1
|
Wang SY, Huang YH, Chen YC, Tsai CH, Ko CL, Lin YH, Chen WJ, Yu WC, Hu LH, Hou JU, Su TP, Lee TY, Cheng MF, Wu YW. 2025 Update Consensus of 99mTc-Pyrophosphate Scintigraphy in the Transthyretin Cardiac Amyloidosis from the Taiwan Society of Cardiology and the Society of Nuclear Medicine of the Republic of China. ACTA CARDIOLOGICA SINICA 2025; 41:55-71. [PMID: 39776923 PMCID: PMC11701493 DOI: 10.6515/acs.202501_41(1).20241027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
This 2025 updated consensus outlines the diagnostic strategy for transthyretin amyloid cardiomyopathy (ATTR-CM). Given that ATTR-CM is a significant contributor to heart failure, this article emphasizes the importance of making an early and precise diagnosis, particularly as new therapeutic options become available. Highlighting the critical importance of an early and accurate diagnosis, particularly in light of emerging therapeutic modalities, this consensus underscores the central role of 99mTc-pyrophosphate (PYP) scintigraphy as a non-invasive diagnostic tool. The consensus calls for the adoption of standardized imaging protocols and interpretation criteria to ensure consistency and reliability across diverse clinical settings. The integration of qualitative and quantitative imaging techniques within a structured diagnostic framework places particular focus on the use of single-photon emission computed tomography/computed tomography (SPECT/CT) imaging to enhance diagnostic precision by minimizing blood pool activity and eliminating overlapping interference. Three-hour imaging is considered to be critical for accurate evaluations and to reduce false-positive findings, and it is recommended for its superior diagnostic accuracy. Moreover, quantitative assessments are also considered to be essential for evaluating myocardial amyloid deposition. This updated consensus provides comprehensive guidelines for clinicians, with the aim of optimizing patient outcomes through precise diagnosis and effective management of ATTR-CM. The consensus concludes by advocating for continued research and refinement of imaging methodologies, particularly to enhance the clinical applicability of 99mTc-PYP scintigraphy and other future developments in nuclear molecular imaging.
Collapse
Affiliation(s)
- Shan-Ying Wang
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City
- Electrical and Communication Engineering College, Yuan Ze University, Taoyuan
| | - Yih-Hwen Huang
- Department of Nuclear Medicine, National Taiwan University Hospital
| | - Yi-Chieh Chen
- Department of Nuclear Medicine, National Taiwan University Hospital
| | - Cheng-Hsuan Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine; Cardiovascular Center, Taipei
| | - Chi-Lun Ko
- Department of Nuclear Medicine, National Taiwan University Hospital
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine; Cardiovascular Center, Taipei
| | - Wen-Jone Chen
- Division of Cardiology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan
| | - Wen-Chung Yu
- Department of Internal Medicine, College of Medicine, National Yang Ming Chiao Tung University
- Division of Cardiology, Department of Medicine
| | - Lien-Hsin Hu
- Department of Internal Medicine, College of Medicine, National Yang Ming Chiao Tung University
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei
| | - Jing-Uei Hou
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung
| | - Tzu-Pei Su
- Department of Nuclear Medicine, Keelung Chang Gung Memorial Hospital, Keelung
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan
| | - Ting-Yen Lee
- Department of Nuclear Medicine, National Taiwan University Hospital
| | - Mei-Fang Cheng
- Department of Nuclear Medicine, National Taiwan University Hospital
- National Taiwan University College of Medicine, Taipei
| | - Yen-Wen Wu
- Division of Cardiology, Cardiovascular Medical Center, and Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Clerc OF, Vijayakumar S, Dorbala S. Radionuclide Imaging of Cardiac Amyloidosis: An Update and Future Aspects. Semin Nucl Med 2024; 54:717-732. [PMID: 38960850 DOI: 10.1053/j.semnuclmed.