1
|
Esfahani SA, Ma L, Krishna S, Ma H, Raheem SJ, Shuvaev S, Rotile NJ, Weigand-Whittier J, Boice AT, Borges N, Treaba CA, Deffler C, Diyabalanage H, Humblet V, Sosnovik DE, Mahmood U, Heidari P, Shih A, Catana C, Strickland MR, Klempner SJ, Caravan P. Development of a fibrin-targeted theranostic for gastric cancer. Sci Transl Med 2024; 16:eadn7218. [PMID: 39661705 DOI: 10.1126/scitranslmed.adn7218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/18/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
Patients with advanced gastric cancer (GCa) have limited treatment options, and alternative treatment approaches are necessary to improve their clinical outcomes. Because fibrin is abundant in gastric tumors but not in healthy tissues, we hypothesized that fibrin could be used as a high-concentration depot for a high-energy beta-emitting cytotoxic radiopharmaceutical delivered to tumor cells. We showed that fibrin is present in 64 to 75% of primary gastric tumors and 50 to 100% of metastatic gastric adenocarcinoma cores. First-in-human 64Cu-FBP8 fibrin-targeted positron emission tomography (PET) imaging in seven patients with gastric or gastroesophageal junction cancer showed high probe uptake in all target lesions with tumor-to-background (muscle) uptake ratios of 9.9 ± 6.6 in primary (n = 7) and 11.2 ± 6.6 in metastatic (n = 45) tumors. Using two mouse models of human GCa, one fibrin-high (SNU-16) and one fibrin-low (NCI-N87), we showed that PET imaging with a related fibrin-specific peptide, CM500, labeled with copper-64 (64Cu-CM500) specifically bound to and precisely quantified tumor fibrin in both models. We then labeled the fibrin-specific peptide CM600 with yttrium-90 and showed that 90Y-CM600 effectively decreased tumor growth in these mouse models. Mice carrying fibrin-high SNU-16 tumors experienced tumor growth inhibition and prolonged survival in response to either a single high dosage or fractionated lower dosage of 90Y-CM600, whereas mice carrying fibrin-low NCI-N87 tumors experienced prolonged survival in response to a fractionated lower dosage of 90Y-CM600. These results lay the foundation for a fibrin-targeted theranostic that may expand options for patients with advanced GCa.
Collapse
Affiliation(s)
- Shadi A Esfahani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Li Ma
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Shriya Krishna
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hua Ma
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Shvan J Raheem
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sergey Shuvaev
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicholas J Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jonah Weigand-Whittier
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Avery T Boice
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicholas Borges
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Caitlin Deffler
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | - David E Sosnovik
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Umar Mahmood
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Pedram Heidari
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Angela Shih
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Matthew R Strickland
- Division of Hematology-Oncology, Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Samuel J Klempner
- Division of Hematology-Oncology, Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
3
|
Diaferia C, Gianolio E, Accardo A. Peptide-based building blocks as structural elements for supramolecular Gd-containing MRI contrast agents. J Pept Sci 2019; 25:e3157. [PMID: 30767370 DOI: 10.1002/psc.3157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 11/07/2022]
Abstract
Magnetic resonance imaging (MRI) is one of the most important clinic diagnostic tool used to obtain high-quality body images. The administration of low-molecular-weight Gd complex-based MRI contrast agents (CAs) permits to increase the 1 H relaxation rate of nearby water molecules, thus modulating signal intensity and contrast enhancement. Even if highly accurate, MRI modality suffers from its low sensitivity. Moreover, low-molecular-weight CAs rapidly equilibrate between the intravascular and extravascular spaces after their administration. In order to improve their sensitivity and limit the extravasation phenomenon, several macromolecular and supramolecular multimeric gadolinium complexes (dendrimers, polymers, carbon nanostructures, micelles, and liposomes) have been designed until now. Because of their biocompatibility, low immunogenicity, low cost, and easy synthetic modification, peptides are attractive building blocks for the fabbrication of novel materials for biomedical applications. We report on the state of the art of supramolecular CAs obtained by self-assembly of three different classes of building blocks containing a peptide sequence, a gadolinium complex, and, if necessary, a third functional portion achieving the organization process.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Naples, Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnologies and Health Science, University of Turin, Turin, Italy
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Naples, Italy
| |
Collapse
|
5
|
Tripepi M, Capuana F, Gianolio E, Kock FVC, Pagoto A, Stefania R, Digilio G, Aime S. Synthesis of High Relaxivity Gadolinium AAZTA Tetramers as Building Blocks for Bioconjugation. Bioconjug Chem 2018; 29:1428-1437. [PMID: 29470084 DOI: 10.1021/acs.bioconjchem.8b00120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Molecular imaging requires the specific accumulation of contrast agents at the target. To exploit the superb resolution of MRI for applications in molecular imaging, gadolinium chelates, as the MRI contrast agents (CA), have to be conjugated to a specific vector able to recognize the epitope of interest. Several Gd(III)-chelates can be chemically linked to the same binding vector in order to deliver multiple copies of the CA (multimers) in a single targeting event thus increasing the sensitivity of the molecular probe. Herein three novel bifunctional agents, carrying one functional group for the bioconjugation to targeting vectors and four Gd(III)-AAZTA chelate functions for MRI contrast enhancement (AAZTA = 6-amino-6-methylperhydro-1,4-diazepinetetraacetic acid), are reported. The relaxivity in the tetrameric derivatives is 16.4 ± 0.2 mMGd-1 s-1 at 21.5 MHz and 25 °C, being 2.4-fold higher than that of parent, monomeric Gd(III)-AAZTA. These compounds can be used as versatile building blocks to insert preformed, high relaxivity, and high density Gd-centers to biological targeting vectors. As an example, we describe the use of these bifunctional Gd(III)-chelates to label a fibrin-targeting peptide.
Collapse
Affiliation(s)
- Martina Tripepi
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Federico Capuana
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Flávio Vinicius Crizóstomo Kock
- São Carlos Institute of Chemistry , São Paulo University , Av. Trabalhador São Carlense, 400 , 13566-590 , São Carlos , São Paulo , Brazil
| | - Amerigo Pagoto
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Rachele Stefania
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Giuseppe Digilio
- Department of Science and Technological Innovation , Università del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11 , 15121 Alessandria , Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| |
Collapse
|