMC9607140 DOI: 10.3390/metabo12100901] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
For precise delineation of glioma extent, amino acid PET is superior to conventional MR imaging. Since metabolic MR sequences such as chemical exchange saturation transfer (CEST) imaging and MR spectroscopy (MRS) were developed, we aimed to evaluate the diagnostic accuracy of combined CEST and MRS to predict glioma infiltration. Eighteen glioma patients of different tumor grades were enrolled in this study; 18F-fluoroethyltyrosine (FET)-PET, amide proton transfer CEST at 7 Tesla(T), MRS and conventional MR at 3T were conducted preoperatively. Multi modalities and their association were evaluated using Pearson correlation analysis patient-wise and voxel-wise. Both CEST (R = 0.736, p < 0.001) and MRS (R = 0.495, p = 0.037) correlated with FET-PET, while the correlation between CEST and MRS was weaker. In subgroup analysis, APT values were significantly higher in high grade glioma (3.923 ± 1.239) and IDH wildtype group (3.932 ± 1.264) than low grade glioma (3.317 ± 0.868, p < 0.001) or IDH mutant group (3.358 ± 0.847, p < 0.001). Using high FET uptake as the standard, the CEST/MRS combination (AUC, 95% CI: 0.910, 0.907−0.913) predicted tumor infiltration better than CEST (0.812, 0.808−0.815) or MRS (0.888, 0.885−0.891) alone, consistent with contrast-enhancing and T2-hyperintense areas. Probability maps of tumor presence constructed from the CEST/MRS combination were preliminarily verified by multi-region biopsies. The combination of 7T CEST/MRS might serve as a promising non-radioactive alternative to delineate glioma infiltration, thus reshaping the guidance for tumor resection and irradiation.
Collapse
Affiliation(s)
- Yifan Yuan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201112, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200032, China
| | - Yang Yu
- National Center for Neurological Disorders, Shanghai 201112, China
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Guo
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201112, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200032, China
| | - Yinghua Chu
- MR Collaboration, Siemens Healthineers Ltd., Shanghai 310000, China
| | - Jun Chang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201112, China
| | - Yicheng Hsu
- MR Collaboration, Siemens Healthineers Ltd., Shanghai 310000, China
| | | | - Ji Xiong
- National Center for Neurological Disorders, Shanghai 201112, China
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenwen Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Danyang Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Baofeng Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201112, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200032, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Human Phenome Institute, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
| | - Qi Yue
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201112, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200032, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201112, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Wang F, Xu Y, Xiang Y, Wu P, Shen A, Wang P. The feasibility of amide proton transfer imaging at 3 T for bladder cancer: a preliminary study. Clin Radiol 2022; 77:776-783. [PMID: 35985845 DOI: 10.1016/j.crad.2022.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
AIM To investigate the optimal amide proton transfer (APT) imaging parameters for bladder cancer (BCa), the influence of different protein concentrations and pH values on APT imaging, and to establish the reliability of APT imaging in healthy volunteers and patients with BCa. MATERIALS AND METHODS The optimal APT imaging parameters for BCa were experimentally optimised using cross-linked bovine serum albumin (BSA) phantoms. BSA phantoms were scanned with different values for the saturation power, saturation duration and number of excitations. Meanwhile, BSA phantoms containing different protein concentrations and solutions of different pH levels were scanned. The interobserver agreement of the asymmetric magnetisation transfer ratio (MTRasym) was assessed in 11 healthy volunteers and 18 patients with BCa. RESULTS The optimal scanning scheme consisted of 1 excitation, a saturation power of 2 μT, and a saturation time of 2 s. The APT signal intensity increased as the protein concentration increased and as the pH decreased. The MTRasym showed good concordance for all subjects. The MTRasym of BCa tissue was significantly higher (1.81 ± 0.71) than that of bladder wall in healthy volunteers (0.34 ± 0.12) and normal bladder wall in patients with BCa (0.31 ± 0.11; p<0.001). There was no significant difference between the bladder wall of healthy volunteers and the normal bladder wall of patients with BCa. CONCLUSION APT imaging showed potential value for application in BCa.
Collapse
Affiliation(s)
- F Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Y Xu
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Y Xiang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - P Wu
- Philips Healthcare, Shanghai, 200072, China
| | - A Shen
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - P Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
12
|
Dong Y, Gu Y, Lu J, Wan J, Jiang S, Koehler RC, Wang J, Zhou J. Amide Proton Transfer-Weighted Magnetic Resonance Imaging for Detecting Severity and Predicting Outcome after Traumatic Brain Injury in Rats. Neurotrauma Rep 2022; 3:261-275. [PMID: 35982981 PMCID: PMC9380886 DOI: 10.1089/neur.2021.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
After traumatic brain injury (TBI), early assessment of secondary injury severity is critically important for estimating prognosis and treatment stratification. Currently, secondary injury severity is difficult to estimate. The objective of this study was to investigate the capacity of non-invasive amide proton transfer-weighted (APTw) magnetic resonance imaging (MRI) techniques to assess TBI injury in different brain regions and predict long-term neurobehavior outcomes. Fifty-five male and female rats were subjected to a controlled cortical impact with one of three different impactor depths to produce different degrees of TBI. Multi-parameter MRI data were acquired on a 4.7-Tesla scanner at 1 h, 1 day, and 3 days. Immunofluorescence staining was used to detect activated microglia at 3 days, and neurobehavioral tests were performed to assess long-term outcomes after 28 days. The APTw signal in the injury core at 1 day correlated with deficits in sensorimotor function, the sucrose preference test (a test for anhedonia), and spatial memory function on the Barnes maze. The APTw signal in the perilesion ipsilateral cortex gradually increased after TBI, and the value at 3 days correlated with microglia density at 3 days and with spatial memory decline and anhedonia at 28 days. The correlation between APTw and activated microglia was also observed in the ipsilateral thalamus, and its correlation to memory deficit and depression was evident in other ipsilateral sites. These results suggest that APTw imaging can be used for detecting secondary injury and as a potential predictor of long-term outcomes from TBI.
Collapse
Affiliation(s)
- Yinfeng Dong
- Department of Anesthesiology and Critical Care Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yanting Gu
- Department of Anesthesiology and Critical Care Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jianhua Lu
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Chawla S, Bukhari S, Afridi OM, Wang S, Yadav SK, Akbari H, Verma G, Nath K, Haris M, Bagley S, Davatzikos C, Loevner LA, Mohan S. Metabolic and physiologic magnetic resonance imaging in distinguishing true progression from pseudoprogression in patients with glioblastoma. NMR IN BIOMEDICINE 2022; 35:e4719. [PMID: 35233862 PMCID: PMC9203929 DOI: 10.1002/nbm.4719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 05/15/2023]
Abstract
Pseudoprogression (PsP) refers to treatment-related clinico-radiologic changes mimicking true progression (TP) that occurs in patients with glioblastoma (GBM), predominantly within the first 6 months after the completion of surgery and concurrent chemoradiation therapy (CCRT) with temozolomide. Accurate differentiation of TP from PsP is essential for making informed decisions on appropriate therapeutic intervention as well as for prognostication of these patients. Conventional neuroimaging findings are often equivocal in distinguishing between TP and PsP and present a considerable diagnostic dilemma to oncologists and radiologists. These challenges have emphasized the need for developing alternative imaging techniques that may aid in the accurate diagnosis of TP and PsP. In this review, we encapsulate the current state of knowledge in the clinical applications of commonly used metabolic and physiologic magnetic resonance (MR) imaging techniques such as diffusion and perfusion imaging and proton spectroscopy in distinguishing TP from PsP. We also showcase the potential of promising imaging techniques, such as amide proton transfer and amino acid-based positron emission tomography, in providing useful information about the treatment response. Additionally, we highlight the role of "radiomics", which is an emerging field of radiology that has the potential to change the way in which advanced MR techniques are utilized in assessing treatment response in GBM patients. Finally, we present our institutional experiences and discuss future perspectives on the role of multiparametric MR imaging in identifying PsP in GBM patients treated with "standard-of-care" CCRT as well as novel/targeted therapies.
Collapse
Affiliation(s)
- Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sultan Bukhari
- Rowan School of Osteopathic Medicine at Rowan University, Voorhees, New Jersey, USA
| | - Omar M. Afridi
- Rowan School of Osteopathic Medicine at Rowan University, Voorhees, New Jersey, USA
| | - Sumei Wang
- Department of Cardiology, Lenox Hill Hospital, Northwell Health, New York, New York, USA
| | - Santosh K. Yadav
- Laboratory of Functional and Molecular Imaging, Sidra Medicine, Doha, Qatar
| | - Hamed Akbari
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gaurav Verma
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kavindra Nath
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mohammad Haris
- Laboratory of Functional and Molecular Imaging, Sidra Medicine, Doha, Qatar
| | - Stephen Bagley
- Department of Hematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laurie A. Loevner
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Perlman O, Ito H, Herz K, Shono N, Nakashima H, Zaiss M, Chiocca EA, Cohen O, Rosen MS, Farrar CT. Quantitative imaging of apoptosis following oncolytic virotherapy by magnetic resonance fingerprinting aided by deep learning. Nat Biomed Eng 2022; 6:648-657. [PMID: 34764440 PMCID: PMC9091056 DOI: 10.1038/s41551-021-00809-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/07/2021] [Indexed: 12/17/2022]
Abstract
Non-invasive imaging methods for detecting intratumoural viral spread and host responses to oncolytic virotherapy are either slow, lack specificity or require the use of radioactive or metal-based contrast agents. Here we show that in mice with glioblastoma multiforme, the early apoptotic responses to oncolytic virotherapy (characterized by decreased cytosolic pH and reduced protein synthesis) can be rapidly detected via chemical-exchange-saturation-transfer magnetic resonance fingerprinting (CEST-MRF) aided by deep learning. By leveraging a deep neural network trained with simulated magnetic resonance fingerprints, CEST-MRF can generate quantitative maps of intratumoural pH and of protein and lipid concentrations by selectively labelling the exchangeable amide protons of endogenous proteins and the exchangeable macromolecule protons of lipids, without requiring exogenous contrast agents. We also show that in a healthy volunteer, CEST-MRF yielded molecular parameters that are in good agreement with values from the literature. Deep-learning-aided CEST-MRF may also be amenable to the characterization of host responses to other cancer therapies and to the detection of cardiac and neurological pathologies.