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Cardiac amyloidosis (CA) is caused by the misfolding, accumulation and aggregation of proteins into large fibrils in the extracellular compartment of the myocardium, leading to restrictive cardiomyopathy, heart failure and death. The major forms are transthyretin (ATTR) CA and light-chain (AL) CA, based on the respective precursor protein. Each of them requires early diagnosis for a timely treatment initiation that will improve patient outcomes. For this, radionuclide imaging is essentially used as single-photon emission computed tomography (SPECT) with bone-avid radiotracers or as positron emission tomography (PET) with amyloid-binding radiotracers. Both offer unprecedented specificity for the diagnostic of CA. SPECT has even revolutionized the diagnosis of ATTR-CA by making it non-invasive. Indeed, SPECT has now entered the standard diagnostic pathway to CA and has led to earlier diagnosis of the disease. SPECT also modified the epidemiology of ATTR-CA, highlighting that the disease is much more frequent than previously believed, and showing that ATTR-CA plays a substantial role in HFpEF and aortic stenosis, particularly among elderly patients. In parallel, amyloid-binding radiotracers for PET have accumulated a substantial amount of evidence, but are not approved for clinical use in CA yet. Further studies are needed to refine acquisition protocols and validate results in broader populations. Unlike bone-avid SPECT radiotracers, PET radiotracers have been specifically created to bind to amyloid fibrils. Thus, PET is the only imaging method that is truly specific for amyloid deposits and very sensitive to any amyloid type. Indeed, PET can not only detect ATTR-CA, but also AL-CA and rare hereditary forms. For both SPECT and PET, advances in quantitation of myocardial uptake have generated more granular and reproducible findings, paving the way for progress in earlier diagnosis, risk stratification and therapeutic response monitoring. Encouraging findings have shown that SPECT and PET are sensitive to early CA when other diagnostic methods are negative. Both radionuclide imaging techniques can predict adverse outcomes, but more evidence is needed to determine how to use them in conjunction with usual prognostic staging scores. Studies on follow-up imaging after therapy suggested that SPECT and PET can capture myocardial changes in CA, but again, more data are needed to meaningfully interpret such changes. Based on all these promising results, radionuclide imaging has the potential to further impact the landscape of CA in diagnosis, prognosis and follow-up, but also to substantially contribute to the assessment of novel therapies that will improve the lives of patients with CA.
Collapse
Affiliation(s)
- Olivier F Clerc
- Division of Nuclear Medicine, Department of Radiology, Brigham and Women's Hospital, Boston, MA; Cardiac Amyloidosis Program, Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Shilpa Vijayakumar
- Division of Nuclear Medicine, Department of Radiology, Brigham and Women's Hospital, Boston, MA; Cardiac Amyloidosis Program, Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Sharmila Dorbala
- Division of Nuclear Medicine, Department of Radiology, Brigham and Women's Hospital, Boston, MA; Cardiac Amyloidosis Program, Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, MA; CV Imaging Program, Cardiovascular Division and Department of Radiology, Brigham and Women's Hospital, Boston, MA.
| |
Collapse
|
3
|
Kennel SJ, Jackson JW, Stuckey A, Richey T, Foster JS, Wall JS. Preclinical evaluation of Tc-99m p5+14 peptide for SPECT detection of cardiac amyloidosis. PLoS One 2024; 19:e0301756. [PMID: 38578730 PMCID: PMC10997057 DOI: 10.1371/journal.pone.0301756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
INTRODUCTION Amyloid deposition is a cause of restrictive cardiomyopathy. Patients who present with cardiac disease can be evaluated for transthyretin (TTR)-associated cardiac amyloidosis using nuclear imaging with 99mTc-labeled pyrophosphate (PYP); however, light chain-associated (AL) cardiac amyloid is generally not detected using this tracer. As an alternative, the amyloid-binding peptide p5+14 radiolabeled with iodine-124 has been shown to be an effective pan-amyloid radiotracer for PET/CT imaging. Here, a 99mTc-labeled form of p5+14 peptide has been prepared to facilitate SPECT/CT imaging of cardiac amyloidosis. METHOD A synthesis method suitable for clinical applications has been used to prepare 99mTc-labeled p5+14 and tested for peptide purity, product bioactivity, radiochemical purity and stability. The product was compared with99mTc-PYP for cardiac SPECT/CT imaging in a mouse model of AA amyloidosis and for reactivity with human tissue sections from AL and TTR patients. RESULTS The 99mTc p5+14 tracer was produced with >95% yields in radiopurity and bioactivity with no purification steps required and retained over 95% peptide purity and >90% bioactivity for >3 h. In mice, the tracer detected hepatosplenic AA amyloid as well as heart deposits with uptake ~5 fold higher than 99mTc-PYP. 99mTc p5+14 effectively bound human amyloid deposits in the liver, kidney and both AL- and ATTR cardiac amyloid in tissue sections in which 99mTc-PYP binding was not detectable. CONCLUSION 99mTc-p5+14 was prepared in minutes in >20 mCi doses with good performance in preclinical studies making it suitable for clinical SPECT/CT imaging of cardiac amyloidosis.
