1
|
Li L, Chen L, Yang J, Peng D, Xu T, Chen Y. Comparison of 18F-FDG and 68Ga-DOTA-IBA in detecting bone metastases: a lesion-basis study. Sci Rep 2025; 15:12766. [PMID: 40229521 PMCID: PMC11997131 DOI: 10.1038/s41598-025-97920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 04/08/2025] [Indexed: 04/16/2025] Open
Abstract
Gallium 68 (68Ga)-labeled DOTA-conjugate ibandronic acid (DOTA-IBA) has been successfully synthesized and utilized for bone metastasis imaging. This study compares the diagnostic efficacy between 68Ga-DOTA-IBA and fluorine 18 (18F)-labeled fluorodeoxyglucose (FDG) in detecting bone metastases. This prospective study, conducted from October 2022 to September 2023, analyzed images from participants who underwent 68Ga-DOTA-IBA PET/CT and 18F-FDG PET/CT scans. Lesions were classified into five groups based on anatomical location (limbs, vertebrae, pelvis, ribs, and skull). Morphological bone changes were categorized as osteolytic, osteoblastic, or mixed. The semi-quantified radiotracer uptake, measured by the maximum standardized uptake value (SUVmax), was compared using a paired t-test. Detection rates between the two scans were analyzed using the McNemar test. A total of 46 participants (median age: 64 years [interquartile range: 53-68 years], 28 men) were evaluated. 68Ga-DOTA-IBA demonstrated higher diagnostic efficacy than 18F-FDG in detecting bone metastases in the limbs (73.2% vs. 64.1%), vertebras (78.1% vs. 67.4%), ribs (86.6% vs. 62.2%), pelvis (78.6% vs. 68.9%), and skulls (80.0% vs. 38%). For osteoblastic lesions, the detection rate for 68Ga-DOTA-IBA and 18F-FDG was 83.3% and 51.5% respectively (P < 0.001). The SUVmax of 68Ga-DOTA-IBA was 7.88 (95% CI 7.09-8.66), which was higher than that of 18F-FDG at 3.96 (95% CI 3.57-4.35) (P < 0.001). In participants with prostate cancer, the detection rate of 68Ga-DOTA-IBA and 18F-FDG was 84.7% and 55.0% respectively (P < 0.001). The SUVmax of 68Ga-DOTA-IBA was 10.44 (95% CI 8.57-12.30), which was higher than that of 18F-FDG 4.29 (95% CI 3.51-5.07) (P < 0.001). 68Ga-DOTA-IBA PET/CT demonstrates superior diagnostic performance over 18F-FDG PET/CT in detecting bone metastases, particularly in osteoblastic lesions and prostate cancer cases.
Collapse
Affiliation(s)
- Linwei Li
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lingzhi Chen
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Jian Yang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Dengsai Peng
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tingting Xu
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yue Chen
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China.
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Mu X, Li J, Huang J, Wang Z, Li Z, Li X, Jiang Y, Zhou Z, Fu W. 18F-NaF uptake in skull-base bone as a predictor of treatment response in advanced nasopharyngeal carcinoma. Sci Rep 2024; 14:29501. [PMID: 39604456 PMCID: PMC11603326 DOI: 10.1038/s41598-024-81350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/26/2024] [Indexed: 11/29/2024] Open
Abstract
This study investigates the utility of 18F-sodium fluoride (18F-NaF) positron emission tomography/computed tomography (PET/CT) in assessing skull-base bone invasion (SBBI) and predicting treatment response in advanced nasopharyngeal carcinoma (NPC). A retrospective analysis was conducted on 142 patients with newly diagnosed advanced NPC who underwent 18F-NaF PET/CT for initial staging from December 2020 to December 2023. 18F-NaF PET/CT scans were analyzed for uptake values at the skull-base bone, and these were correlated with treatment outcomes of primary tumor using the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. Statistical analyses involved Mann-Whitney U tests for group comparisons and logistic regression for evaluating risk factors. Higher 18F-NaF uptake at the skull-base bone was significantly associated with advanced T stages (p < 0.0001) and the presence of bone metastases (p = 0.01). Patients exhibiting complete response (CR) to treatment had significantly lower skull-base 18F-NaF uptake compared to those with non-CR (p < 0.001). Receiver operating characteristic (ROC) analysis identified an SUVmax > 10.0 and SUVmean > 5.2 as predictive of non-CR, with AUC values of 0.77 and 0.76, respectively. Univariate and multivariable analysis confirmed SUVmax as a significant predictor of treatment response (OR = 7.03, 95% CI: 1.97-25.13, p < 0.05). Elevated 18F-NaF uptake at the skull-base bone is predictive of poorer treatment outcomes, highlighting its potential as a prognostic biomarker in advanced NPC. This study demonstrates that 18F-NaF PET/CT is a valuable imaging modality for evaluating SBBI in NPC, offering metabolic information that complements the anatomical findings from MRI.
