1
|
Bailly M, Dupont AC, Domain G, Darsin-Bettinger D, Courtehoux M, Metrard G, Manrique A, Vigne J. Gallium-Labeled PET Radiopharmaceuticals in Cardiovascular Disease. Pharmaceuticals (Basel) 2025; 18:387. [PMID: 40143163 PMCID: PMC11945516 DOI: 10.3390/ph18030387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Gallium-labeled positron emission tomography (PET) probes targeting activated fibroblasts or somatostatin receptor expression are frequently used for varying applications in oncology. With the widespread availability of 68Ge/68Ga generators and cold kits, 68Ga tracers have become a main tool in molecular imaging. These tracers, such as [68Ga]Ga-DOTA-TATE, [68Ga]Ga-FAPI, and [68Ga]Ga-pentixafor, allow targeted imaging of the key pathological processes, including inflammation, fibrosis, and necrosis. This review highlights their potential in conditions like myocardial infarction, cardiac sarcoidosis, myocarditis, and other cardiomyopathies. Clinical and preclinical studies underscore their utility in visualizing active disease processes, predicting outcomes, and guiding therapeutic strategies. However, challenges remain, including the need for standardization, larger clinical trials, and integration into routine practice. These advancements position 68Ga-based PET as a promising modality for enhancing diagnostic precision and personalized treatment in cardiovascular disease.
Collapse
Affiliation(s)
- Matthieu Bailly
- Nuclear Medicine Department, CHU Orleans, 45100 Orléans, France; (D.D.-B.); (G.M.)
- Laboratoire Interdisciplinaire pour l’Innovation et la Recherche en Santé d’Orléans, Orleans University, 45100 Orléans, France
| | - Anne Claire Dupont
- Nuclear Medicine Department, CHU Tours, 37000 Tours, France; (A.C.D.); (M.C.)
| | | | | | - Maxime Courtehoux
- Nuclear Medicine Department, CHU Tours, 37000 Tours, France; (A.C.D.); (M.C.)
| | - Gilles Metrard
- Nuclear Medicine Department, CHU Orleans, 45100 Orléans, France; (D.D.-B.); (G.M.)
- Laboratoire Interdisciplinaire pour l’Innovation et la Recherche en Santé d’Orléans, Orleans University, 45100 Orléans, France
| | - Alain Manrique
- Nuclear Medicine Department, CHU Caen, 14000 Caen, France; (A.M.); (J.V.)
| | - Jonathan Vigne
- Nuclear Medicine Department, CHU Caen, 14000 Caen, France; (A.M.); (J.V.)
| |
Collapse
|
2
|
Maes L, Versweyveld L, Evans NR, McCabe JJ, Kelly P, Van Laere K, Lemmens R. Novel Targets for Molecular Imaging of Inflammatory Processes of Carotid Atherosclerosis: A Systematic Review. Semin Nucl Med 2024; 54:658-673. [PMID: 37996309 DOI: 10.1053/j.semnuclmed.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Computed tomography angiography (CTA), magnetic resonance angiography (MRA) and 18F-FDG-PET have proven clinical value when evaluating patients with carotid atherosclerosis. In this systematic review, we will focus on the role of novel molecular imaging tracers in that assessment and their potential strengths to stratify stroke risk. We systematically searched PubMed, Embase, the Web of Science Core Collection, and Cochrane Library for articles reporting on molecular imaging to noninvasively detect or characterize inflammation in carotid atherosclerosis. As our focus was on nonclassical novel targets, we omitted reports solely on 18F-FDG and 18F-NaF. We summarized and mapped the selected studies to provide an overview of the current clinical development in molecular imaging in relation to risk factors, imaging and histological findings, diagnostic and prognostic performance. We identified 20 articles in which the utilized tracers to visualize carotid wall inflammation were somatostatin subtype-2- (SST2-) (n = 5), CXC-motif chemokine receptor 4- (CXCR4-) (n = 3), translocator protein- (TSPO-) (n = 2) and aVβ3 integrin-ligands (n = 2) and choline-tracers (n = 2). Tracer uptake correlated with traditional cardiovascular risk factors, that is, age, gender, diabetes, hypercholesterolemia, and hypertension as well as prior cardiovascular disease. We identified discrepancies between tracer uptake and grade of stenosis, plaque calcification, and 18F-FDG uptake, suggesting the importance of alternative characterization of atherosclerosis beyond classical neuroimaging features. Immunohistochemical analysis linked tracer uptake to markers of macrophage infiltration and neovascularization. Symptomatic carotid arteries showed higher uptake compared to asymptomatic (including contralateral, nonculprit) arteries. Some studies demonstrated a potential role of these novel molecular imaging as a specific intermediary (bio)marker for outcome. Several novel tracers show promise for identification of high-risk plaque inflammation. Based on the current evidence we cautiously propose the SST2-ligands and the choline radiotracers as viable candidates for larger prospective longitudinal outcome studies to evaluate their predictive use in clinical practice.