Collapse
Affiliation(s)
- Stephen J. Kennel
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States of America
| | - Joseph W. Jackson
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States of America
| | - Alan Stuckey
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States of America
| | - Tina Richey
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States of America
| | - James S. Foster
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States of America
| | - Jonathan S. Wall
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States of America
| |
Collapse
|
4
|
Clerc OF, Cuddy SAM, Robertson M, Vijayakumar S, Neri JC, Chemburkar V, Kijewski MF, Di Carli MF, Bianchi G, Falk RH, Dorbala S. Cardiac Amyloid Quantification Using 124I-Evuzamitide ( 124I-P5+14) Versus 18F-Florbetapir: A Pilot PET/CT Study. JACC Cardiovasc Imaging 2023; 16:1419-1432. [PMID: 37676210 PMCID: PMC10758980 DOI: 10.1016/j.jcmg.2023.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Cardiac amyloid quantification could advance early diagnosis of amyloid cardiomyopathy (CMP) and treatment monitoring. However, current imaging tools are based on indirect measurements. 124I-evuzamitide is a novel pan-amyloid radiotracer binding to amyloid deposits from multiple amyloidogenic proteins. Its ability to quantify cardiac amyloid has not yet been investigated. OBJECTIVES The objectives of this pilot study were to quantify myocardial 124I-evuzamitide uptake and to compare its diagnostic value to 18F-florbetapir in participants with amyloid CMP and control subjects. METHODS This study included 46 participants: 12 with light-chain (AL) CMP, 12 with wild-type transthyretin (ATTRwt) CMP, 2 with hereditary amyloidosis, and 20 control subjects. All amyloidosis participants underwent positron emission tomography/computed tomography with 124I-evuzamitide and 18F-florbetapir. Control subjects underwent 124I-evuzamitide (n = 10) or 18F-florbetapir (n = 8) positron emission tomography/computed tomography. Left ventricular percent injected dose (LV% ID) was measured as mean activity concentration × myocardial volume/injected activity. High LV %ID was defined using Youden's index. RESULTS In CMP participants, median age was 74 years and 92% were men. 124I-evuzamitide LV %ID differed across groups: median AL-CMP 1.48 (IQR: 1.12-1.89), ATTRwt-CMP 2.12 (IQR: 1.66-2.47), and control subjects 0.00 (IQR: 0.00-0.01; overall P < 0.001). High LV %ID perfectly discriminated CMP from control subjects. Discrimination performance was similar for 18F-florbetapir LV %ID. Notably, for ATTRwt-CMP, LV %ID was higher with 124I-evuzamitide than 18F-florbetapir (P = 0.002). 124I-evuzamitide LV %ID was correlated with interventricular septum thickness (Spearman's ρ = 0.78) and LV global longitudinal strain (ρ = 0.54) from echocardiography, and with LV mass index (ρ = 0.82) and extracellular volume (ρ = 0.51) from cardiac magnetic resonance. CONCLUSIONS 124I-evuzamitide demonstrates uptake by cardiac amyloid and accurately discriminates amyloid CMP from control subjects. In AL-CMP, discrimination performance is similar to 18F-florbetapir. In ATTRwt-CMP, performance may be better with 124I-evuzamitide. Moderate-to-strong correlations of 124I-evuzamitide uptake with cardiac structural and functional metrics suggest valid amyloid quantification. Hence, 124I-evuzamitide is a promising novel radiotracer to detect and quantify cardiac amyloid.