Collapse
Affiliation(s)
- Xingyu Mu
- Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jingze Li
- Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jingquan Huang
- Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhenzhen Wang
- Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zuguo Li
- Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xun Li
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yu Jiang
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhipeng Zhou
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Wei Fu
- Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
3
|
Cruz-Montijano M, Amo-Salas M, Cassinello-Espinosa J, García-Carbonero I, Villa-Guzman JC, Garcia-Vicente AM. Predictive and Prognostic 18F-Fluorocholine PET/CT Radiomics Nomogram in Patients with Castration-Resistant Prostate Cancer with Bone Metastases Treated with 223Ra. Cancers (Basel) 2024; 16:2695. [PMID: 39123422 PMCID: PMC11312125 DOI: 10.3390/cancers16152695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
PURPOSE We aimed to develop a nomogram able to predict treatment failure, skeletal events, and overall survival (OS) in patients with castration-resistant prostate cancer with bone metastases (CRPC-BM) treated with Radium-223 dichloride (223Ra). PATIENTS AND METHODS Patients from the Castilla-La Mancha Spanish region were prospectively included in the ChoPET-Rad multicenter study from January 2015 to December 2022. Patients underwent baseline, interim, and end-of-treatment bone scintigraphy (BS) and 18F-Fluorocholine PET/CT (FCH PET/CT) scans, obtaining multiple imaging radiomics as well as clinical and biochemical variables during follow-up and studying their association with the previously defined end-points. Survival analysis was performed using the Kaplan-Meier method and Cox regression. Multivariate logistic and Cox regression models were calculated, and these models were depicted by means of nomograms. RESULTS Median progression-free survival (PFS) and OS were 4 and 14 months (mo), respectively. The variables that showed independent and significant association with therapeutic failure were baseline alkaline phosphatase (AP) levels (p = 0.022) and the characteristics of BM on the CT portion of PET/CT (p = 0.017). In the case of OS, the significant variables were therapeutic failure (p = 0.038), the number of lines received after 223Ra (p < 0.001), average SUVmax (p = 0.002), bone marrow infiltration in FCH PET/CT (p = 0.006), and interim FCH PET/CT response (p = 0.048). Final nomograms included these variables, showing good discrimination among the 100 patients included in our study. In the study of skeletal events, only OS showed a significant association in the multivariate analysis, resulting in an inconsistent nomogram design. CONCLUSIONS FCH PET/CT appears to be a good tool for evaluating patients eligible for treatment with 223Ra, as well as for their follow-up. Thus, findings derived from it, such as the morphological characteristics of BM in the CT, bone marrow infiltration, or the response to 223Ra in the interim study, have proven to be solid and useful variables in the creation of nomograms for predicting therapeutic failure and OS.
Collapse
Affiliation(s)
| | - Mariano Amo-Salas
- Mathematics Department, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | | | | | | | | |
Collapse
|
4
|
Donners R, Tunariu N, Tovey H, Hall E, Chua S, Cook G, Du Y, Blackledge MD, Parker CC, Koh DM. The value of baseline 18F-sodium fluoride and 18F-choline PET activity for identifying responders to radium-223 treatment in castration-resistant prostate cancer bone metastases. Eur Radiol 2024; 34:1146-1154. [PMID: 37615760 PMCID: PMC10853307 DOI: 10.1007/s00330-023-10172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/27/2023] [Accepted: 07/15/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVES To investigate whether baseline 18F-sodium fluoride (NaF) and 18F-choline PET activity is associated with metastatic castration-resistant prostate cancer (mCRPC) global and individual bone metastases' DWI MR imaging response to radium-223 treatment. METHODS Thirty-six bone-only mCRPC patients were prospectively recruited from three centers. Whole-body (WB)-MRI with DWI and 18F-NaF and 18F-choline PET/CT were performed at therapy baseline and 8-week intervals. In each patient, bone disease median global (g)ADC change between baseline and follow-up was calculated. Additionally, up to five bone target lesions per patient were delineated and individual median ADC change recorded. An ADC increase > 30% defined response per-patient and per-lesion. For the same targets, baseline 18F-NaF and 18F-choline PET SUVmax were recorded. Mean SUVmax across patient targets was correlated with gADC change and lesion SUVmax with per-lesion ADC change. RESULTS A total of 133 lesions in 36 patients (14 responders) were analyzed. 18F-NaF PET per-patient mean SUVmax was significantly higher in responders (median = 56.0 versus 38.7 in non-responders; p = 0.008), with positive correlation between SUVmax and gADC increase (rho = 0.42; p = 0.015). A 48.7 SUVmax threshold identified responders with 77% sensitivity and 75% specificity. Baseline 18F-NaF PET per-lesion SUVmax was higher in responding metastases (median = 51.6 versus 31.8 in non-responding metastases; p = 0.001), with positive correlation between baseline lesion SUVmax and ADC increase (rho = 0.39; p < 0.001). A 36.8 SUVmax threshold yielded 72% sensitivity and 63% specificity. No significant association was found between baseline 18F-choline PET SUVmax and ADC response on a per-patient (p = 0.164) or per-lesion basis (p = 0.921). CONCLUSION 18F-NaF PET baseline SUVmax of target mCRPC bone disease showed significant association with response to radium-223 defined by ADC change. CLINICAL RELEVANCE STATEMENT 18F-sodium fluoride PET/CT baseline maximum SUV of castration-resistant prostate cancer bone metastases could be used as a predictive biomarker for response to radium-223 therapy. KEY POINTS • 18F-sodium fluoride PET baseline SUVmax of castration-resistant prostate cancer bone metastases showed significant association with response to radium-223. • Baseline 18F-sodium fluoride PET can improve patient selection for radium-223 therapy. • Change in whole-body DWI parameters can be used for response correlation with baseline 18F-sodium fluoride PET SUVmax in castration-resistant prostate cancer bone metastases.