Collapse
Affiliation(s)
- Louise Maes
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Department of Neurosciences, Experimental Neurology, KULeuven - University of Leuven, Leuven, Belgium.
| | - Louis Versweyveld
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Department of Neurosciences, Experimental Neurology, KULeuven - University of Leuven, Leuven, Belgium
| | - Nicholas R Evans
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John J McCabe
- Health Research Board (HRB), Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland; School of Medicine, University College Dublin (UCD), Dublin, Ireland; Department of Geriatric Medicine, Mater Misericordiae University Hospital Dublin, Dublin, Ireland
| | - Peter Kelly
- Health Research Board (HRB), Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland; School of Medicine, University College Dublin (UCD), Dublin, Ireland; Mater Misericordiae University Hospital Dublin, Stroke Service, Dublin, Ireland
| | - Koen Van Laere
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Imaging and Pathology, KULeuven - University of Leuven - Nuclear Medicine and Molecular Imaging, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Department of Neurosciences, Experimental Neurology, KULeuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Martínez-Parra L, Piñol-Cancer M, Sanchez-Cano C, Miguel-Coello AB, Di Silvio D, Gomez AM, Uriel C, Plaza-García S, Gallego M, Pazos R, Groult H, Jeannin M, Geraki K, Fernández-Méndez L, Urkola-Arsuaga A, Sánchez-Guisado MJ, Carrillo-Romero J, Parak WJ, Prato M, Herranz F, Ruiz-Cabello J, Carregal-Romero S. A Comparative Study of Ultrasmall Calcium Carbonate Nanoparticles for Targeting and Imaging Atherosclerotic Plaque. ACS NANO 2023; 17:13811-13825. [PMID: 37399106 PMCID: PMC10900527 DOI: 10.1021/acsnano.3c03523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Atherosclerosis is a complex disease that can lead to life-threatening events, such as myocardial infarction and ischemic stroke. Despite the severity of this disease, diagnosing plaque vulnerability remains challenging due to the lack of effective diagnostic tools. Conventional diagnostic protocols lack specificity and fail to predict the type of atherosclerotic lesion and the risk of plaque rupture. To address this issue, technologies are emerging, such as noninvasive medical imaging of atherosclerotic plaque with customized nanotechnological solutions. Modulating the biological interactions and contrast of nanoparticles in various imaging techniques, including magnetic resonance imaging, is possible through the careful design of their physicochemical properties. However, few examples of comparative studies between nanoparticles targeting different hallmarks of atherosclerosis exist to provide information about the plaque development stage. Our work demonstrates that Gd (III)-doped amorphous calcium carbonate nanoparticles are an effective tool for these comparative studies due to their high magnetic resonance contrast and physicochemical properties. In an animal model of atherosclerosis, we compare the imaging performance of three types of nanoparticles: bare amorphous calcium carbonate and those functionalized with the ligands alendronate (for microcalcification targeting) and trimannose (for inflammation targeting). Our study provides useful insights into ligand-mediated targeted imaging of atherosclerosis through a combination of in vivo imaging, ex vivo tissue analysis, and in vitro targeting experiments.