Collapse
Affiliation(s)
- Or Perlman
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Hirotaka Ito
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kai Herz
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Naoyuki Shono
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hiroshi Nakashima
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Moritz Zaiss
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Neuroradiology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ouri Cohen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew S Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Christian T Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
15
|
Zhou J, Zaiss M, Knutsson L, Sun PZ, Ahn SS, Aime S, Bachert P, Blakeley JO, Cai K, Chappell MA, Chen M, Gochberg DF, Goerke S, Heo HY, Jiang S, Jin T, Kim SG, Laterra J, Paech D, Pagel MD, Park JE, Reddy R, Sakata A, Sartoretti-Schefer S, Sherry AD, Smith SA, Stanisz GJ, Sundgren PC, Togao O, Vandsburger M, Wen Z, Wu Y, Zhang Y, Zhu W, Zu Z, van Zijl PCM. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: Application to brain tumors. Magn Reson Med 2022; 88:546-574. [PMID: 35452155 PMCID: PMC9321891 DOI: 10.1002/mrm.29241] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022]
Abstract
Amide proton transfer-weighted (APTw) MR imaging shows promise as a biomarker of brain tumor status. Currently used APTw MRI pulse sequences and protocols vary substantially among different institutes, and there are no agreed-on standards in the imaging community. Therefore, the results acquired from different research centers are difficult to compare, which hampers uniform clinical application and interpretation. This paper reviews current clinical APTw imaging approaches and provides a rationale for optimized APTw brain tumor imaging at 3 T, including specific recommendations for pulse sequences, acquisition protocols, and data processing methods. We expect that these consensus recommendations will become the first broadly accepted guidelines for APTw imaging of brain tumors on 3 T MRI systems from different vendors. This will allow more medical centers to use the same or comparable APTw MRI techniques for the detection, characterization, and monitoring of brain tumors, enabling multi-center trials in larger patient cohorts and, ultimately, routine clinical use.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Moritz Zaiss
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Linda Knutsson
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medical Radiation Physics, Lund University, Lund, Sweden.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Peter Bachert
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael A Chappell
- Mental Health and Clinical Neurosciences and Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Physics, Vanderbilt University, Nashville, Tennessee, USA
| | - Steffen Goerke
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - John Laterra
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany.,Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Mark D Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ravinder Reddy
- Center for Advance Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - A Dean Sherry
- Advanced Imaging Research Center and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Greg J Stanisz
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Pia C Sundgren
- Department of Diagnostic Radiology/Clinical Sciences Lund, Lund University, Lund, Sweden.,Lund University Bioimaging Center, Lund University, Lund, Sweden.,Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter C M van Zijl
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Someya Y, Iima M, Imai H, Yoshizawa A, Kataoka M, Isoda H, Le Bihan D, Nakamoto Y. Investigation of breast cancer microstructure and microvasculature from time-dependent DWI and CEST in correlation with histological biomarkers. Sci Rep 2022; 12:6523. [PMID: 35444193 PMCID: PMC9021220 DOI: 10.1038/s41598-022-10081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
We investigated the associations of time-dependent DWI, non-Gaussian DWI, and CEST parameters with histological biomarkers in a breast cancer xenograft model. 22 xenograft mice (7 MCF-7 and 15 MDA-MB-231) were scanned at 4 diffusion times [Td = 2.5/5 ms with 11 b-values (0–600 s/mm2) and Td = 9/27.6 ms with 17 b-values (0–3000 s/mm2), respectively]. The apparent diffusion coefficient (ADC) was estimated using 2 b-values in different combinations (ADC0–600 using b = 0 and 600 s/mm2 and shifted ADC [sADC200–1500] using b = 200 and 1500 s/mm2) at each of those diffusion times. Then the change (Δ) in ADC/sADC between diffusion times was evaluated. Non-Gaussian diffusion and intravoxel incoherent motion (IVIM) parameters (ADC0, the virtual ADC at b = 0; K, Kurtosis from non-Gaussian diffusion; f, the IVIM perfusion fraction) were estimated. CEST images were acquired and the amide proton transfer signal intensity (APT SI) were measured. The ΔsADC9–27.6 (between \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{sADC}}_{{9\,{\text{ms}}}}^{200{-}1500}$$\end{document}sADC9ms200-1500 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{sADC}}_{{27.6\,{\text{ms}}}}^{200{-}1500}$$\end{document}sADC27.6ms200-1500 and ΔADC2.5_sADC27.6 (between \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{ADC}}_{{2.5\, {\text{ms}}}}^{0{-}600}$$\end{document}ADC2.5ms0-600 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{sADC}}_{{27.6\,{\text{ms}}}}^{200{-}1500}$$\end{document}sADC27.6ms200-1500) was significantly larger for MCF-7 groups, and ΔADC2.5_sADC27.6 was positively correlated with Ki67max and APT SI. ADC0 decreased significantly in MDA-MB-231 group and K increased significantly with Td in MCF-7 group. APT SI and cellular area had a moderately strong positive correlation in MDA-MB-231 and MCF-7 tumors combined, and there was a positive correlation in MDA-MB-231 tumors. There was a significant negative correlation between APT SI and the Ki-67-positive ratio in MDA-MB-231 tumors and when combined with MCF-7 tumors. The associations of ΔADC2.5_sADC27.6 and API SI with Ki-67 parameters indicate that the Td-dependent DW and CEST parameters are useful to predict the histological markers of breast cancers.
Collapse
Affiliation(s)
- Yuko Someya
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.,Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hiroyoshi Isoda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Denis Le Bihan
- NeuroSpin/Joliot, CEA-Saclay Center, Paris-Saclay University, 91191, Gif-sur-Yvette, France.,Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.,National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
17
|
Wu Y, Wood TC, Arzanforoosh F, Hernandez-Tamames JA, Barker GJ, Smits M, Warnert EAH. 3D APT and NOE CEST-MRI of healthy volunteers and patients with non-enhancing glioma at 3 T. MAGMA (NEW YORK, N.Y.) 2022; 35:63-73. [PMID: 34994858 PMCID: PMC8901510 DOI: 10.1007/s10334-021-00996-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Clinical application of chemical exchange saturation transfer (CEST) can be performed with investigation of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) effects. Here, we investigated APT- and NOE-weighted imaging based on advanced CEST metrics to map tumor heterogeneity of non-enhancing glioma at 3 T. MATERIALS AND METHODS APT- and NOE-weighted maps based on Lorentzian difference (LD) and inverse magnetization transfer ratio (MTRREX) were acquired with a 3D snapshot CEST acquisition at 3 T. Saturation power was investigated first by varying B1 (0.5-2 µT) in 5 healthy volunteers then by applying B1 of 0.5 and 1.5 µT in 10 patients with non-enhancing glioma. Tissue contrast (TC) and contrast-to-noise ratios (CNR) were calculated between glioma and normal appearing white matter (NAWM) and grey matter, in APT- and NOE-weighted images. Volume percentages of the tumor showing hypo/hyperintensity (VPhypo/hyper,CEST) in APT/NOE-weighted images were calculated for each patient. RESULTS LD APT resulting from using a B1 of 1.5 µT was found to provide significant positive TCtumor,NAWM and MTRREX NOE (B1 of 1.5 µT) provided significant negative TCtumor,NAWM in tissue differentiation. MTRREX-based NOE imaging under 1.5 µT provided significantly larger VPhypo,CEST than MTRREX APT under 1.5 µT. CONCLUSION This work showed that with a rapid CEST acquisition using a B1 saturation power of 1.5 µT and covering the whole tumor, analysis of both LD APT and MTRREX NOE allows for observing tumor heterogeneity, which will be beneficial in future studies using CEST-MRI to improve imaging diagnostics for non-enhancing glioma.
Collapse
Affiliation(s)
- Yulun Wu
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- Brain Tumor Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Tobias C Wood
- Centre for Neuroimaging Science, King's College London, London, UK
| | - Fatemeh Arzanforoosh
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Brain Tumor Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Juan A Hernandez-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Gareth J Barker
- Centre for Neuroimaging Science, King's College London, London, UK
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Brain Tumor Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Esther A H Warnert
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- Brain Tumor Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Guo P, Unberath M, Heo HY, Eberhart CG, Lim M, Blakeley JO, Jiang S. Learning-based analysis of amide proton transfer-weighted MRI to identify true progression in glioma patients. NEUROIMAGE: CLINICAL 2022; 35:103121. [PMID: 35905666 PMCID: PMC9421489 DOI: 10.1016/j.nicl.2022.103121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Pengfei Guo
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Mathias Unberath
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Hye-Young Heo
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | | | - Shanshan Jiang
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
19
|
Boyd PS, Breitling J, Korzowski A, Zaiss M, Franke VL, Mueller-Decker K, Glinka A, Ladd ME, Bachert P, Goerke S. Mapping intracellular pH in tumors using amide and guanidyl CEST-MRI at 9.4 T. Magn Reson Med 2021; 87:2436-2452. [PMID: 34958684 DOI: 10.1002/mrm.29133] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE In principle, non-invasive mapping of the intracellular pH (pHi ) in vivo is possible using endogenous chemical exchange saturation transfer (CEST)-MRI of the amide and guanidyl signals. However, the application for cancer imaging is still impeded, as current state-of-the-art approaches do not allow for simultaneous compensation of concomitant effects that vary within tumors. In this study, we present a novel method for absolute pHi mapping using endogenous CEST-MRI, which simultaneously compensates for concentration changes, superimposing CEST signals, magnetization transfer contrast, and spillover dilution. THEORY AND METHODS Compensation of the concomitant effects was achieved by a ratiometric approach (i.e. the ratio of one CEST signal at different B1 ) in combination with the relaxation-compensated inverse magnetization transfer ratio MTRRex and a separate first-order polynomial-Lorentzian fit of the amide and guanidyl signals at 9.4 T. Calibration of pH values was accomplished using in vivo-like model suspensions from porcine brain lysates. Applicability of the presented method in vivo was demonstrated in n = 19 tumor-bearing mice. RESULTS In porcine brain lysates, measurement of pH was feasible over a broad range of physiologically relevant pH values of 6.2 to 8.0, while being independent of changes in concentration. A median pHi of approximately 7.2 was found in the lesions of 19 tumor-bearing mice. CONCLUSION The presented method enables non-invasive mapping of absolute pHi values in tumors using CEST-MRI, which was so far prevented by concomitant effects. Consequently, pre-clinical studies on pHi changes in tumors are possible allowing the assessment of pHi in vivo as a biomarker for cancer diagnosis or treatment monitoring.