Collapse
Affiliation(s)
- Ricardo Donners
- Department of Radiology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | - Nina Tunariu
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
- Royal Marsden Hospital, Downs Road, Sutton, SM2 5PT, UK
| | - Holly Tovey
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Emma Hall
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Sue Chua
- Royal Marsden Hospital, Downs Road, Sutton, SM2 5PT, UK
| | - Gary Cook
- King's College London and Guy's and St. Thomas' PET Centre, St. Thomas' Hospital, King's College London, Westminster Bridge Rd, London, UK
| | - Yong Du
- Royal Marsden Hospital, Downs Road, Sutton, SM2 5PT, UK
| | | | - Christopher C Parker
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
- Royal Marsden Hospital, Downs Road, Sutton, SM2 5PT, UK
| | - Dow-Mu Koh
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
- Royal Marsden Hospital, Downs Road, Sutton, SM2 5PT, UK
| |
Collapse
|
5
|
Pijeira MSO, Nunes PSG, Chaviano SL, Diaz AMA, DaSilva JN, Ricci-Junior E, Alencar LMR, Chen X, Santos-Oliveira R. Medicinal (Radio) Chemistry: Building Radiopharmaceuticals for the Future. Curr Med Chem 2024; 31:5481-5534. [PMID: 37594105 DOI: 10.2174/0929867331666230818092634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Radiopharmaceuticals are increasingly playing a leading role in diagnosing, monitoring, and treating disease. In comparison with conventional pharmaceuticals, the development of radiopharmaceuticals does follow the principles of medicinal chemistry in the context of imaging-altered physiological processes. The design of a novel radiopharmaceutical has several steps similar to conventional drug discovery and some particularity. In the present work, we revisited the insights of medicinal chemistry in the current radiopharmaceutical development giving examples in oncology, neurology, and cardiology. In this regard, we overviewed the literature on radiopharmaceutical development to study overexpressed targets such as prostate-specific membrane antigen and fibroblast activation protein in cancer; β-amyloid plaques and tau protein in brain disorders; and angiotensin II type 1 receptor in cardiac disease. The work addresses concepts in the field of radiopharmacy with a special focus on the potential use of radiopharmaceuticals for nuclear imaging and theranostics.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
| | - Paulo Sérgio Gonçalves Nunes
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas SP13083-970, Brazil
| | - Samila Leon Chaviano
- Laboratoire de Biomatériaux pour l'Imagerie Médicale, Axe Médicine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada
| | - Aida M Abreu Diaz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Eduardo Ricci-Junior
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís MA65080-805, Brazil
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| |
Collapse
|
6
|
Koa B, Raynor WY, Park PSU, Borja AJ, Singhal S, Kuang A, Zhang V, Werner TJ, Alavi A, Revheim ME. Feasibility of Global Assessment of Bone Metastases in Prostate Cancer with 18F-Sodium Fluoride-PET/Computed Tomography. PET Clin 2022; 17:631-640. [DOI: 10.1016/j.cpet.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Prognostic Value of the BIO-Ra Score in Metastatic Castration-Resistant Prostate Cancer Patients Treated with Radium-223 after the European Medicines Agency Restricted Use: Secondary Investigations of the Multicentric BIO-Ra Study. Cancers (Basel) 2022; 14:cancers14071744. [PMID: 35406515 PMCID: PMC8996965 DOI: 10.3390/cancers14071744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
The multicentric retrospective BIO-Ra study combined inflammatory indices from peripheral blood and clinical factors in a composite prognostic score for metastatic castration-resistant prostate cancer patients receiving Radium-223 (Ra-223). In the present study, we evaluated (i) the prognostic power of the BIO-Ra score in the framework of the restricted use of Ra-223 promoted by the European Medicines Agency in 2018; (ii) the treatment completion prediction of the BIO-Ra score. Four hundred ninety-four patients from the BIO-Ra cohort were divided into three risk classes according to the BIO-Ra score to predict the treatment completion rate (p < 0.001 among all the three groups). Patients receiving Ra-223 after restriction (89/494) were at later stages of the disease compared with the pre-restriction cohort (405/494), as a higher percentage of BIO-Ra high-risk classes (46.1% vs. 34.6%) and lower median Overall survival (12.4 vs. 23.7 months, p < 0.001) was observed. Despite this clinically relevant difference, BIO-Ra classes still predicted divergent treatment completion rates in the post-restriction subgroup (72%, 52.2%, and 46.3% of patients belonging to low-, intermediate-, and high-risk classes, respectively). Although the restricted use has increased patients at higher risk with unfavourable outcome after Ra-223 treatment, the BIO-Ra score maintains its prognostic value.