Collapse
Affiliation(s)
- Lydia Martínez-Parra
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
| | - Marina Piñol-Cancer
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Carlos Sanchez-Cano
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
| | - Ana B Miguel-Coello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Desirè Di Silvio
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Ana M Gomez
- Instituto de Química Orgánica General, IQOG-CSIC, 28006 Madrid, Spain
| | - Clara Uriel
- Instituto de Química Orgánica General, IQOG-CSIC, 28006 Madrid, Spain
| | - Sandra Plaza-García
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Marta Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Raquel Pazos
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Hugo Groult
- Biotechnologies et Chimie des Bioressources pour la Santé, Littoral Environment et Sociétés (LIENSs Laboratory), UMR CNRS 7266, 17000 La Rochelle, France
| | - Marc Jeannin
- Laboratoire des Sciences de l'Ingénieur pour l'Environnement (LaSIE), UMR-CNRS 7536, La Rochelle Université, 7356 La Rochelle, France
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Laura Fernández-Méndez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Ainhize Urkola-Arsuaga
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - María Jesús Sánchez-Guisado
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Juliana Carrillo-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Basque Res & Technol Alliance BRTA, GAIKER, Technol Ctr, 48170 Zamudio, Spain
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Fernando Herranz
- NanoMedMol, Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid 28006, Spain
| | - Jesús Ruiz-Cabello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Susana Carregal-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
4
|
Dai Y, Sha X, Song X, Zhang X, Xing M, Liu S, Xu K, Li J. Targeted Therapy of Atherosclerosis Vulnerable Plaque by ROS-Scavenging Nanoparticles and MR/Fluorescence Dual-Modality Imaging Tracing. Int J Nanomedicine 2022; 17:5413-5429. [PMID: 36419720 PMCID: PMC9677925 DOI: 10.2147/ijn.s371873] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose Early diagnosis and treatment of atherosclerosis (AS) vulnerable plaque has important clinical significance for the prognosis of patients. In this work, the integrated diagnosis and treatment nanoparticles based on Gd-doped Prussian blue (GPB) were constructed for the fluorescence/MR dual-mode imaging and anti-ROS treatment of vulnerable AS plaques in vitro and in vivo. Methods To fabricate the theranostic NPs, GPB was modified with water-soluble polymer polyethyleneimine (PEI), fluorescence molecule rhodamine (Rd), and targeted molecule dextran sulfate (DS) step by step via electrostatic adsorption to construct GPRD NPs. The fluorescence/MR imaging ability and various nano-enzymes activity of GPRD NPs were detected, and the biocompatibility and safety of GPRD were also evaluated. Subsequently, RAW264.7 cells and ApoE -/- model mice were used to evaluate the effect of GPRD NPs on the targeted dual-mode imaging and anti-ROS treatment of vulnerable plaque in vitro and in vivo. Results The experimental results showed that our fabricated GPRD NPs not only displayed excellent MR/fluorescence dual-modality imaging of vulnerable plaque in vivo but also effectively utilized the nano-enzyme activity of GPB to inhibit the AS progress by ROS scavenging and the following reduction of inflammation, apoptosis, and foam cells’ formation, providing a new avenue for the diagnosis and treatment of AS vulnerable plaque. Conclusion The fabricated multimodal imaging nanoparticles with ROS-scavenging ability provided a new avenue for the diagnosis and treatment of AS vulnerable plaques.