Collapse
Affiliation(s)
- Philip S Boyd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Johannes Breitling
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Korzowski
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Moritz Zaiss
- Division of Neuroradiology in Radiological Institute, University Hospital of Erlangen, Erlangen, Germany
| | - Vanessa L Franke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Karin Mueller-Decker
- Core Facility Tumor Models (Center for Preclinical Research), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrey Glinka
- Division of Molecular Embryology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Steffen Goerke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
20
|
Zhang H, Zhou J, Peng Y. Amide Proton Transfer-Weighted MR Imaging of Pediatric Central Nervous System Diseases. Magn Reson Imaging Clin N Am 2021; 29:631-641. [PMID: 34717850 DOI: 10.1016/j.mric.2021.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Amide proton transfer-weighted (APTw) imaging is a molecular MR imaging technique that can detect the concentration of the amide protons in mobile cellular proteins and peptides or a pH change in vivo. Previous studies have indicated that APTw MR imaging can be used to detect malignant brain tumors, stroke, and other neurologic diseases, although the clinical application in pediatric patients remains limited. The authors briefly introduce the basic principles of APTw imaging. Then, they review early clinical applications of this approach to pediatric central nervous system diseases, including pediatric brain development, hypoxic-ischemic encephalopathy, intracranial infection, and brain tumors.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nan Li Shi Road, Xi Cheng District, Beijing, 100045, China
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Park 336, Baltimore, MD 21287, USA
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nan Li Shi Road, Xi Cheng District, Beijing, 100045, China.
| |
Collapse
|
21
|
Zhang S, Rauch GM, Adrada BE, Boge M, Mohamed RMM, Abdelhafez AH, Son JB, Sun J, Elshafeey NA, White JB, Musall BC, Miyoshi M, Wang X, Kotrotsou A, Wei P, Hwang KP, Ma J, Pagel MD. Assessment of Early Response to Neoadjuvant Systemic Therapy in Triple-Negative Breast Cancer Using Amide Proton Transfer-weighted Chemical Exchange Saturation Transfer MRI: A Pilot Study. Radiol Imaging Cancer 2021; 3:e200155. [PMID: 34477453 PMCID: PMC8489465 DOI: 10.1148/rycan.2021200155] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Purpose To determine if amide proton transfer-weighted chemical exchange saturation transfer (APTW CEST) MRI is useful in the early assessment of treatment response in persons with triple-negative breast cancer (TNBC). Materials and Methods In this prospective study, a total of 51 participants (mean age, 51 years [range, 26-79 years]) with TNBC were included who underwent APTW CEST MRI with 0.9- and 2.0-µT saturation power performed at baseline, after two cycles (C2), and after four cycles (C4) of neoadjuvant systemic therapy (NAST). Imaging was performed between January 31, 2019, and November 11, 2019, and was a part of a clinical trial (registry number NCT02744053). CEST MR images were analyzed using two methods-magnetic transfer ratio asymmetry (MTRasym) and Lorentzian line shape fitting. The APTW CEST signals at baseline, C2, and C4 were compared for 51 participants to evaluate the saturation power levels and analysis methods. The APTW CEST signals and their changes during NAST were then compared for the 26 participants with pathology reports for treatment response assessment. Results A significant APTW CEST signal decrease was observed during NAST when acquisition at 0.9-µT saturation power was paired with Lorentzian line shape fitting analysis and when the acquisition at 2.0 µT was paired with MTRasym analysis. Using 0.9-µT saturation power and Lorentzian line shape fitting, the APTW CEST signal at C2 was significantly different from baseline in participants with pathologic complete response (pCR) (3.19% vs 2.43%; P = .03) but not with non-pCR (2.76% vs 2.50%; P > .05). The APTW CEST signal change was not significant between pCR and non-pCR at all time points. Conclusion Quantitative APTW CEST MRI depended on optimizing acquisition saturation powers and analysis methods. APTW CEST MRI monitored treatment effects but did not differentiate participants with TNBC who had pCR from those with non-pCR. © RSNA, 2021 Clinical trial registration no. NCT02744053 Supplemental material is available for this article.Keywords Molecular Imaging-Cancer, Molecular Imaging-Clinical Translation, MR-Imaging, Breast, Technical Aspects, Tumor Response, Technology Assessment.
Collapse
|
22
|
Wen Q, Wang K, Hsu YC, Xu Y, Sun Y, Wu D, Zhang Y. Chemical exchange saturation transfer imaging for epilepsy secondary to tuberous sclerosis complex at 3 T: Optimization and analysis. NMR IN BIOMEDICINE 2021; 34:e4563. [PMID: 34046976 DOI: 10.1002/nbm.4563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/16/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
The homeostasis of various metabolites is impaired in epilepsy secondary to the tuberous sclerosis complex (TSC). Chemical exchange saturation transfer (CEST) imaging is an emerging molecular MRI technique that can detect various metabolites and proteins in vivo. However, the role of CEST imaging for TSC-associated epilepsy has not been assessed. Here, we aim to investigate the feasibility of applying CEST imaging to TSC-associated epilepsy, optimize the CEST acquisition parameters, and provide an analysis method for exploring the dominant molecular contributors to the CEST signal measured. Nine TSC epilepsy patients were scanned on a 3-T MRI system. The CEST saturation frequencies were swept from -6 to 6 ppm with 12 different combinations of saturation power (4, 3, 2 and 1 μT) and duration (1000, 700 and 400 ms). Furthermore, a two-stage simulation method based on the seven-pool Bloch-McConnell model was proposed to assess the contribution of each exchangeable pool to the CEST signal in normal-appearing white matter and cortical tubers, which avoided the complexity and uncertainty of full Bloch-McConnell fitting. The results showed that under the optimal saturation duration of 1000 ms, the greatest contrast between tubers and normal tissues occurred around 3, 2.5, 1.75 and 3.5 ppm for B1 of 4, 3, 2 and 1 μT, respectively. At the optimal frequency offsets, the CEST values of tubers were significantly higher than those in the normal brain tissues (P < 0.01). Furthermore, the two-stage analysis suggested that the amine pool played a dominant role in yielding the contrast between cortical tubers and normal tissues. These results indicate that CEST MRI may serve as a potentially useful tool for identifying tubers in TSC, and the two-stage analysis method may provide a route for investigating the molecular contributions to the CEST contrast in biological tissues.
Collapse
Affiliation(s)
- Qingqing Wen
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kang Wang
- Department of Neurology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare Ltd., Shanghai, China
| | - Yan Xu
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Yi Sun
- MR Collaboration, Siemens Healthcare Ltd., Shanghai, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Kulanthaivelu K, Jabeen S, Saini J, Raju S, Nalini A, Sadashiva N, Hegde S, Rolla NK, Saha I, M N, Vengalil S, Swaroop S, Rao S. Amide proton transfer imaging for differentiation of tuberculomas from high-grade gliomas: Preliminary experience. Neuroradiol J 2021; 34:440-448. [PMID: 33823712 DOI: 10.1177/19714009211002766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Tuberculomas can occasionally masquerade as high-grade gliomas (HGG). Evidence from magnetisation transfer (MT) imaging suggests that there is lower protein content in the tuberculoma microenvironment. Building on the principles of chemical exchange saturation transfer and MT, amide proton transfer (APT) imaging generates tissue contrast as a function of the mobile amide protons in tissue's native peptides and intracellular proteins. This study aimed to further the understanding of tuberculomas using APT and to compare it with HGG. METHOD Twenty-two patients (n = 8 tuberculoma; n = 14 HGG) were included in the study. APT was a 3D turbo spin-echo Dixon sequence with inbuilt B0 correction. A two-second, 2 μT saturation pulse alternating over transmit channels was applied at ±3.5 ppm around water resonance. The APT-weighted image (APTw) was computed as the MT ratio asymmetry (MTRasym) at 3.5 ppm. Mean MTRasym values in regions of interest (areas = 9 mm2; positioned in component with homogeneous enhancement/least apparent diffusion coefficient) were used for the analysis. RESULTS MTRasym values of tuberculomas (n = 14; 8 cases) ranged from 1.34% to 3.11% (M = 2.32 ± 0.50). HGG (n = 17;14 cases) showed MTRasym ranging from 2.40% to 5.70% (M = 4.32 ± 0.84). The inter-group difference in MTRasym was statistically significant (p < 0.001). APTw images in tuberculomas were notable for high MTRasym values in the perilesional oedematous-appearing parenchyma (compared to contralateral white matter; p < 0.001). CONCLUSION Tuberculomas demonstrate lower MTRasym ratios compared to HGG, reflective of a relative paucity of mobile amide protons in the ambient microenvironment. Elevated MTRasym values in perilesional parenchyma in tuberculomas are a unique observation that may be a clue to the inflammatory milieu.
Collapse
Affiliation(s)
- Karthik Kulanthaivelu
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, India
| | - Shumyla Jabeen
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, India
| | - Sanita Raju
- Department of Neurology, National Institute of Mental Health and Neurosciences, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, India
| | - Nishanth Sadashiva
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, India
| | | | | | | | - Netravathi M
- Department of Neurology, National Institute of Mental Health and Neurosciences, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences, India
| | - Saikrishna Swaroop
- Department of Neurology, National Institute of Mental Health and Neurosciences, India
| | - Shilpa Rao
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, India
| |
Collapse
|
24
|
Quantitative Analysis of Mobile Proteins in Normal Brain Tissue by Amide Proton Transfer Imaging: Age Dependence and Sex Differences. J Comput Assist Tomogr 2021; 45:277-284. [PMID: 33661152 DOI: 10.1097/rct.0000000000001141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE The aims of this study were to evaluate the relationship between age change and amide proton transfer (APT) signal in each region of the whole brain and to derive the standard value of APT signal in each brain region of normal adults. MATERIALS AND METHODS Using the mDIXON 3-dimensional-APT sequence of the fast spin echo method, an APT image was obtained. In total, 60 patients (mean age, 49.8 ± 16.9 years) with no abnormal findings on magnetic resonance imaging data were included. For image analysis, registration parameters were created using the FMRIB Software Library 5.0.11, and then a region of interest was set in the Montreal Neurological Institute structural atlas for analysis. Statistical analyses were performed using the age-dependent and sex differences in APT signals from each brain region. RESULTS No significant correlation was seen between APT signal and age and sex in all brain regions. CONCLUSION Under the APT imaging parameter conditions used in this study, local brain APT signals in healthy adults are independent of age and sex.