Collapse
|
8
|
Borea R, Favero D, Miceli A, Donegani MI, Raffa S, Gandini A, Cremante M, Marini C, Sambuceti G, Zanardi E, Morbelli S, Fornarini G, Rebuzzi SE, Bauckneht M. Beyond the Prognostic Value of 2-[ 18F]FDG PET/CT in Prostate Cancer: A Case Series and Literature Review Focusing on the Diagnostic Value and Impact on Patient Management. Diagnostics (Basel) 2022; 12:581. [PMID: 35328134 PMCID: PMC8947589 DOI: 10.3390/diagnostics12030581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022] Open
Abstract
The role of 2-deoxy-2-[18F]fluoro-D-glucose Positron Emission Tomography/Computed Tomography (FDG PET/CT) in the management of prostate cancer (PCa) patients is increasingly recognised. However, its clinical role is still controversial. Many published studies showed that FDG PET/CT might have a prognostic value in the metastatic castration-resistant phase of the disease, but its role in other settings of PCa and, more importantly, its impact on final clinical management remains to be further investigated. We describe a series of six representative clinical cases of PCa in different clinical settings, but all characterised by a measurable clinical impact of FDG PET/CT on the patients' management. Starting from their clinical history, we report a concise narrative literature review on the advantages and limitations of FDG PET/CT beyond its prognostic value in PCa. What emerges is that in selected cases, this imaging technique may represent a useful tool in managing PCa patients. However, in the absence of dedicated studies to define the optimal clinical setting of its application, no standard recommendations on its use in PCa patients can be made.
Collapse
Affiliation(s)
- Roberto Borea
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, 16132 Genova, Italy
| | - Diletta Favero
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, 16132 Genova, Italy
- Medical Oncology Unit 2, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Alberto Miceli
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Maria Isabella Donegani
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Stefano Raffa
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Annalice Gandini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, 16132 Genova, Italy
| | - Malvina Cremante
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, 16132 Genova, Italy
| | - Cecilia Marini
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- CNR Institute of Molecular Bioimaging and Physiology (IBFM), 20054 Segrate, Italy
| | - Gianmario Sambuceti
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Elisa Zanardi
- Academic Unit of Medical Oncology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Silvia Morbelli
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Giuseppe Fornarini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sara Elena Rebuzzi
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, 16132 Genova, Italy
- Medical Oncology Unit, Ospedale San Paolo, 17100 Savona, Italy
| | - Matteo Bauckneht
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
9
|
Kairemo K, Macapinlac HA. Oncology, bone metastases. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Paravastu SS, Hasani N, Farhadi F, Collins MT, Edenbrandt L, Summers RM, Saboury B. Applications of Artificial Intelligence in 18F-Sodium Fluoride Positron Emission Tomography/Computed Tomography:: Current State and Future Directions. PET Clin 2021; 17:115-135. [PMID: 34809861 DOI: 10.1016/j.cpet.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This review discusses the current state of artificial intelligence (AI) in 18F-NaF-PET/CT imaging and the potential applications to come in diagnosis, prognostication, and improvement of care in patients with bone diseases, with emphasis on the role of AI algorithms in CT bone segmentation, relying on their prevalence in medical imaging and utility in the extraction of spatial information in combined PET/CT studies.