Collapse
Affiliation(s)
- Yue Dai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People’s Republic of China
| | - Xuan Sha
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
| | - Xiaoxi Song
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
| | - Xiuli Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People’s Republic of China
| | - Mengyuan Xing
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
| | - Siwen Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People’s Republic of China
- Correspondence: Kai Xu; Jingjing Li, Email ;
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People’s Republic of China
| |
Collapse
|
5
|
Automatic Quantification of Atherosclerosis in Contrast-Enhanced MicroCT Scans of Mouse Aortas Ex Vivo. Int J Biomed Imaging 2021; 2021:4998786. [PMID: 34594369 PMCID: PMC8478544 DOI: 10.1155/2021/4998786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Objective While microCT evaluation of atherosclerotic lesions in mice has been formally validated, existing image processing methods remain undisclosed. We aimed to develop and validate a reproducible image processing workflow based on phosphotungstic acid-enhanced microCT scans for the volumetric quantification of atherosclerotic lesions in entire mouse aortas. Approach and Results. 42 WT and 42 apolipoprotein E knockout mouse aortas were scanned. The walls, lumen, and plaque objects were segmented using dual-threshold algorithms. Aortic and plaque volumes were computed by voxel counting and lesion surface by triangulation. The results were validated against manual and histological evaluations. Knockout mice had a significant increase in plaque volume compared to wild types with a plaque to aorta volume ratio of 0.3%, 2.8%, and 9.8% at weeks 13, 18, and 26, respectively. Automatic segmentation correlated with manual (r 2 ≥ 0.89; p < .001) and histological evaluations (r 2 > 0.96; p < .001). Conclusions The semiautomatic workflow enabled rapid quantification of atherosclerotic plaques in mice with minimal manual work.
Collapse
|
6
|
Riou L, Toczek J, Broisat A, Ghezzi C, Djaileb L. Identifying the leukocyte uptake pattern of inflammation imaging agents: Current limitations and potential impact. J Nucl Cardiol 2021; 28:1646-1648. [PMID: 31823330 DOI: 10.1007/s12350-019-01979-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Laurent Riou
- Laboratoire Radiopharmaceutiques Biocliniques, Faculté de Médecine de Grenoble, UMR UGA - INSERM U1039, Grenoble, France.
| | - Jakub Toczek
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Alexis Broisat
- Laboratoire Radiopharmaceutiques Biocliniques, Faculté de Médecine de Grenoble, UMR UGA - INSERM U1039, Grenoble, France
| | - Catherine Ghezzi
- Laboratoire Radiopharmaceutiques Biocliniques, Faculté de Médecine de Grenoble, UMR UGA - INSERM U1039, Grenoble, France
| | - Loïc Djaileb
- Laboratoire Radiopharmaceutiques Biocliniques, Faculté de Médecine de Grenoble, UMR UGA - INSERM U1039, Grenoble, France
- Nuclear Medicine Department, Grenoble Alpes University Hospital, Grenoble, France
| |
Collapse
|
7
|
Lawal IO, Mokoala KG, Popoola GO, Lengana T, Ankrah AO, Stoltz AC, Sathekge MM. Impact of optimized PET imaging conditions on 18F-FDG uptake quantification in patients with apparently normal aortas. J Nucl Cardiol 2021; 28:1349-1359. [PMID: 31388966 DOI: 10.1007/s12350-019-01833-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND The cardiovascular committee of the European Association of Nuclear Medicine (EANM) recently published recommendations on imaging conditions to be observed during 18F-FDG PET imaging of vascular inflammation. This study aimed to evaluate the impact of applying these optimized imaging conditions on PET quantification of arterial 18F-FDG uptake. METHODS AND RESULTS Fifty-seven patients were prospectively recruited to undergo an early 18F-FDG PET/CT imaging at 60 minutes and repeat delayed imaging at ≥ 120 minutes post tracer injection. Routine oncologic 18F-FDG PET protocol was observed for early imaging, while delayed imaging parameters were optimized for vascular inflammation imaging as recommended by the EANM. Aortic SUVmax of the ascending aorta and SUVmean from the lumen of the superior vena cava (SVC SUVmean) were obtained on early and delayed imaging. Target-to-background ratio (TBR) was obtained for the early and delayed imaging. Aortic SUVmax increased by a mean of 70%, while SVC SUVmean decreased by a mean of 52% between early and delayed imaging (P < 0.001). TBR increased by 122% following delayed imaging. TBR increased, while SVC SUVmean declined across all time-points from 120 to > 180 minutes. Aortic SUVmax significantly increased at imaging time-points between 120 and 180 minutes. No significant improvement in aortic SUVmax was seen at imaging time-points beyond 180 minutes. CONCLUSIONS 18F-FDG PET imaging conditions optimized for vascular inflammation imaging lead to an improved quantification through an increase in the quantified vascular tracer uptake and decrease in blood-pool background activity.