Collapse
Affiliation(s)
- Olivier F Clerc
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Cardiac Amyloidosis Program, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah A M Cuddy
- Cardiac Amyloidosis Program, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; CV imaging program, Cardiovascular Division and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Matthew Robertson
- CV imaging program, Cardiovascular Division and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Shilpa Vijayakumar
- Cardiac Amyloidosis Program, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; CV imaging program, Cardiovascular Division and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jocelyn Canseco Neri
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Cardiac Amyloidosis Program, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vaidehi Chemburkar
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Cardiac Amyloidosis Program, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie Foley Kijewski
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcelo F Di Carli
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; CV imaging program, Cardiovascular Division and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Giada Bianchi
- Cardiac Amyloidosis Program, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Division of Hematology, Department of Medicine, Brigham and Women's Hospital Boston, Massachusetts, USA
| | - Rodney H Falk
- Cardiac Amyloidosis Program, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sharmila Dorbala
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Cardiac Amyloidosis Program, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; CV imaging program, Cardiovascular Division and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
5
|
Foster JS, Balachandran M, Hancock TJ, Martin EB, Macy S, Wooliver C, Richey T, Stuckey A, Williams AD, Jackson JW, Kennel SJ, Wall JS. Development and characterization of a prototypic pan-amyloid clearing agent - a novel murine peptide-immunoglobulin fusion. Front Immunol 2023; 14:1275372. [PMID: 37854603 PMCID: PMC10580800 DOI: 10.3389/fimmu.2023.1275372] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Systemic amyloidosis is a progressive disorder characterized by the extracellular deposition of amyloid fibrils and accessory proteins in visceral organs and tissues. Amyloid accumulation causes organ dysfunction and is not generally cleared by the immune system. Current treatment focuses on reducing amyloid precursor protein synthesis and slowing amyloid deposition. However, curative interventions will likely also require removal of preexisting amyloid deposits to restore organ function. Here we describe a prototypic pan-amyloid binding peptide-antibody fusion molecule (mIgp5) that enhances macrophage uptake of amyloid. Methods The murine IgG1-IgG2a hybrid immunoglobulin with a pan amyloid-reactive peptide, p5, fused genetically to the N-terminal of the immunoglobulin light chain was synthesized in HEK293T/17 cells. The binding of the p5 peptide moiety was assayed using synthetic amyloid-like fibrils, human amyloid extracts and amyloid-laden tissues as substrates. Binding of radioiodinated mIgp5 with amyloid deposits in vivo was evaluated in a murine model of AA amyloidosis using small animal imaging and microautoradiography. The bioactivity of mIgp5 was assessed in complement fixation and in vitro phagocytosis assays in the presence of patient-derived amyloid extracts and synthetic amyloid fibrils as substrates and in the presence or absence of human serum. Results Murine Igp5 exhibited highly potent binding to AL and ATTR amyloid extracts and diverse types of amyloid in formalin-fixed tissue sections. In the murine model of systemic AA amyloidosis, 125I-mIgp5 bound rapidly and specifically to amyloid deposits in all organs, including the heart, with no evidence of non-specific uptake in healthy tissues. The bioactivity of the immunoglobulin Fc domain was uncompromised in the context of mIgp5 and served as an effective opsonin. Macrophage-mediated uptake of amyloid extract and purified amyloid fibrils was enhanced by the addition of mIgp5. This effect was exaggerated in the presence of human serum coincident with deposition of complement C5b9. Conclusion Immunostimulatory, amyloid-clearing therapeutics can be developed by incorporating pan-amyloid-reactive peptides, such as p5, as a targeting moiety. The immunologic functionality of the IgG remains intact in the context of the fusion protein. These data highlight the potential use of peptide-antibody fusions as therapeutics for all types of systemic amyloidosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jonathan S. Wall
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States
| |
Collapse
|
6
|
Martin EB, Stuckey A, Powell D, Lands R, Whittle B, Wooliver C, Macy S, Foster JS, Guthrie S, Kennel SJ, Wall JS. Clinical Confirmation of Pan-Amyloid Reactivity of Radioiodinated Peptide 124I-p5+14 (AT-01) in Patients with Diverse Types of Systemic Amyloidosis Demonstrated by PET/CT Imaging. Pharmaceuticals (Basel) 2023; 16:629. [PMID: 37111386 PMCID: PMC10144944 DOI: 10.3390/ph16040629] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
There are at least 20 distinct types of systemic amyloidosis, all of which result in the organ-compromising accumulation of extracellular amyloid deposits. Amyloidosis is challenging to diagnose due to the heterogeneity of the clinical presentation, yet early detection is critical for favorable patient outcomes. The ability to non-invasively and quantitatively detect amyloid throughout the body, even in at-risk populations, before clinical manifestation would be invaluable. To this end, a pan-amyloid-reactive peptide, p5+14, has been developed that is capable of binding all types of amyloid. Herein, we demonstrate the ex vivo pan-amyloid reactivity of p5+14 by using peptide histochemistry on animal and human tissue sections containing various types of amyloid. Furthermore, we present clinical evidence of pan-amyloid binding using iodine-124-labeled p5+14 in a cohort of patients with eight (n = 8) different types of systemic amyloidosis. These patients underwent PET/CT imaging as part of the first-in-human Phase 1/2 clinical trial evaluating this radiotracer (NCT03678259). The uptake of 124I-p5+14 was observed in abdominothoracic organs in patients with all types of amyloidosis evaluated and was consistent with the disease distribution described in the medical record and literature reports. On the other hand, the distribution in healthy subjects was consistent with radiotracer catabolism and clearance. The early and accurate diagnosis of amyloidosis remains challenging. These data support the utility of 124I-p5+14 for the diagnosis of varied types of systemic amyloidosis by PET/CT imaging.