Collapse
Affiliation(s)
- Sriram S Paravastu
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), 30 Convent Dr., Building 30, Room 228 MSC 4320, Bethesda, MD 20892, USA
| | - Navid Hasani
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; University of Queensland Faculty of Medicine, Ochsner Clinical School, New Orleans, LA 70121, USA
| | - Faraz Farhadi
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), 30 Convent Dr., Building 30, Room 228 MSC 4320, Bethesda, MD 20892, USA
| | - Lars Edenbrandt
- Department of Clinical Physiology, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Ronald M Summers
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland- Baltimore County, Baltimore, MD, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Roy J, White ME, Basuli F, Opina ACL, Wong K, Riba M, Ton AT, Zhang X, Jansson KH, Edmondson E, Butcher D, Lin FI, Choyke PL, Kelly K, Jagoda EM. Monitoring PSMA Responses to ADT in Prostate Cancer Patient-Derived Xenograft Mouse Models Using [ 18F]DCFPyL PET Imaging. Mol Imaging Biol 2021; 23:745-755. [PMID: 33891265 PMCID: PMC9910584 DOI: 10.1007/s11307-021-01605-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE PSMA overexpression has been associated with aggressive prostate cancer (PCa). However, PSMA PET imaging has revealed highly variable changes in PSMA expression in response to ADT treatment ranging from increases to moderate decreases. To better understand these PSMA responses and potential relationship to progressive PCa, the PET imaging agent, [18F]DCFPyL, was used to assess changes in PSMA expression in response to ADT using genomically characterized LuCaP patient-derived xenograft mouse models (LuCaP-PDXs) which were found to be sensitive to ADT (LuCaP73 and LuCaP136;CS) or resistant (LuCaP167;CR). METHODS [18F]DCFPyL (2-(3-{1-carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid) was used to assess PSMA in vitro (saturation assays) in LuCaP tumor membrane homogenates and in vivo (imaging/biodistribution) in LuCaP-PDXs. Control and ADT-treated LuCaPs were imaged before ADT (0 days) and 2-, 7-, 14-, and 21-days post-ADT from which tumor:muscle ratios (T:Ms) were determined and concurrently tumor volumes were measured (caliper). After the 21-day imaging, biodistributions and histologic/genomic (PSMA, AR) analysis were done. RESULTS [18F]DCFPyL exhibited high affinity for PSMA and distinguished different levels of PSMA in LuCaP tumors. Post-ADT CS LuCaP73 and LuCaP136 tumor volumes significantly decreased at day 7 or 14 respectively vs controls, whereas the CR LuCaP167 tumor volumes were minimally changed. [18F]DCFPyL imaging T:Ms were increased 3-5-fold in treated LuCaP73 tumors vs controls, while treated LuCaP136 T:Ms remained unchanged which was confirmed by day 21 biodistribution results. For treated LuCaP167, T:Ms were decreased (~ 45 %) vs controls but due to low T:M values (<2) may not be indicative of PSMA level changes. LuCaP73 tumor PSMA histologic/genomic results were comparable to imaging/biodistribution results, whereas the results for other tumor types varied. CONCLUSION Tumor responses to ADT varied from sensitive to resistant among these LuCaP PDXs, while only the high PSMA expressing LuCaP model exhibited an increase in PSMA levels in response to ADT. These models may be useful in understanding the clinical relevance of PSMA PET responses to ADT and potentially the relationship to disease progression as it may relate to the genomic signature.
Collapse
Affiliation(s)
- Jyoti Roy
- Molecular Imaging Program, NCI/NIH, Center for Cancer Research, National Cancer Institute, Building 10, Room B3B406, Bethesda, MD, 20892, USA
| | - Margaret E. White
- Laboratory of Genitourinary Cancer Pathogenesis NCI/NIH, Bethesda, MD, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, NHLBI/NIH, Rockville, MD, USA
| | | | - Karen Wong
- Molecular Imaging Program, NCI/NIH, Center for Cancer Research, National Cancer Institute, Building 10, Room B3B406, Bethesda, MD, 20892, USA
| | - Morgan Riba
- Laboratory of Genitourinary Cancer Pathogenesis NCI/NIH, Bethesda, MD, USA
| | - Anita T. Ton
- Molecular Imaging Program, NCI/NIH, Center for Cancer Research, National Cancer Institute, Building 10, Room B3B406, Bethesda, MD, 20892, USA
| | - Xiang Zhang
- Chemistry and Synthesis Center, NHLBI/NIH, Rockville, MD, USA
| | - Keith H. Jansson
- Laboratory of Genitourinary Cancer Pathogenesis NCI/NIH, Bethesda, MD, USA
| | - Elijah Edmondson
- Pathology/Histotechnology Laboratory, Leidos, Inc./Frederick National Laboratory for Cancer Research, NCI, Frederick, MD, USA
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos, Inc./Frederick National Laboratory for Cancer Research, NCI, Frederick, MD, USA
| | - Frank I. Lin
- Molecular Imaging Program, NCI/NIH, Center for Cancer Research, National Cancer Institute, Building 10, Room B3B406, Bethesda, MD, 20892, USA
| | - Peter L. Choyke
- Molecular Imaging Program, NCI/NIH, Center for Cancer Research, National Cancer Institute, Building 10, Room B3B406, Bethesda, MD, 20892, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis NCI/NIH, Bethesda, MD, USA
| | - Elaine M. Jagoda
- Molecular Imaging Program, NCI/NIH, Center for Cancer Research, National Cancer Institute, Building 10, Room B3B406, Bethesda, MD, 20892, USA
| |
Collapse
|
12
|
Benabdallah N, Scheve W, Dunn N, Silvestros D, Schelker P, Abou D, Jammalamadaka U, Laforest R, Li Z, Liu J, Ballard DH, Maughan NM, Gay H, Baumann BC, Hobbs RF, Rogers B, Iravani A, Jha AK, Dehdashti F, Thorek DLJ. Practical considerations for quantitative clinical SPECT/CT imaging of alpha particle emitting radioisotopes. Theranostics 2021; 11:9721-9737. [PMID: 34815780 PMCID: PMC8581409 DOI: 10.7150/thno.63860] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/15/2021] [Indexed: 02/05/2023] Open