Collapse
Affiliation(s)
- Ismaheel O Lawal
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001, South Africa
| | - Kgomotso G Mokoala
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001, South Africa
| | - Gbenga O Popoola
- Department of Epidemiology and Community Health, University of Ilorin, Ilorin, Nigeria
| | - Thabo Lengana
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001, South Africa
| | - Alfred O Ankrah
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001, South Africa
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anton C Stoltz
- Infectious Disease Unit, Department of Internal Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001, South Africa.
| |
Collapse
|
8
|
Sangha GS, Goergen CJ, Prior SJ, Ranadive SM, Clyne AM. Preclinical techniques to investigate exercise training in vascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1566-H1600. [PMID: 33385323 PMCID: PMC8260379 DOI: 10.1152/ajpheart.00719.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is a dynamic process starting with endothelial dysfunction and inflammation and eventually leading to life-threatening arterial plaques. Exercise generally improves endothelial function in a dose-dependent manner by altering hemodynamics, specifically by increased arterial pressure, pulsatility, and shear stress. However, athletes who regularly participate in high-intensity training can develop arterial plaques, suggesting alternative mechanisms through which excessive exercise promotes vascular disease. Understanding the mechanisms that drive atherosclerosis in sedentary versus exercise states may lead to novel rehabilitative methods aimed at improving exercise compliance and physical activity. Preclinical tools, including in vitro cell assays, in vivo animal models, and in silico computational methods, broaden our capabilities to study the mechanisms through which exercise impacts atherogenesis, from molecular maladaptation to vascular remodeling. Here, we describe how preclinical research tools have and can be used to study exercise effects on atherosclerosis. We then propose how advanced bioengineering techniques can be used to address gaps in our current understanding of vascular pathophysiology, including integrating in vitro, in vivo, and in silico studies across multiple tissue systems and size scales. Improving our understanding of the antiatherogenic exercise effects will enable engaging, targeted, and individualized exercise recommendations to promote cardiovascular health rather than treating cardiovascular disease that results from a sedentary lifestyle.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland.,Baltimore Veterans Affairs Geriatric Research, Education, and Clinical Center, Baltimore, Maryland
| | - Sushant M Ranadive
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
9
|
Monitoring Endothelin-A Receptor Expression during the Progression of Atherosclerosis. Biomedicines 2020; 8:biomedicines8120538. [PMID: 33255872 PMCID: PMC7761144 DOI: 10.3390/biomedicines8120538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular disease remains the most frequent cause of death worldwide. Atherosclerosis, an underlying cause of cardiovascular disease, is an inflammatory disorder associated with endothelial dysfunction. The endothelin system plays a crucial role in the pathogenesis of endothelial dysfunction and is involved in the development of atherosclerosis. We aimed to reveal the expression levels of the endothelin-A receptor (ETAR) in the course of atherogenesis to reveal possible time frames for targeted imaging and interventions. We used the ApoE−/− mice model and human specimens and evaluated ETAR expression by quantitative rtPCR (qPCR), histology and fluorescence molecular imaging. We found a significant upregulation of ETAR after 22 weeks of high-fat diet in the aortae of ApoE−/− mice. With regard to translation to human disease, we applied the fluorescent probe to fresh explants of human carotid and femoral artery specimens. The findings were correlated with qPCR and histology. While ETAR is upregulated during the progression of early atherosclerosis in the ApoE−/− mouse model, we found that ETAR expression is substantially reduced in advanced human atherosclerotic plaques. Moreover, those expression changes were clearly depicted by fluorescence imaging using our in-house designed ETAR-Cy 5.5 probe confirming its specificity and potential use in future studies.