Collapse
|
25
|
Warnert EAH, Wood TC, Incekara F, Barker GJ, Vincent AJP, Schouten J, Kros JM, van den Bent M, Smits M, Tamames JAH. Mapping tumour heterogeneity with pulsed 3D CEST MRI in non-enhancing glioma at 3 T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 35:53-62. [PMID: 33606114 PMCID: PMC8901516 DOI: 10.1007/s10334-021-00911-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/28/2022]
Abstract
Objective Amide proton transfer (APT) weighted chemical exchange saturation transfer (CEST) imaging is increasingly used to investigate high-grade, enhancing brain tumours. Non-enhancing glioma is currently less studied, but shows heterogeneous pathophysiology with subtypes having equally poor prognosis as enhancing glioma. Here, we investigate the use of CEST MRI to best differentiate non-enhancing glioma from healthy tissue and image tumour heterogeneity. Materials & Methods A 3D pulsed CEST sequence was applied at 3 Tesla with whole tumour coverage and 31 off-resonance frequencies (+6 to -6 ppm) in 18 patients with non-enhancing glioma. Magnetisation transfer ratio asymmetry (MTRasym) and Lorentzian difference (LD) maps at 3.5 ppm were compared for differentiation of tumour versus normal appearing white matter. Heterogeneity was mapped by calculating volume percentages of the tumour showing hyperintense APT-weighted signal. Results LDamide gave greater effect sizes than MTRasym to differentiate non-enhancing glioma from normal appearing white matter. On average, 17.9 % ± 13.3 % (min–max: 2.4 %–54.5 %) of the tumour volume showed hyperintense LDamide in non-enhancing glioma. Conclusion This works illustrates the need for whole tumour coverage to investigate heterogeneity in increased APT-weighted CEST signal in non-enhancing glioma. Future work should investigate whether targeting hyperintense LDamide regions for biopsies improves diagnosis of non-enhancing glioma. Supplementary Information The online version of this article (10.1007/s10334-021-00911-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esther A H Warnert
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, NL, the Netherlands.
| | - Tobias C Wood
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fatih Incekara
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, NL, the Netherlands.,Department of Neurosurgery, Erasmus MC, Rotterdam, NL, the Netherlands
| | - Gareth J Barker
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Joost Schouten
- Department of Neurosurgery, Erasmus MC, Rotterdam, NL, the Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus MC, Rotterdam, NL, the Netherlands
| | | | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, NL, the Netherlands
| | | |
Collapse
|
26
|
Overcast WB, Davis KM, Ho CY, Hutchins GD, Green MA, Graner BD, Veronesi MC. Advanced imaging techniques for neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI imaging of malignant brain tumors. Curr Oncol Rep 2021; 23:34. [PMID: 33599882 PMCID: PMC7892735 DOI: 10.1007/s11912-021-01020-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This review will explore the latest in advanced imaging techniques, with a focus on the complementary nature of multiparametric, multimodality imaging using magnetic resonance imaging (MRI) and positron emission tomography (PET). RECENT FINDINGS Advanced MRI techniques including perfusion-weighted imaging (PWI), MR spectroscopy (MRS), diffusion-weighted imaging (DWI), and MR chemical exchange saturation transfer (CEST) offer significant advantages over conventional MR imaging when evaluating tumor extent, predicting grade, and assessing treatment response. PET performed in addition to advanced MRI provides complementary information regarding tumor metabolic properties, particularly when performed simultaneously. 18F-fluoroethyltyrosine (FET) PET improves the specificity of tumor diagnosis and evaluation of post-treatment changes. Incorporation of radiogenomics and machine learning methods further improve advanced imaging. The complementary nature of combining advanced imaging techniques across modalities for brain tumor imaging and incorporating technologies such as radiogenomics has the potential to reshape the landscape in neuro-oncology.
Collapse
Affiliation(s)
- Wynton B. Overcast
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N University Blvd. Room 0663, Indianapolis, IN 46202 USA
| | - Korbin M. Davis
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N University Blvd. Room 0663, Indianapolis, IN 46202 USA
| | - Chang Y. Ho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Goodman Hall, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Gary D. Hutchins
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E124, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| | - Mark A. Green
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E124, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| | - Brian D. Graner
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Goodman Hall, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Michael C. Veronesi
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E174, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| |
Collapse
|
27
|
Goerke S, Breitling J, Korzowski A, Paech D, Zaiss M, Schlemmer HP, Ladd ME, Bachert P. Clinical routine acquisition protocol for 3D relaxation-compensated APT and rNOE CEST-MRI of the human brain at 3T. Magn Reson Med 2021; 86:393-404. [PMID: 33586217 DOI: 10.1002/mrm.28699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/10/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE The value of relaxation-compensated amide proton transfer (APT) and relayed nuclear Overhauser effect (rNOE) chemical exchange saturation transfer (CEST)-MRI has already been demonstrated in various neuro-oncological clinical applications. Recently, we translated the approach from 7T to a clinically relevant magnetic field strength of 3T. However, the overall acquisition time was still too long for a broad application in the clinical setting. The aim of this study was to establish a shorter acquisition protocol whilst maintaining the contrast behavior and reproducibility. METHODS Ten patients with glioblastoma were examined using the previous state-of-the-art acquisition protocol at 3T. The acquired spectral data were retrospectively reduced to find the minimal amount of required information that allows obtaining the same contrast behavior. To further reduce the acquisition time, also the image readout was accelerated and the pre-saturation parameters were further optimized. RESULTS In total, the overall acquisition time could be reduced from 19 min to under 7 min. One key finding was that, when evaluated by the relaxation-compensated inverse metric, a contrast correction for B1 -field inhomogeneities at 3T can also be achieved reliably with CEST data at only one B1 value. In contrast, a 1-point B1 -correction was not sufficient for the common linear difference evaluation. The reproducibility of the new clinical routine acquisition protocol was similar to the previous state-of-the-art protocol with limits of agreement below 20%. CONCLUSIONS The substantial reduction in acquisition time by about 64% now allows the application of 3D relaxation-compensated APT and rNOE CEST-MRI for examinations of the human brain at 3T in clinical routine.
Collapse
Affiliation(s)
- Steffen Goerke
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Breitling
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Korzowski
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Moritz Zaiss
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Heinz-Peter Schlemmer
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Mark E Ladd
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Peter Bachert
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Yao J, Wang C, Raymond C, Bergstrom B, Chen X, Das K, Dinh H, Kim ZS, Le AN, Lim MWJ, Pham JAN, Prusan JD, Rao SS, Nathanson DA, Ellingson BM. A physical phantom for amine chemical exchange saturation transfer (CEST) MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:569-580. [PMID: 33484366 DOI: 10.1007/s10334-020-00902-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To develop a robust amine chemical exchange saturation transfer (CEST) physical phantom, validate the temporal stability, and create a supporting software for automatic image processing and quality assurance. MATERIALS AND METHODS The phantom was designed as an assembled laser-cut acrylic rack and 18 vials of phantom solutions, prepared with different pHs, glycine concentrations, and gadolinium concentrations. We evaluated glycine concentrations using ultraviolet absorbance for 70 days and measured the pH, relaxation rates, and CEST contrast for 94 days after preparation. We used Spearman's correlation to determine if glycine degraded over time. Linear regression and Bland-Altman analysis were performed between baseline and follow-up measurements of pH and MRI properties. RESULTS No degradation of glycine was observed (p > 0.05). The pH and MRI measurements stayed stable for 3 months and showed high consistency across time points (R2 = 1.00 for pH, R1, R2, and CEST contrast), which was further validated by the Bland-Altman plots. Examples of automatically generated reports are provided. DISCUSSION We designed a physical phantom for amine CEST-MRI, which is easy to assemble and transfer, holds 18 different solutions, and has excellent short-term chemical and MRI stability. We believe this robust phantom will facilitate the development of novel sequences and cross-scanners validations.
Collapse
Affiliation(s)
- Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Departments of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chencai Wang
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Departments of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Departments of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA
| | - Blake Bergstrom
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xing Chen
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kaveri Das
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering Innovation and Design, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Huy Dinh
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zoe S Kim
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Angela N Le
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew W J Lim
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jane A N Pham
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph D Prusan
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sriram S Rao
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA.
- Departments of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Wu B, Jia F, Li X, Li L, Wang K, Han D. Comparative Study of Amide Proton Transfer Imaging and Intravoxel Incoherent Motion Imaging for Predicting Histologic Grade of Hepatocellular Carcinoma. Front Oncol 2020; 10:562049. [PMID: 33194630 PMCID: PMC7659984 DOI: 10.3389/fonc.2020.562049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/18/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Preoperative grading of hepatocellular carcinoma (HCC) is an important factor associated with prognosis after liver resection. The promising prediction of the differentiation of HCC remains a challenge. The purpose of our study was to investigate the value of amide proton transfer (APT) imaging in predicting the histological grade of HCC, compared with the intravoxel incoherent motion (IVIM) imaging. Methods: From September 2018 to February 2020, 88 patients with HCC were enrolled and divided into four groups (G1, G2, G3, and G4) based on the histologic grades. Preoperative APT signal intensity (SI), apparent diffusion coefficient (ADC), true molecular diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f ) of HCC were independently measured by two radiologists. The averaged values of those parameters were compared using an analysis of variance. The Spearman rank analysis was used to compare the correlation between those imaging parameters and the histological grades. Receiver operating characteristic (ROC) curve analysis was used to explore the predictive performance. Results: There were significant differences in APT SI, ADC, D, and f among the four grades of HCC (all P < 0.001). A moderate to good relationship was found between APT SI and the histologic grade of HCC (r = 0.679, P < 0.001). APT SI had an area under the ROC curve (AUC) of 0.890 (95% CI: 0.805–0.947) for differentiating low- from high-grade HCC, and the corresponding sensitivity and specificity were 85.71% and 82.05%, respectively. Comparison of ROC curves demonstrated that the AUC of APT SI was significantly higher than those of IVIM-derived parameter (Z = 2.603, P = 0.0092; Z = 2.099, P = 0.0358; Z = 4.023, P = 0.0001; Z = 2.435, P = 0.0149, compared with ADC, D, D*, and f , respectively). Moreover, the combination of both techniques further improved the diagnostic performance, with an AUC of 0.929 (95% CI: 0.854–0.973). Conclusion: APT imaging may be a potential noninvasive biomarker for the prediction of histologic grading of HCC and complements IVIM imaging for the more accurate and comprehensive characterization of HCC.