Abstract
Rationale: Alpha particle emitting radiopharmaceuticals are generating considerable interest for the treatment of disseminated metastatic disease. Molecular imaging of the distribution of these agents is critical to safely and effectively maximize the clinical potential of this emerging drug class. The present studies aim to investigate the feasibility and limitations of quantitative SPECT for 223Ra, 225Ac and 227Th. Methods: Three state-of-the-art SPECT/CT systems were investigated: the GE Discovery NM/CT 670, the GE Optima NM/CT 640, and the Siemens Symbia T6. A series of phantoms, including the NEMA IEC Body phantom, were used to compare and calibrate each camera. Additionally, anthropomorphic physical tumor and vertebrae phantoms were developed and imaged to evaluate the quantitative imaging protocol. Results: This work describes and validates a methodology to calibrate each clinical system. The efficiency of each gamma camera was analyzed and compared. Using the calibration factors obtained with the NEMA phantom, we were able to quantify the activity in 3D-printed tissue phantoms with an error of 2.1%, 3.5% and 11.8% for 223Ra, 225Ac, and 227Th, respectively. Conclusion: The present study validates that quantitative SPECT/CT imaging of 223Ra, 225Ac, and 227Th is achievable but that careful considerations for camera configuration are required. These results will aid in future implementation of SPECT-based patient studies and will help to identify the limiting factors for accurate image-based quantification with alpha particle emitting radionuclides.
Collapse
Affiliation(s)
- Nadia Benabdallah
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | - Diane Abou
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, Missouri
| | - Uday Jammalamadaka
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Richard Laforest
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Zekun Li
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Jonathan Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - David H. Ballard
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Nichole M. Maughan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Hiram Gay
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Brian C. Baumann
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Robert F. Hobbs
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Buck Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Amir Iravani
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Abhinav K. Jha
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
- Oncologic Imaging Program, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Farrokh Dehdashti
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Oncologic Imaging Program, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel L. J. Thorek
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- Oncologic Imaging Program, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
13
|
van der Zande K, Oyen WJG, Zwart W, Bergman AM. Radium-223 Treatment of Patients with Metastatic Castration Resistant Prostate Cancer: Biomarkers for Stratification and Response Evaluation. Cancers (Basel) 2021; 13:cancers13174346. [PMID: 34503156 PMCID: PMC8431634 DOI: 10.3390/cancers13174346] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Radium-223 dichloride ([223Ra]RaCl2; Ra-223) is an alpha-emitting radiopharmaceutical treatment for patients with metastatic castration resistant prostate cancer (mCRPC) with predominantly bone metastases. While responses to chemotherapeutic and antihormonal mCRPC treatments can be assessed by serum PSA levels, a decrease of serum PSA levels is not expected during Ra-223 therapy. Moreover, radiographic evaluation of bone metastases response is challenging. Therefore, novel biomarkers to select patients for Ra-223 treatment and monitoring response are urgently needed. In this review, we discuss the currently used and exploratory biomarkers for this purpose, including soluble and cellular factors detected in the peripheral blood, genetic defects and radiographic assessments. We conclude that some biomarkers, including metabolic products of collagen degradation and novel PET scan techniques, might hold promise as predictors of response to Ra-223 treatment. However, these biomarkers have not been extensively studied. Consequently, currently, no biomarker has established a place in patient stratification and response evaluation. Abstract Radium-223 dichloride ([223Ra]RaCl2; Ra-223) is a targeted alpha-emitting radiopharmaceutical which results in an overall survival and health related quality of life (HRQoL) benefit in symptomatic patients with metastatic castration resistant prostate cancer (mCRPC) and predominantly bone metastasis. Although effective, options to select patients who will derive treatment benefit and to monitor and predict treatment outcomes are limited. PSA response and radiographic evaluation are commonly used in mCRPC treatment assessment but are not informative in Ra-223 treated patients. Consequently, there is a clear need for predictive and prognostic tools. In this review, we discuss the physiology of bone metastases and the mechanism of action and efficacy of Ra-223 treatment, as well as offering an outline of current innovative prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Kim van der Zande
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands;
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Wim J. G. Oyen
- Department of Nuclear Medicine, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, The Netherlands;
| | - Wilbert Zwart
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Correspondence: (W.Z.); (A.M.B.); Tel.: +31-2051-28156 (W.Z.); +31-2051-22569 (A.M.B.)