Collapse
|
10
|
De Dominicis C, Perrotta P, Dall’Angelo S, Wyffels L, Staelens S, De Meyer GRY, Zanda M. [ 18F]ZCDD083: A PFKFB3-Targeted PET Tracer for Atherosclerotic Plaque Imaging. ACS Med Chem Lett 2020; 11:933-939. [PMID: 32435408 DOI: 10.1021/acsmedchemlett.9b00677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
PFKFB3, a glycolysis-related enzyme upregulated in inflammatory conditions and angiogenesis, is an emerging target for diagnosis and therapy of atherosclerosis. The fluorinated phenoxindazole [18F]ZCDD083 was synthesized, radiolabeled in 17 ± 5% radiochemical yield and >99% radiochemical purity, and formulated for preclinical PET/CT imaging in mice. In vivo stability analysis showed no significant metabolite formation. Biodistribution studies showed high blood pool activity and slow hepatobiliary clearance. Significant activity was detected in the lung 2 h postinjection (pi) (11.0 ± 1.5%ID/g), while at 6 h pi no pulmonary background was observed. Ex vivo autoradiography at 6 h pi showed significant high uptake of [18F]ZCDD083 in the arch region and brachiocephalic artery of atherosclerotic mice, and no uptake in control mice, matching plaques distribution seen by lipid staining along with PFKFB3 expression seen by immunofluorescent staining. In vivo PET scans showed higher aortic region uptake of [18F]ZCDD083 in atherosclerotic ApoE-/-Fbn1C1039G+/- than in control mice (0.78 ± 0.05 vs 0.44 ± 0.09%ID/g). [18F]ZCDD083 was detected in aortic arch and brachiocephalic artery of ApoE-/- (with moderate atherosclerosis) and ApoE-/-Fbn1C1039G+/- (with severe, advanced atherosclerosis) mice, suggesting this tracer may be useful for the noninvasive detection of atherosclerotic plaques in vivo.
Collapse
Affiliation(s)
- Carlo De Dominicis
- Kosterlitz Centre for Therapeutics, University of Aberdeen, AB25 2ZD Foresterhill, Aberdeen, U.K
| | - Paola Perrotta
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Antwerpen, Belgium
| | - Sergio Dall’Angelo
- Kosterlitz Centre for Therapeutics, University of Aberdeen, AB25 2ZD Foresterhill, Aberdeen, U.K
| | - Leonie Wyffels
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Antwerpen, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Antwerpen, Belgium
| | - G. R. Y. De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Antwerpen, Belgium
| | - Matteo Zanda
- Kosterlitz Centre for Therapeutics, University of Aberdeen, AB25 2ZD Foresterhill, Aberdeen, U.K
- CNR-ICRM, via Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
11
|
Abstract
Most of the acute ischemic events, such as acute coronary syndromes and stroke, are attributed to vulnerable plaques. These lesions have common histological and pathophysiological features, including inflammatory cell infiltration, neo-angiogenesis, remodelling, haemorrhage predisposition, thin fibrous cap, large lipid core, and micro-calcifications. Early detection of the presence of a plaque prone to rupture could be life-saving for the patient; however, vulnerable plaques usually cause non-haemodynamically significant stenosis, and anatomical imaging techniques often underestimate, or may not even detect, these lesions. Although ultrasound techniques are currently considered as the "first-line" examinations for the diagnostic investigation and treatment monitoring in patients with atherosclerotic plaques, positron emission tomography (PET) imaging could open new horizons in the assessment of atherosclerosis, given its ability to visualize metabolic processes and provide molecular-functional evidence regarding vulnerable plaques. Moreover, modern hybrid imaging techniques, combining PET with computed tomography or magnetic resonance imaging, can evaluate simultaneously both functional and morphological parameters of the atherosclerotic plaques, and are expected to significantly expand their clinical role in the future. This review summarizes current research on the PET imaging of the vulnerable atherosclerotic plaques, outlining current and potential applications in the clinical setting.