Collapse
Affiliation(s)
- Emily B. Martin
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA (J.S.F.); (S.J.K.); (J.S.W.)
| | - Alan Stuckey
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA (J.S.F.); (S.J.K.); (J.S.W.)
| | - Dustin Powell
- Department of Radiology, University of Tennessee Medical Center, Knoxville, TN 37920, USA
| | - Ronald Lands
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA (J.S.F.); (S.J.K.); (J.S.W.)
| | - Bryan Whittle
- Department of Radiology, University of Tennessee Medical Center, Knoxville, TN 37920, USA
| | - Craig Wooliver
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA (J.S.F.); (S.J.K.); (J.S.W.)
| | - Sallie Macy
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA (J.S.F.); (S.J.K.); (J.S.W.)
| | - James S. Foster
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA (J.S.F.); (S.J.K.); (J.S.W.)
| | | | - Stephen J. Kennel
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA (J.S.F.); (S.J.K.); (J.S.W.)
| | - Jonathan S. Wall
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA (J.S.F.); (S.J.K.); (J.S.W.)
| |
Collapse
|
7
|
Abstract
Systemic light chain (AL) amyloidosis is caused by an usually small B cell clone that produces a toxic light chain forming amyloid deposits in tissue. The heart and kidney are the major organs affected, but all others, with the exception of the CNS, can be involved. The disease is rapidly progressive, and it is still diagnosed late. Screening programs in patients followed by hematologists for plasma cell dyscrasias should be considered. The diagnosis requires demonstration in a tissue biopsy of amyloid deposits formed by immunoglobulin light chains. The workup of patients with AL amyloidosis requires adequate technology and expertise, and patients should be referred to specialized centers whenever possible. Stagings are based on cardiac and renal biomarkers and guides the choice of treatment. The combination of daratumumab, cyclophosphamide, bortezomib and dexamethasone (dara-CyBorD) is the current standard of care. Autologous stem cell transplant is performed in eligible patients, especially those who do not attain a satisfactory response to dara-CyBorD. Passive immunotherapy targeting the amyloid deposits combined with chemo-/immune-therapy targeting the amyloid clone is currently being tested in controlled clinical trials. Response to therapy is assessed based on validated criteria. Profound hematologic response is the early goal of treatment and should be accompanied over time by deepening organ response. Many relapsed/refractory patients are also treated with daratumumab combination, but novel regimens will be needed to rescue daratumumab-exposed subjects. Immunomodulatory drugs are the current cornerstone of rescue therapy, while immunotherapy targeting B-cell maturation antigen and inhibitors of Bcl-2 are promising alternatives.
Collapse
|
8
|
Tavassoly O, Safavi F, Tavassoly I. Heparin-binding Peptides as Novel Therapies to Stop SARS-CoV-2 Cellular Entry and Infection. Mol Pharmacol 2020; 98:612-619. [PMID: 32913137 PMCID: PMC7610036 DOI: 10.1124/molpharm.120.000098] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are cell surface receptors that are involved in the cellular uptake of pathologic amyloid proteins and viruses, including the novel coronavirus; severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Heparin and heparan sulfate antagonize the binding of these pathogens to HSPGs and stop their cellular internalization, but the anticoagulant effect of these agents has been limiting their use in the treatment of viral infections. Heparin-binding peptides (HBPs) are suitable nonanticoagulant agents that are capable of antagonizing binding of heparin-binding pathogens to HSPGs. Here, we review and discuss the use of HBPs as viral uptake inhibitors and will address their benefits and limitations to treat viral infections. Furthermore, we will discuss a variant of these peptides that is in the clinic and can be considered as a novel therapy in coronavirus disease 2019 (COVID-19) infection. SIGNIFICANCE STATEMENT: The need to discover treatment modalities for COVID-19 is a necessity, and therapeutic interventions such as heparin-binding peptides (HBPs), which are used for other cases, can be beneficial based on their mechanisms of actions. In this paper, we have discussed the application of HBPs as viral uptake inhibitors in COVID-19 and explained possible mechanisms of actions and the therapeutic effects.