| | - Andries M. Bergman
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands;
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Correspondence: (W.Z.); (A.M.B.); Tel.: +31-2051-28156 (W.Z.); +31-2051-22569 (A.M.B.)
| |
Collapse
|
14
|
Phelps TE, Roy J, Green MV, Seidel J, Baidoo KE, Adler S, Edmondson EF, Butcher D, Matta JL, Ton AT, Wong K, Huang S, Ren L, LeBlanc AK, Choyke PL, Jagoda EM. Sodium Fluoride-18 and Radium-223 Dichloride Uptake Colocalize in Osteoblastic Mouse Xenograft Tumors. Cancer Biother Radiopharm 2021; 36:133-142. [PMID: 33646017 DOI: 10.1089/cbr.2020.4068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Patients with osteoblastic bone metastases are candidates for radium-223 (223RaCl2) therapy and may undergo sodium fluoride-18 (18F-NaF) positron emission tomography-computed tomography imaging to identify bone lesions. 18F-NaF has been shown to predict 223RaCl2 uptake, but intratumor distributions of these two agents remain unclear. In this study, the authors evaluate the spatial distribution and relative uptakes of 18F-NaF and 223RaCl2 in Hu09-H3 human osteosarcoma mouse xenograft tumors at macroscopic and microscopic levels to better quantify their correlation. Materials and Methods: 18F-NaF and 223RaCl2 were co-injected into Hu09-H3 xenograft tumor severe combined immunodeficient mice. Tumor content was determined from in vivo biodistributions and visualized by PET, single photon emission computed tomography, and CT imaging. Intratumor distributions were visualized by quantitative autoradiography of tumor tissue sections and compared to histology of the same or adjacent sections. Results: 18F and 223Ra accumulated in proportional amounts in whole Hu09-H3 tumors (r2 = 0.82) and in microcalcified regions within these tumors (r2 = 0.87). Intratumor distributions of 18F and 223Ra were spatially congruent in these microcalcified regions. Conclusions: 18F-NaF and 223RaCl2 uptake are strongly correlated in heterogeneously distributed microcalcified regions of Hu09-H3 xenograft tumors, and thus, tumor accumulation of 18F is predictive of 223Ra accumulation. Hu09-H3 xenograft tumors appear to possess certain histopathological features found in patients with metastatic bone disease and may be useful in clarifying the relationship between administered 223Ra dose and therapeutic effect.
Collapse
Affiliation(s)
- Tim E Phelps
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jyoti Roy
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael V Green
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Bethesda, Maryland, USA
| | - Jurgen Seidel
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Bethesda, Maryland, USA
| | - Kwamena E Baidoo
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen Adler
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Bethesda, Maryland, USA
| | - Elijah F Edmondson
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland, USA
| | - Donna Butcher
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland, USA
| | - Jennifer L Matta
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland, USA
| | - Anita T Ton
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Karen Wong
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shan Huang
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ling Ren
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Amy K LeBlanc
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter L Choyke
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elaine M Jagoda
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Gerke O, Ehlers K, Motschall E, Høilund-Carlsen PF, Vach W. PET/CT-Based Response Evaluation in Cancer-a Systematic Review of Design Issues. Mol Imaging Biol 2021; 22:33-46. [PMID: 31016638 DOI: 10.1007/s11307-019-01351-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Positron emission tomography/x-ray computed tomography (PET/CT) has long been discussed as a promising modality for response evaluation in cancer. When designing respective clinical trials, several design issues have to be addressed, especially the number/timing of PET/CT scans, the approach for quantifying metabolic activity, and the final translation of measurements into a rule. It is unclear how well these issues have been tackled in quest of an optimised use of PET/CT in response evaluation. Medline via Ovid and Science Citation Index via Web of Science were systematically searched for articles from 2015 on cancer patients scanned with PET/CT before and during/after treatment. Reports were categorised as being either developmental or evaluative, i.e. focusing on either the establishment or the evaluation of a rule discriminating responders from non-responders. Of 124 included papers, 112 (90 %) were accuracy and/or prognostic studies; the remainder were response-curve studies. No randomised controlled trials were found. Most studies were prospective (62 %) and from single centres (85 %); median number of patients was 38.5 (range 5-354). Most (69 %) of the studies employed only one post-baseline scan. Quantification was mainly based on SUVmax (91 %), while change over time was most frequently used to combine measurements into a rule (79 %). Half of the reports were categorised as developmental, the other half evaluative. Most development studies assessed only one element (35/62, 56 %), most frequently the choice of cut-off points (25/62, 40 %). In summary, the majority of studies did not address the essential open issues in establishing PET/CT for response evaluation. Reasonably sized multicentre studies are needed to systematically compare the many different options when using PET/CT for response evaluation.