Collapse
Affiliation(s)
- Baolin Wu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.,Department of Magnetic Resonance, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Fei Jia
- Department of Magnetic Resonance, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xuekun Li
- Department of Magnetic Resonance, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lei Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing, China
| | - Dongming Han
- Department of Magnetic Resonance, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
30
|
Wu B, Jia F, Li X, Zhang M, Han D, Jia Z. Amide Proton Transfer Imaging vs Diffusion Kurtosis Imaging for Predicting Histological Grade of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2020; 7:159-168. [PMID: 33117750 PMCID: PMC7555354 DOI: 10.2147/jhc.s272535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Background To investigate the value of amide proton transfer (APT) imaging in predicting the histological grade of hepatocellular carcinoma (HCC), compared with diffusion kurtosis imaging (DKI). Methods A total of 88 patients with HCC were enrolled and divided into four groups (G1, G2, G3, and G4) based on histologic grades. Preoperative APT signal intensity (SI), mean diffusivity (MD), mean kurtosis (MK) of HCC were measured and compared. Those quantitative magnetic resonance imaging (qMRI) parameters were compared using an analysis of variance. The correlations between the qMRI parameters and the histological grades were determined using Spearman's rank analysis. In addition, the predictive performance for differentiating low- (G1 and G2) from high-grade (G3 and G4) HCC was evaluated using receiver operating characteristic (ROC) curve analysis. Results Significant differences were found in APT SIs, MD, and MK among the four groups (P<0.05). Moderate to good relationships were found between the histologic grade of HCC and APT SI and MK (r=0.679, P<0.001 and r=0.539, P<0.001, respectively). The area under the ROC curves (AUCs) of APT SI, MK, and MD for differentiating low- from high-grade HCC were 0.890 (95%CI: 0.805–0.947), 0.765 (95%CI: 0.662–0.849) and 0.717 (95%CI: 0.611–0.808), respectively. Comparison of ROC curves showed a significantly higher AUC of APT SI compared with those of the DKI-derived parameters (P <0.05). Conclusion The APT imaging may be more accurate than DKI for predicting the histological grade of HCC.
Collapse
Affiliation(s)
- Baolin Wu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Fei Jia
- Department of MR, First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, People's Republic of China
| | - Xuekun Li
- Department of MR, First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, People's Republic of China
| | - Meng Zhang
- Department of MR, First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, People's Republic of China
| | - Dongming Han
- Department of MR, First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, People's Republic of China
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, People's Republic of China.,Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| |
Collapse
|
31
|
Yao J, Wang C, Ellingson BM. Influence of phosphate concentration on amine, amide, and hydroxyl CEST contrast. Magn Reson Med 2020; 85:1062-1078. [PMID: 32936483 DOI: 10.1002/mrm.28481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE To evaluate the influence of phosphate on amine, amide, and hydroxyl CEST contrast using Bloch-McConnell simulations applied to physical phantom data. METHODS Phantom solutions of 4 representative metabolites with exchangeable protons-glycine (α-amine protons), Cr (η-amine protons), egg white protein (amide protons), and glucose (hydroxyl protons)-were prepared at different pH levels (5.6 to 8.9) and phosphate concentrations (5 to 80 mM). CEST images of the phantom were collected with CEST-EPI sequence at 3 tesla. The CEST data were then fitted to full Bloch-McConnell equation simulations to estimate the exchange rate constants. With the fitted parameters, simulations were performed to evaluate the intracellular and extracellular contributions of CEST signals in normal brain tissue and brain tumors, as well as in dynamic glucose-enhanced experiments. RESULTS The exchange rates of α-amine and hydroxyl protons were found to be highly dependent on both pH and phosphate concentrations, whereas the exchange rates of η-amine and amide protons were pH-dependent, albeit not catalyzed by phosphate. With phosphate being predominantly intracellular, CEST contrast of α-amine exhibited a higher sensitivity to changes in the extracellular microenvironment. Simulations of dynamic glucose-enhanced signals demonstrated that the contrast between normal and tumor tissue was mostly due to the extracellular CEST effect. CONCLUSION The proton exchange rates in some metabolites can be greatly catalyzed by the presence of phosphate at physiological concentrations, which substantially alters the CEST contrast. Catalytic agents should be considered as confounding factors in future CEST-MRI research. This new dimension may also benefit the development of novel phosphate-sensitive imaging methods.
Collapse
Affiliation(s)
- Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California, USA
| | - Chencai Wang
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
32
|
Kleimaier D, Goerke S, Nies C, Zaiss M, Kunz P, Bachert P, Ladd ME, Gottwald E, Schad LR. The cellular heat shock response monitored by chemical exchange saturation transfer MRI. Sci Rep 2020; 10:11118. [PMID: 32632120 PMCID: PMC7338423 DOI: 10.1038/s41598-020-68022-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/17/2020] [Indexed: 02/01/2023] Open
Abstract
CEST-MRI of the rNOE signal has been demonstrated in vitro to be closely linked to the protein conformational state. As the detectability of denaturation and aggregation processes on a physiologically relevant scale in living organisms has yet to be verified, the aim of this study was to perform heat-shock experiments with living cells to monitor the cellular heat-shock response of the rNOE CEST signal. Cancer cells (HepG2) were dynamically investigated after a mild, non-lethal heat-shock of 42 °C for 20 min using an MR-compatible bioreactor system at 9.4 T. Reliable and fast high-resolution CEST imaging was realized by a relaxation-compensated 2-point contrast metric. After the heat-shock, a substantial decrease of the rNOE CEST signal by 8.0 ± 0.4% followed by a steady signal recovery within a time of 99.1 ± 1.3 min was observed in two independent trials. This continuous signal recovery is in coherence with chaperone-induced refolding of heat-shock induced protein aggregates. We demonstrated that protein denaturation processes influence the CEST-MRI signal on a physiologically relevant scale. Thus, the protein folding state is, along with concentration changes, a relevant physiological parameter for the interpretation of CEST signal changes in diseases that are associated with pathological changes in protein expression, like cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Dennis Kleimaier
- Computer Assisted Clinical Medicine, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Steffen Goerke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cordula Nies
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Moritz Zaiss
- Neuroradiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Kunz
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.,Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Eric Gottwald
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
33
|
Loi L, Zimmermann F, Goerke S, Korzowski A, Meissner JE, Deike-Hofmann K, Stieber A, Bachert P, Ladd ME, Schlemmer HP, Bickelhaupt S, Schott S, Paech D. Relaxation-compensated CEST (chemical exchange saturation transfer) imaging in breast cancer diagnostics at 7T. Eur J Radiol 2020; 129:109068. [PMID: 32574936 DOI: 10.1016/j.ejrad.2020.109068] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 02/03/2023]
Abstract
PURPOSE To investigate whether fat-corrected and relaxation-compensated amide proton transfer (APT) and guanidyl CEST-MRI enables the detection of signal intensity differences between breast tumors and normal-appearing fibroglandular tissue in patients with newly-diagnosed breast cancer. METHOD Ten patients with newly-diagnosed breast cancer and seven healthy volunteers were included in this prospective IRB-approved study. CEST-MRI was performed on a 7 T-whole-body scanner followed by a multi-Lorentzian fit analysis. APT and guanidyl CEST signal intensities were quantified in the tumor and in healthy fibroglandular tissue after correction of B0/B1-field inhomogeneities, fat signal contribution, T1- and T2-relaxation; signal intensity differences of APT and guanidyl resonances were compared using Mann-Whitney-U-tests. Pearson correlations between tumor CEST signal intensities and the proliferation index Ki-67 were performed. RESULTS APT CEST signal in tumor tissue (6.70 ± 1.38%Hz) was increased compared to normal-appearing fibroglandular tissue of patients (3.56 ± 0.54%Hz, p = 0.001) and healthy volunteers (3.70 ± 0.68%Hz, p = 0.001). Further, a moderate positive correlation was found between the APT signal and the proliferation index Ki-67 (R2 = 0.367, r = 0.606, p = 0.11). Guanidyl CEST signal was also increased in tumor tissue (5.24 ± 1.85%Hz) compared to patients' (2.42 ± 0.45%Hz, p = 0.006) and volunteers' (2.36 ± 0.54%Hz, p < 0.001) normal-appearing fibroglandular tissue and a positive correlation with the Ki-67 level was observed (R2 = 0.365, r = 0.604, p = 0.11). APT and guanidyl CEST signal in normal-appearing fibroglandular tissue was not different between patients and healthy volunteers (p = 0.88; p = 0.93). CONCLUSION Relaxation-compensated and fat-corrected CEST-MRI allowed a non-invasive differentiation of breast cancer and normal-appearing breast tissue. Thus, this approach represents a contrast agent-free method that may help to increase diagnostic accuracy in MR-mammography.
Collapse
Affiliation(s)
- Lisa Loi
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany.
| | - Ferdinand Zimmermann
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany.
| | - Steffen Goerke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Andreas Korzowski
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Jan-Eric Meissner
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Katerina Deike-Hofmann
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Anne Stieber
- Department of Clinical and Interventional Radiology, University Hospital of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany.
| | - Mark Edward Ladd
- Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany.
| | - Heinz-Peter Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Sebastian Bickelhaupt
- Junior Group Medical Imaging and Radiology - Cancer Prevention, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Sarah Schott
- Department of Gynecology and Obstetrics, University Hospital of Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany.
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
34
|
Amide Proton Transfer-Weighted (APTw) Imaging of Intracranial Infection in Children: Initial Experience and Comparison with Gadolinium-Enhanced T1-Weighted Imaging. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6418343. [PMID: 32509865 PMCID: PMC7251435 DOI: 10.1155/2020/6418343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/21/2020] [Accepted: 04/25/2020] [Indexed: 12/05/2022]
Abstract
Purpose To evaluate the performance of amide proton transfer-weighted (APTw) imaging against the reference standard of gadolinium-enhanced T1-weighted imaging (Gd-T1w) in children with intracranial infection. Materials and Methods Twenty-eight pediatric patients (15 males and 13 females; age range 1-163 months) with intracranial infection were recruited in this study. 2D APTw imaging and conventional MR sequences were conducted using a 3 T MRI scanner. Kappa (κ) statistics and the McNemar test were performed to determine whether the hyperintensity on APTw was related to the enhancement on Gd-T1w. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of APTw imaging to predict lesion enhancement were calculated. Result In twelve patients with brain abscesses, the enhancing rim of the abscesses on the Gd-T1w images was consistently hyperintense on the APTw images. In eight patients with viral encephalitis, three showed slight spotted gadolinium enhancement, while the APTw image also showed a slight spotted high signal. Five of these patients showed no enhancement on Gd-T1w and isointensity on the APTw image. In eleven patients with meningitis, increased APTw signal intensities were clearly visible in gadolinium-enhancing meninges. Sixty infectious lesions (71%) showed enhancement on Gd-T1w images. The sensitivity and specificity of APTw were 93.3% (56/60) and 91.7% (22/24). APTw demonstrated excellent agreement (κ = 0.83) with Gd-T1w, with no significant difference (P = 0.69) in detection of infectious lesions. Conclusions These initial data show that APTw MRI is a noninvasive technique for the detection and characterization of intracranial infectious lesions. APTw MRI enabled similar detection of infectious lesions to Gd-T1w and may provide an injection-free means of evaluation of intracranial infection.