Collapse
Affiliation(s)
- Omid Tavassoly
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada (O.T.); Neuroimmunology and Neurovirology Branch, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (F.S.); and Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York (I.T.)
| | - Farinaz Safavi
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada (O.T.); Neuroimmunology and Neurovirology Branch, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (F.S.); and Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York (I.T.)
| | - Iman Tavassoly
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada (O.T.); Neuroimmunology and Neurovirology Branch, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (F.S.); and Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York (I.T.)
| |
Collapse
|
9
|
Bifunctional amyloid-reactive peptide promotes binding of antibody 11-1F4 to diverse amyloid types and enhances therapeutic efficacy. Proc Natl Acad Sci U S A 2018; 115:E10839-E10848. [PMID: 30377267 DOI: 10.1073/pnas.1805515115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amyloidosis is a malignant pathology associated with the formation of proteinaceous amyloid fibrils that deposit in organs and tissues, leading to dysfunction and severe morbidity. More than 25 proteins have been identified as components of amyloid, but the most common form of systemic amyloidosis is associated with the deposition of amyloid composed of Ig light chains (AL). Clinical management of amyloidosis focuses on reducing synthesis of the amyloid precursor protein. However, recently, passive immunotherapy using amyloid fibril-reactive antibodies, such as 11-1F4, to remove amyloid from organs has been shown to be effective at restoring organ function in patients with AL amyloidosis. However, 11-1F4 does not bind amyloid in all AL patients, as evidenced by PET/CT imaging, nor does it efficiently bind the many other forms of amyloid. To enhance the reactivity and expand the utility of the 11-1F4 mAb as an amyloid immunotherapeutic, we have developed a pretargeting "peptope" comprising a multiamyloid-reactive peptide, p5+14, fused to a high-affinity peptide epitope recognized by 11-1F4. The peptope, known as p66, bound the 11-1F4 mAb in vitro with subnanomolar efficiency, exhibited multiamyloid reactivity in vitro and, using tissue biodistribution and SPECT imaging, colocalized with amyloid deposits in a mouse model of systemic serum amyloid A amyloidosis. Pretreatment with the peptope induced 11-1F4 mAb accumulation in serum amyloid A deposits in vivo and enhanced 11-1F4-mediated dissolution of a human AL amyloid extract implanted in mice.
Collapse
|
10
|
Heo D, Ku M, Kim JH, Yang J, Suh JS. Aptamer-Modified Magnetic Nanosensitizer for In Vivo MR Imaging of HER2-Expressing Cancer. NANOSCALE RESEARCH LETTERS 2018; 13:288. [PMID: 30229394 PMCID: PMC6143495 DOI: 10.1186/s11671-018-2682-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was the development of a human epidermal growth factor receptor 2 (HER2)-targetable contrast agent for magnetic resonance imaging (MRI) with a high magnetic sensitivity. An anti-HER2 aptamer-modified magnetic nanosensitizer (AptHER2-MNS) was prepared by conjugation with 5'-thiol-modified aptamers and maleimidylated magnetic nanocrystals (MNCs). The physicochemical characteristics and targeting ability of AptHER2-MNS were confirmed, and the binding affinity (Kd) onto HER2 protein of AptHER2-MNS was 0.57 ± 0.26 nM. In vivo MRI contrast enhancement ability was also verified at HER2+ cancer cell (NIH3T6.7)-xenograft mouse models (n = 3) at 3T clinical MRI instrument. The control experiment was carried out using non-labeled MNCs. The results indicated that up to 150% contrast enhancement was achieved at the tumor region in the T2-weighted MR images after the injection of the AptHER2-MNS agent in mice that received the NIH3T6.7 cells.
Collapse
Affiliation(s)
- Dan Heo
- Department of Radiology, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Minhee Ku
- Department of Radiology, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
- Systems Molecular Radiology at Yonsei, Seoul, 03722 Republic of Korea
| | - Jung-Hoon Kim
- Department of Radiology, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
- Systems Molecular Radiology at Yonsei, Seoul, 03722 Republic of Korea
- Brain Korea 21 plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
- Systems Molecular Radiology at Yonsei, Seoul, 03722 Republic of Korea
- Brain Korea 21 plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
- YUHS-KRIBB Medical Convergence Research Center, Yonsei University, Seoul, 03722 Republic of Korea
- Severance Biomedical Science Institute, Seoul, 03722 Republic of Korea
| | - Jin-Suck Suh
- Department of Radiology, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
- Brain Korea 21 plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
- YUHS-KRIBB Medical Convergence Research Center, Yonsei University, Seoul, 03722 Republic of Korea
- Severance Biomedical Science Institute, Seoul, 03722 Republic of Korea
| |
Collapse
|