Collapse
Affiliation(s)
- Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark. .,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Karen Ehlers
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Edith Motschall
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Werner Vach
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
16
|
Zirakchian Zadeh M, Østergaard B, Raynor WY, Revheim ME, Seraj SM, Acosta-Montenegro O, Ayubcha C, Yellanki DP, Al-Zaghal A, Nielsen AL, Constantinescu CM, Gerke O, Werner TJ, Zhuang H, Abildgaard N, Høilund-Carlsen PF, Alavi A. Comparison of 18F-sodium fluoride uptake in the whole bone, pelvis, and femoral neck of multiple myeloma patients before and after high-dose therapy and conventional-dose chemotherapy. Eur J Nucl Med Mol Imaging 2020; 47:2846-2855. [DOI: 10.1007/s00259-020-04768-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
|
17
|
Benabdallah N, Bernardini M, Bianciardi M, de Labriolle-Vaylet C, Franck D, Desbrée A. 223Ra-dichloride therapy of bone metastasis: optimization of SPECT images for quantification. EJNMMI Res 2019; 9:20. [PMID: 30790144 PMCID: PMC6384291 DOI: 10.1186/s13550-019-0488-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND 223Ra imaging is crucial to evaluate the successfulness of the therapy of bone metastasis of castration-resistant prostate cancer (CRPC). The goals of this study were to establish a quantitative tomographic 223Ra imaging protocol with clinically achievable conditions, as well as to investigate its usefulness and limitations. We performed several experiments using the Infinia Hawkeye 4 gamma camera (GE) and physical phantoms in order to assess the optimal image acquisition and reconstruction parameters, such as the windows setting, as well as the iteration number and filter of the reconstruction algorithm. Then, based on the MIRD pamphlet 23, we used a NEMA phantom and an anthropomorphic TORSO® phantom to calibrate the gamma camera and investigate the accuracy of quantification. RESULTS Experiences showed that the 85 keV ± 20%, 154 keV ± 10%, and 270 keV ± 10% energy windows are the most suitable for 223Ra imaging. The study with the NEMA phantom showed that the OSEM algorithm with 2 iterations, 10 subsets, and the Butterworth filter offered the best compromise between contrast and noise. Moreover, the calibration factors for different sphere sizes (26.5 ml, 11.5 ml, and 5.6 ml) were constant for 223Ra concentrations ranging between 6.5 and 22.8 kBq/ml. The values found are 73.7 cts/s/MBq, 43.8 cts/s/MBq, and 43.4 cts/s/MBq for 26.5 ml, 11.5 ml, and 5.6 ml sphere, respectively. For concentration lower than 6.5 kBq/ml, the calibration factors exhibited greater variability pointing out the limitations of SPECT/CT imaging for quantification. By the use of a TORSO® phantom, we simulated several tumors to normal tissue ratios as close as possible to clinical conditions. Using the calibration factors obtained with the NEMA phantom, for 223Ra concentrations higher than 8 kBq/ml, we were able to quantify the activity with an error inferior to 18.8% in a 5.6 ml lesion. CONCLUSIONS Absolute quantitative 223Ra SPECT imaging appears feasible once the dimension of the target is determined. Further evaluation should be needed to apply the calibration factor-based quantitation to clinical 223Ra SPECT/CT imaging. This will open the possibility for patient-specific 223Ra treatment planning and therapeutic outcome prediction in patients.
Collapse
Affiliation(s)
- Nadia Benabdallah
- Internal Dose Assessment Laboratory, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Michela Bernardini
- Nuclear Medicine Department, European Hospital George Pompidou (HEGP), Paris, France
| | - Marta Bianciardi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Claire de Labriolle-Vaylet
- UPMC, Univ Paris 06 Biophysics, Paris, France
- Nuclear Medicine Department, Trousseau Hospital, Paris, France
| | - Didier Franck
- Internal Dose Assessment Laboratory, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Aurélie Desbrée
- Internal Dose Assessment Laboratory, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|