Collapse
|
35
|
Park JE, Kim HS, Park SY, Jung SC, Kim JH, Heo HY. Identification of Early Response to Anti-Angiogenic Therapy in Recurrent Glioblastoma: Amide Proton Transfer–weighted and Perfusion-weighted MRI compared with Diffusion-weighted MRI. Radiology 2020; 295:397-406. [DOI: 10.1148/radiol.2020191376] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ji Eun Park
- From the Department of Radiology and Research Institute of Radiology (J.E.P., H.S.K., S.C.J.), Department of Clinical Epidemiology and Biostatistics (S.Y.P.), and Department of Neurosurgery (J.H.K.), University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul 05505, Korea; and Department of Radiology, Johns Hopkins University, Baltimore, Md (H.Y.H.)
| | - Ho Sung Kim
- From the Department of Radiology and Research Institute of Radiology (J.E.P., H.S.K., S.C.J.), Department of Clinical Epidemiology and Biostatistics (S.Y.P.), and Department of Neurosurgery (J.H.K.), University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul 05505, Korea; and Department of Radiology, Johns Hopkins University, Baltimore, Md (H.Y.H.)
| | - Seo Young Park
- From the Department of Radiology and Research Institute of Radiology (J.E.P., H.S.K., S.C.J.), Department of Clinical Epidemiology and Biostatistics (S.Y.P.), and Department of Neurosurgery (J.H.K.), University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul 05505, Korea; and Department of Radiology, Johns Hopkins University, Baltimore, Md (H.Y.H.)
| | - Seung Chai Jung
- From the Department of Radiology and Research Institute of Radiology (J.E.P., H.S.K., S.C.J.), Department of Clinical Epidemiology and Biostatistics (S.Y.P.), and Department of Neurosurgery (J.H.K.), University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul 05505, Korea; and Department of Radiology, Johns Hopkins University, Baltimore, Md (H.Y.H.)
| | - Jeong Hoon Kim
- From the Department of Radiology and Research Institute of Radiology (J.E.P., H.S.K., S.C.J.), Department of Clinical Epidemiology and Biostatistics (S.Y.P.), and Department of Neurosurgery (J.H.K.), University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul 05505, Korea; and Department of Radiology, Johns Hopkins University, Baltimore, Md (H.Y.H.)
| | - Hye-Young Heo
- From the Department of Radiology and Research Institute of Radiology (J.E.P., H.S.K., S.C.J.), Department of Clinical Epidemiology and Biostatistics (S.Y.P.), and Department of Neurosurgery (J.H.K.), University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul 05505, Korea; and Department of Radiology, Johns Hopkins University, Baltimore, Md (H.Y.H.)
| |
Collapse
|
36
|
Breitling J, Meissner JE, Zaiss M, Paech D, Ladd ME, Bachert P, Goerke S. Optimized dualCEST-MRI for imaging of endogenous bulk mobile proteins in the human brain. NMR IN BIOMEDICINE 2020; 33:e4262. [PMID: 32079047 DOI: 10.1002/nbm.4262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Dual-frequency irradiation chemical exchange saturation transfer (dualCEST) allows imaging of endogenous bulk mobile proteins by selectively measuring the intramolecular spin diffusion. The resulting specificity to changes in the concentration, molecular size, and folding state of mobile proteins is of particular interest as a marker for neurodegenerative diseases and cancer. Until now, application of dualCEST in clinical trials was prevented by the inherently small signal-to-noise ratio and the resulting comparatively long examination time. In this study, we present an optimized acquisition protocol allowing 3D dualCEST-MRI examinations in a clinically relevant time frame. The optimization comprised the extension of the image readout to 3D, allowing a retrospective co-registration and application of denoising strategies. In addition, cosine-modulated dual-frequency presaturation pulses were implemented with a weighted acquisition scheme of the necessary frequency offsets. The optimization resulted in a signal-to-noise ratio gain by a factor of approximately 8. In particular, the application of denoising and the motion correction were the most crucial improvement steps. In vitro experiments verified the preservation of specificity of the dualCEST signal to proteins. Good-to-excellent intra-session and good inter-session repeatability was achieved, allowing reliable detection of relative signal differences of about 16% or higher. Applicability in a clinical setting was demonstrated by examining a patient with glioblastoma. The optimized acquisition protocol for dualCEST-MRI at 3 T enables selective imaging of endogenous bulk mobile proteins under clinically relevant conditions.
Collapse
Affiliation(s)
- Johannes Breitling
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Max-Planck-Institute for Nuclear Physics, Heidelberg, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Jan-Eric Meissner
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Moritz Zaiss
- Department of High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tuebingen, Germany
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Steffen Goerke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
37
|
Comparison of the reproducibility of 2D and 3D amide proton transfer weighted imaging in intracranial rat gliomas at 3 T. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42058-020-00028-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Zhang Z, Zhang C, Yao J, Gao F, Gong T, Jiang S, Chen W, Zhou J, Wang G. Amide proton transfer-weighted magnetic resonance imaging of human brain aging at 3 Tesla. Quant Imaging Med Surg 2020; 10:727-742. [PMID: 32269932 DOI: 10.21037/qims.2020.02.22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Amide proton transfer-weighted (APTw) imaging has been revealed to hold great potential in the diagnosis of several brain diseases. The purpose of this proof-of-concept study was to evaluate the feasibility and value of APTw magnetic resonance imaging (MRI) in characterizing normal brain aging. Methods A total of 106 healthy subjects were recruited and scanned at 3.0 Tesla, with APTw and conventional magnetization transfer (MT) sequences. Quantitative image analyses were performed in 12 regions of interest (ROIs) for each subject. The APTw or MT ratio (MTR) signal differences among five age groups (young, mature, middle-aged, young-old, and middle-old) were assessed using the one-way analysis of variance, with the Benjamini-Hochberg correction for multiple comparisons. The relationship between APTw and MTR signals and the age dependencies of APTw and MTR signals were assessed using the Pearson correlation and non-linear regression. Results There were no significant differences between the APTw or MTR values for males and females in any of the 12 ROIs analyzed. Among the five age groups, there were significant differences in the three white matter regions in the temporal, occipital, and frontal lobes. Overall, the mean APTw values in the older group were higher than those in the younger group. Positive correlations were observed in relation to age in most brain regions, including four with significant positive correlations (r=0.2065-0.4182) and five with increasing trends. As a comparison, the mean MTR values did not appear to be significantly different among the five age groups. In addition, the mean APTw and MTR values revealed significant positive correlations in 10 ROIs (r=0.2214-0.7269) and a significant negative correlation in one ROI (entorhinal cortex, r=-0.2141). Conclusions Our early results show that the APTw signal can be used as a promising and complementary imaging biomarker with which normal brain aging can be evaluated at the molecular level.
Collapse
Affiliation(s)
- Zewen Zhang
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan 250021, China.,Division of MR Research, Department of Radiology, Johns Hopkins University, Maryland, USA
| | - Caiqing Zhang
- Department of Respiratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Jian Yao
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan 250021, China
| | - Fei Gao
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan 250021, China
| | - Tao Gong
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan 250021, China
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Maryland, USA
| | - Weibo Chen
- Philips Healthcare, Shanghai 200072, China
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Maryland, USA
| | - Guangbin Wang
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan 250021, China
| |
Collapse
|
39
|
Consolino L, Anemone A, Capozza M, Carella A, Irrera P, Corrado A, Dhakan C, Bracesco M, Longo DL. Non-invasive Investigation of Tumor Metabolism and Acidosis by MRI-CEST Imaging. Front Oncol 2020; 10:161. [PMID: 32133295 PMCID: PMC7040491 DOI: 10.3389/fonc.2020.00161] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Altered metabolism is considered a core hallmark of cancer. By monitoring in vivo metabolites changes or characterizing the tumor microenvironment, non-invasive imaging approaches play a fundamental role in elucidating several aspects of tumor biology. Within the magnetic resonance imaging (MRI) modality, the chemical exchange saturation transfer (CEST) approach has emerged as a new technique that provides high spatial resolution and sensitivity for in vivo imaging of tumor metabolism and acidosis. This mini-review describes CEST-based methods to non-invasively investigate tumor metabolism and important metabolites involved, such as glucose and lactate, as well as measurement of tumor acidosis. Approaches that have been exploited to assess response to anticancer therapies will also be reported for each specific technique.
Collapse
Affiliation(s)
- Lorena Consolino
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.,Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Annasofia Anemone
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Martina Capozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Antonella Carella
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| | - Pietro Irrera
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessia Corrado
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| | - Chetan Dhakan
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy.,University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Bracesco
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| |
Collapse
|
40
|
Schön S, Cabello J, Liesche-Starnecker F, Molina-Romero M, Eichinger P, Metz M, Karimov I, Preibisch C, Keupp J, Hock A, Meyer B, Weber W, Zimmer C, Pyka T, Yakushev I, Gempt J, Wiestler B. Imaging glioma biology: spatial comparison of amino acid PET, amide proton transfer, and perfusion-weighted MRI in newly diagnosed gliomas. Eur J Nucl Med Mol Imaging 2020; 47:1468-1475. [PMID: 31953672 PMCID: PMC7188730 DOI: 10.1007/s00259-019-04677-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Imaging glioma biology holds great promise to unravel the complex nature of these tumors. Besides well-established imaging techniques such O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-PET and dynamic susceptibility contrast (DSC) perfusion imaging, amide proton transfer-weighted (APTw) imaging has emerged as a promising novel MR technique. In this study, we aimed to better understand the relation between these imaging biomarkers and how well they capture cellularity and vascularity in newly diagnosed gliomas. METHODS Preoperative MRI and FET-PET data of 46 patients (31 glioblastoma and 15 lower-grade glioma) were segmented into contrast-enhancing and FLAIR-hyperintense areas. Using established cutoffs, we calculated hot-spot volumes (HSV) and their spatial overlap. We further investigated APTw and CBV values in FET-HSV. In a subset of 10 glioblastoma patients, we compared cellularity and vascularization in 34 stereotactically targeted biopsies with imaging. RESULTS In glioblastomas, the largest HSV was found for APTw, followed by PET and CBV (p < 0.05). In lower-grade gliomas, APTw-HSV was clearly lower than in glioblastomas. The spatial overlap of HSV was highest between APTw and FET in both tumor entities and regions. APTw correlated significantly with cellularity, similar to FET, while the association with vascularity was more pronounced in CBV and FET. CONCLUSIONS We found a relevant spatial overlap in glioblastomas between hotspots of APTw and FET both in contrast-enhancing and FLAIR-hyperintense tumor. As suggested by earlier studies, APTw was lower in lower-grade gliomas compared with glioblastomas. APTw meaningfully contributes to biological imaging of gliomas.
Collapse
Affiliation(s)
- S Schön
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - J Cabello
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - F Liesche-Starnecker
- Department of Neuropathology, Institute of Pathology, Technical University of Munich, Munich, Germany
| | - M Molina-Romero
- Image-based Biomedical Modeling, Technical University of Munich, Munich, Germany
| | - P Eichinger
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - M Metz
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - I Karimov
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - C Preibisch
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - J Keupp
- Philips Research, Hamburg, Germany
| | - A Hock
- Philips Health Systems, Zurich, Switzerland
| | - B Meyer
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - W Weber
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - C Zimmer
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - T Pyka
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - I Yakushev
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - J Gempt
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - B Wiestler
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
41
|
Protein-based amide proton transfer-weighted MR imaging of amnestic mild cognitive impairment. NEUROIMAGE-CLINICAL 2019; 25:102153. [PMID: 31901792 PMCID: PMC6948365 DOI: 10.1016/j.nicl.2019.102153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/07/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023]
Abstract
Amide proton transfer-weighted (APTw) MRI is a novel molecular imaging technique that can noninvasively detect endogenous cellular proteins and peptides in tissue. Here, we demonstrate the feasibility of protein-based APTw MRI in characterizing amnestic mild cognitive impairment (aMCI). Eighteen patients with confirmed aMCI and 18 matched normal controls were scanned at 3 Tesla. The APTw, as well as conventional magnetization transfer ratio (MTR), signal differences between aMCI and normal groups were assessed by the independent samples t-test, and the receiver-operator-characteristic analysis was used to assess the diagnostic performance of APTw. When comparing the normal control group, aMCI brains typically had relatively higher APTw signals. Quantitatively, APTw intensity values were significantly higher in nine of 12 regions of interest in aMCI patients than in normal controls. The largest areas under the receiver-operator-characteristic curves were 0.88 (gray matter in occipital lobe) and 0.82 (gray matter in temporal lobe, white matter in occipital lobe) in diagnosing aMCI patients. On the contrary, MTR intensity values were significantly higher in only three of 12 regions of interest in the aMCI group. Additionally, the age dependency analyses revealed that these cross-sectional APTw/MTR signals had an increasing trend with age in most brain regions for normal controls, but a decreasing trend with age in most brain regions for aMCI patients. Our early results show the potential of the APTw signal as a new imaging biomarker for the noninvasive molecular diagnosis of aMCI.
Collapse
|
42
|
Heo HY, Xu X, Jiang S, Zhao Y, Keupp J, Redmond KJ, Laterra J, van Zijl PC, Zhou J. Prospective acceleration of parallel RF transmission-based 3D chemical exchange saturation transfer imaging with compressed sensing. Magn Reson Med 2019; 82:1812-1821. [PMID: 31209938 PMCID: PMC6660350 DOI: 10.1002/mrm.27875] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/07/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE To develop prospectively accelerated 3D CEST imaging using compressed sensing (CS), combined with a saturation scheme based on time-interleaved parallel transmission. METHODS A variable density pseudo-random sampling pattern with a centric elliptical k-space ordering was used for CS acceleration in 3D. Retrospective CS studies were performed with CEST phantoms to test the reconstruction scheme. Prospectively CS-accelerated 3D-CEST images were acquired in 10 healthy volunteers and 6 brain tumor patients with an acceleration factor (RCS ) of 4 and compared with conventional SENSE reconstructed images. Amide proton transfer weighted (APTw) signals under varied RF saturation powers were compared with varied acceleration factors. RESULTS The APTw signals obtained from the CS with acceleration factor of 4 were well-preserved as compared with the reference image (SENSE R = 2) both in retrospective phantom and prospective healthy volunteer studies. In the patient study, the APTw signals were significantly higher in the tumor region (gadolinium [Gd]-enhancing tumor core) than in the normal tissue (p < .001). There was no significant APTw difference between the CS-accelerated images and the reference image. The scan time of CS-accelerated 3D APTw imaging was dramatically reduced to 2:10 minutes (in-plane spatial resolution of 1.8 × 1.8 mm2 ; 15 slices with 4-mm slice thickness) as compared with SENSE (4:07 minutes). CONCLUSION Compressed sensing acceleration was successfully extended to 3D-CEST imaging without compromising CEST image quality and quantification. The CS-based CEST imaging can easily be integrated into clinical protocols and would be beneficial for a wide range of applications.
Collapse
Affiliation(s)
- Hye-Young Heo
- Divison of MR Research, Department of Radiology, Johns
Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging,
Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Xiang Xu
- Divison of MR Research, Department of Radiology, Johns
Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging,
Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Divison of MR Research, Department of Radiology, Johns
Hopkins University, Baltimore, Maryland, USA
| | | | | | - Kristin J. Redmond
- Department of Radiation Oncology and Molecular Radiation
Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - John Laterra
- F.M. Kirby Research Center for Functional Brain Imaging,
Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University,
Baltimore, Maryland, USA
| | - Peter C.M. van Zijl
- Divison of MR Research, Department of Radiology, Johns
Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging,
Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jinyuan Zhou
- Divison of MR Research, Department of Radiology, Johns
Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging,
Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Variation of amide proton transfer signal intensity and apparent diffusion coefficient values among phases of the menstrual cycle in the normal uterus: A preliminary study. Magn Reson Imaging 2019; 63:21-28. [DOI: 10.1016/j.mri.2019.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 07/13/2019] [Indexed: 12/19/2022]
|
44
|
Goldenberg JM, Pagel MD. Assessments of tumor metabolism with CEST MRI. NMR IN BIOMEDICINE 2019; 32:e3943. [PMID: 29938857 PMCID: PMC7377947 DOI: 10.1002/nbm.3943] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 05/06/2023]
Abstract
Chemical exchange saturation transfer (CEST) is a relatively new contrast mechanism for MRI. CEST MRI exploits a specific MR frequency (chemical shift) of a molecule while generating an image with good spatial resolution using standard MRI techniques, combining the specificity of MRS with the spatial resolution of MRI. Many CEST MRI acquisition methods have been developed to improve analyses of tumor metabolism. GluCEST, CrCEST, and LATEST can map glutamate, creatine, and lactate, which are important metabolites involved in tumor metabolism. GlucoCEST MRI tracks the pharmacokinetics of glucose transport and cell internalization within tumors. CatalyCEST MRI detects enzyme catalysis that changes a substrate CEST agent. AcidoCEST MRI measures extracellular pH of the tumor microenvironment by exploiting a ratio of two pH-dependent CEST signals. This review describes each technique, the technical issues involved with CEST MRI and each specific technique, and the merits and challenges associated with applying each CEST MRI technique to study tumor metabolism.
Collapse
Affiliation(s)
- Joshua M. Goldenberg
- Department of Pharmaceutical Sciences, The University of Arizona, Tucson, AZ, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark D. Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
45
|
Lin Y, Luo X, Yu L, Zhang Y, Zhou J, Jiang Y, Zhang C, Zhang J, Li C, Chen M. Amide proton transfer-weighted MRI for predicting histological grade of hepatocellular carcinoma: comparison with diffusion-weighted imaging. Quant Imaging Med Surg 2019; 9:1641-1651. [PMID: 31728308 DOI: 10.21037/qims.2019.08.07] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver, preoperative grading of HCC is of great clinical significance. Amide proton transfer-weighted (APTw) imaging, as a novel contrast mechanism in the field of molecular imaging, provided new diagnostic ideas for the grading of HCC. Methods Between May 2017 and April 2018, 32 consecutive patients with pathologically confirmed HCC were enrolled, including 19 high-grade HCCs and 13 low-grade HCCs. DWI and APTw scanning was performed on a 3T MRI scanner. Two observers drew regions of interest independently by referring to the axial T2-weighted imaging, and APTw and apparent diffusion coefficient (ADC) values were obtained. Inter- and intra-observer agreements were assessed with the intraclass correlation coefficients (ICCs). The independent sample t test was used to compare the APTw and ADC values between the high- and low-grade HCC tumor parenchyma. The receiver operating characteristic curve was used to analyze the diagnostic efficacy of high- from low-grade HCC tumors. Spearman correlation analysis was used to assess the relationship between APTw and ADC values and HCC histological grades. Results There were significant differences between the APTw or ADC values for the high- and low-grade HCCs (P=0.034 and 0.010). Both APTw and DWI had good diagnostic performance in differentiating the high- from the low-grade HCCs, with areas under the curves of 0.814 and 0.745, respectively. Moderate correlations existed between APTw values and histological grades (r=0.534; P=0.002), as well as ADC values and histological grades (r=-0.417; P=0.018). Conclusions The APTw imaging is a useful imaging biomarker that complements DWI for the more accurate and comprehensive HCC characterization.
Collapse
Affiliation(s)
- Yue Lin
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China.,Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Xiaojie Luo
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Lu Yu
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China.,Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Yi Zhang
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310058, China
| | - Jinyuan Zhou
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Yuwei Jiang
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Chen Zhang
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Jintao Zhang
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Chunmei Li
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China.,Graduate School of Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
46
|
Zhang Y, Heo HY, Jiang S, Zhou J, Bottomley PA. Fast 3D chemical exchange saturation transfer imaging with variably-accelerated sensitivity encoding (vSENSE). Magn Reson Med 2019; 82:2046-2061. [PMID: 31264278 DOI: 10.1002/mrm.27881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE To extend the variably-accelerated sensitivity encoding (vSENSE) method from 2D to 3D for fast chemical exchange saturation transfer (CEST) imaging, and prospectively implement it for clinical MRI. METHODS The CEST scans were acquired from 7 normal volunteers and 15 brain tumor patients using a 3T clinical scanner. The 2D and 3D "artifact suppression" (AS) vSENSE algorithms were applied to generate sensitivity maps from a first scan acquired with conventional SENSE-accelerated 2D and 3D CEST data. The AS sensitivity maps were then applied to reconstruct the other CEST frames at higher acceleration factors. Both retrospective and prospective acceleration in phase-encoding and slice-encoding dimensions were implemented. RESULTS Applying the 2D AS vSENSE algorithm to a 2-fold undersampled 3.5-ppm CEST frame halved the scan time of conventional SENSE, while generating essentially identical reconstruction errors (p ≈ 1.0). The 3D AS vSENSE algorithm permitted prospective acceleration by up to 8-fold, in total, from phase-encoding and slice-encoding directions for individual source CEST images, and an overall speed-up in scan time of 5-fold. The resulting vSENSE-accelerated amide proton transfer-weighted images agreed with conventional 2-fold-accelerated SENSE CEST results in brain tumor patients and healthy volunteers. Importantly, the vSENSE method eliminated unfolding artifacts in the slice-encoding direction that compromised conventional SENSE CEST scans. CONCLUSION The vSENSE method can be extended to 3D CEST imaging to provide higher acceleration factors than conventional SENSE without compromising accuracy.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Paul A Bottomley
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
47
|
Amide proton transfer imaging might predict survival and IDH mutation status in high-grade glioma. Eur Radiol 2019; 29:6643-6652. [PMID: 31175415 DOI: 10.1007/s00330-019-06203-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVES To assess the utility of amide proton transfer (APT) imaging as an imaging biomarker to predict prognosis and molecular marker status in high-grade glioma (HGG, WHO grade III/IV). METHODS We included 71 patients with pathologically diagnosed HGG who underwent preoperative MRI with APT imaging. Overall survival (OS) and progression-free survival (PFS) according to APT signal, clinical factors, MGMT methylation status, and IDH mutation status were analyzed. Multivariate Cox regression models with and without APT signal data were constructed. Model performance was compared using the integrated AUC (iAUC). Associations between APT signals and molecular markers were assessed using the Mann-Whitney test. RESULTS High APT signal was a significant predictor for poor OS (HR = 3.21, 95% CI = 1.62-6.34) and PFS (HR = 2.22, 95% CI = 1.33-3.72) on univariate analysis. On multivariate analysis, high APT signals were an independent predictor of poor OS and PFS when clinical factors alone (OS: HR = 2.89; PFS: HR = 2.13), or in combination with molecular markers (OS: HR = 2.85; PFS: HR = 2.00), were included as covariates. The incremental prognostic value of APT signals was significant for OS and PFS. IDH-wild type was significantly associated with high APT signals (p = 0.001) when compared to IDH-mutant; however, there was no difference based on MGMT methylation status (p = 0.208). CONCLUSION High APT signal was a significant predictor of poor prognosis in HGG. APT data showed significant incremental prognostic value over clinical prognostic factors and molecular markers and may also predict IDH mutation status. KEY POINTS • Amide proton transfer (APT) imaging is a promising prognostic marker of high-grade glioma. • APT signals were significantly higher in IDH-wild type compared to IDH-mutant high-grade glioma. • APT imaging may be valuable for preoperative screening and treatment guidance.
Collapse
|
48
|
Meng N, Wang J, Sun J, Liu W, Wang X, Yan M, Dwivedi A, Zheng D, Wang K, Han D. Using amide proton transfer to identify cervical squamous carcinoma/adenocarcinoma and evaluate its differentiation grade. Magn Reson Imaging 2019; 61:9-15. [PMID: 31071471 DOI: 10.1016/j.mri.2019.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/28/2019] [Accepted: 05/04/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE To explore the possibility of using amide proton transfer-weighted imaging (APTWI) for the identification and diagnosis of cervical squamous carcinoma (CSC), cervical adenocarcinoma (CA) and different levels of CSC. MATERIALS AND METHODS Seventy-six patients with newly diagnosed uterine cervical cancer (UCC) were studied prior to treatment, including 20 with poorly differentiated (Grade 3) CSC, 23 with moderately differentiated (Grade 2) CSC, 17 with well-differentiated (Grade 1) CSC, and 16 with CA (13 with poorly differentiated (Grade 3) CA and 3 with moderately differentiated (Grade 2) CA). Differences in the magnetization transfer ratio at 3.5 ppm (MTRasym (3.5 ppm)) were identified between CSC and CA and between high-level (Grade 3) CSC and low-level (Grade 2 and Grade 1) CSC, as well as among all three grades of CSC differentiation. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic thresholds and performance of the parameters. Spearman correlation analysis was used to examine the correlation between the MTRasym (3.5 ppm) and histological grade. RESULTS The MTRasym (3.5 ppm) in CA was higher than that in CSC (P = 0.001). The MTRasym (3.5 ppm) in high-level CSC was higher than that in low-level CSC (P = 0.001). The MTRasym (3.5 ppm) was positively correlated with the grade of CSC differentiation (r = 0.498, P = 0.001). The MTRasym (3.5 ppm) in Grade 3 CSC was higher than that in Grade 2 and Grade 1 CSC (P = 0.02/0.01). No significant difference in the MTRasym (3.5 ppm) was found between Grade 2 CSC and Grade 1 CSC (P = 0.173). The area under the ROC curve (AUC) for the MTRasym (3.5 ppm) in distinguishing CSC and CA was 0.779, with a cut-off, sensitivity, and specificity of 2.97%, 60.0% and 82.5%, respectively. The AUC for distinguishing high-/low-level CSC was 0.756, with a cut-off, sensitivity, and specificity of 3.29%, 68.8% and 83.3%, respectively. CONCLUSION APTWI may be a useful technique for the identification and diagnosis of CSC, CA and different levels of CSC, which may have an important impact on clinical strategies for treating patients with UCC.
Collapse
Affiliation(s)
- Nan Meng
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China
| | - Jing Wang
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China
| | - Jing Sun
- Department of Pediatrics, Zhengzhou Central Hospital, Zhengzhou University, 195 Tongbai Road, Zhengzhou 450000, PR China
| | - Wenling Liu
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China
| | - Xuejia Wang
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China
| | - Minghuan Yan
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China
| | - Akshay Dwivedi
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China
| | - Dandan Zheng
- MR Research China, GE Healthcare, Beijing 100000, PR China
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing 100000, PR China.
| | - Dongming Han
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China.
| |
Collapse
|
49
|
Ray KJ, Simard MA, Larkin JR, Coates J, Kinchesh P, Smart SC, Higgins GS, Chappell MA, Sibson NR. Tumor pH and Protein Concentration Contribute to the Signal of Amide Proton Transfer Magnetic Resonance Imaging. Cancer Res 2019; 79:1343-1352. [PMID: 30679178 PMCID: PMC6462213 DOI: 10.1158/0008-5472.can-18-2168] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/06/2018] [Accepted: 01/15/2019] [Indexed: 01/07/2023]
Abstract
Abnormal pH is a common feature of malignant tumors and has been associated clinically with suboptimal outcomes. Amide proton transfer magnetic resonance imaging (APT MRI) holds promise as a means to noninvasively measure tumor pH, yet multiple factors collectively make quantification of tumor pH from APT MRI data challenging. The purpose of this study was to improve our understanding of the biophysical sources of altered APT MRI signals in tumors. Combining in vivo APT MRI measurements with ex vivo histological measurements of protein concentration in a rat model of brain metastasis, we determined that the proportion of APT MRI signal originating from changes in protein concentration was approximately 66%, with the remaining 34% originating from changes in tumor pH. In a mouse model of hypopharyngeal squamous cell carcinoma (FaDu), APT MRI showed that a reduction in tumor hypoxia was associated with a shift in tumor pH. The results of this study extend our understanding of APT MRI data and may enable the use of APT MRI to infer the pH of individual patients' tumors as either a biomarker for therapy stratification or as a measure of therapeutic response in clinical settings. SIGNIFICANCE: These findings advance our understanding of amide proton transfer magnetic resonance imaging (APT MRI) of tumors and may improve the interpretation of APT MRI in clinical settings.
Collapse
Affiliation(s)
- Kevin J Ray
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Manon A Simard
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - James R Larkin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - James Coates
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Paul Kinchesh
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean C Smart
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Geoff S Higgins
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Michael A Chappell
- Institute for Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
50
|
Goerke S, Soehngen Y, Deshmane A, Zaiss M, Breitling J, Boyd PS, Herz K, Zimmermann F, Klika KD, Schlemmer H, Paech D, Ladd ME, Bachert P. Relaxation‐compensated APT and rNOE CEST‐MRI of human brain tumors at 3 T. Magn Reson Med 2019; 82:622-632. [DOI: 10.1002/mrm.27751] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Steffen Goerke
- Division of Medical Physics in Radiology German Cancer Research Center Heidelberg Germany
| | - Yannick Soehngen
- Division of Medical Physics in Radiology German Cancer Research Center Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
| | - Anagha Deshmane
- Department of High‐Field Magnetic Resonance Max‐Planck‐Institute for Biological Cybernetics Tübingen Germany
| | - Moritz Zaiss
- Department of High‐Field Magnetic Resonance Max‐Planck‐Institute for Biological Cybernetics Tübingen Germany
| | - Johannes Breitling
- Division of Medical Physics in Radiology German Cancer Research Center Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
- Max‐Planck‐Institute for Nuclear Physics Heidelberg Germany
| | - Philip S. Boyd
- Division of Medical Physics in Radiology German Cancer Research Center Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
| | - Kai Herz
- Department of High‐Field Magnetic Resonance Max‐Planck‐Institute for Biological Cybernetics Tübingen Germany
| | - Ferdinand Zimmermann
- Division of Medical Physics in Radiology German Cancer Research Center Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
| | - Karel D. Klika
- Molecular Structure Analysis German Cancer Research Center Heidelberg Germany
| | - Heinz‐Peter Schlemmer
- Department of Radiology German Cancer Research Center Heidelberg Germany
- Faculty of Medicine University of Heidelberg Heidelberg Germany
| | - Daniel Paech
- Department of Radiology German Cancer Research Center Heidelberg Germany
| | - Mark E. Ladd
- Division of Medical Physics in Radiology German Cancer Research Center Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
- Faculty of Medicine University of Heidelberg Heidelberg Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology German Cancer Research Center Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
| |
Collapse
|