Collapse
|
12
|
Abstract
Atherosclerosis is a chronic and most often progressive disease with a long clinically apparently silent period, and can become unstable at any time, due to a plaque rupture or erosion, leading to an acute atherothrombotic event. Atherosclerosis has a progression rate that is highly variable among patients and in the same patient. The progression of atherosclerotic plaque from asymptomatic to symptomatic phase depends on its structure and composition in which inflammation plays an essential role. Prototype of the ruptured plaque contains a large, soft, lipid-rich necrotic core with intraplaque hemorrhage that accounts for more than half of the volume of the plaque covered by a thin and inflamed fibrous cap with few smooth muscle cells, and a heavy infiltrate of inflammatory cells. Noninvasive imaging modalities might provide an assessment of the atherosclerotic disease process through the exploration of these plaque features. Computed tomography angiography and magnetic resonance imaging can characterize plaque morphology, whereas molecular imaging, owing to the high sensitivity of nuclear medicine for the detection of radiopharmaceuticals in tissues, allows to explore plaque biology. During the last 2 decades, FDG-PET imaging has also emerged as a powerful tool to explore noninvasively inflammatory activities in atherosclerotic plaques providing new insights on the evolution of metabolic activities in the vascular wall over time. This review highlights the role of PET imaging for the exploration of metabolic activities in atherosclerotic plaques. It will resume the evidence that have been gathered from clinical studies using FDG-PET and will discuss the perspectives of new radiopharmaceuticals for vulnerable plaque imaging.
Collapse
Affiliation(s)
- Olivier Lairez
- Cardiac Imaging Centre, Rangueil University Hospital, Toulouse, France
| | - Fabien Hyafil
- Department of Nuclear Medicine, Bichat University Hospital, Hôpitaux de Paris, Université René Diderot, Paris, France.
| |
Collapse
|
13
|
Vigne J, Hyafil F. Inflammation imaging to define vulnerable plaque or vulnerable patient. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2020; 64:21-34. [PMID: 32077668 DOI: 10.23736/s1824-4785.20.03231-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The role of nuclear imaging in the characterization of high-risk atherosclerotic plaque is increasing thanks to its high sensitivity to detect radiopharmaceuticals signal in tissues. Currently, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is the most studied and widely used radiopharmaceutical for the molecular imaging of atherosclerotic plaques with positron emission tomography (PET). [18F]FDG PET is a valuable tool to non-invasively detect, monitor and quantify inflammatory processes occurring in atherosclerotic plaques. The aim of this review is to gather insights provided by [18F]FDG PET to better understand the role of inflammation in the definitions of the vulnerable plaque and the vulnerable patient. Alternatives radiopharmaceuticals targeting inflammation and other potential high-risk plaque related processed are also discussed.
Collapse
Affiliation(s)
- Jonathan Vigne
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie University (UNICAEN), Caen, France -
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), DHU FIRE, University of Paris, Paris, France -
- Department of Pharmacy, CHU de Caen Normandie, Normandie University (UNICAEN), Caen, France -
| | - Fabien Hyafil
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), DHU FIRE, University of Paris, Paris, France
- Department of Nuclear Medicine, Bichat University Hospital, Paris, France
| |
Collapse
|
14
|
Vigne J, Cabella C, Dézsi L, Rustique E, Couffin AC, Aid R, Anizan N, Chauvierre C, Letourneur D, Le Guludec D, Rouzet F, Hyafil F, Mészáros T, Fülöp T, Szebeni J, Cordaro A, Oliva P, Mourier V, Texier I. Nanostructured lipid carriers accumulate in atherosclerotic plaques of ApoE -/- mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 25:102157. [PMID: 31982616 DOI: 10.1016/j.nano.2020.102157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/04/2019] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
Abstract
Nanostructured lipid carriers (NLC) might represent an interesting approach for the identification and targeting of rupture-prone atherosclerotic plaques. In this study, we evaluated the biodistribution, targeting ability and safety of 64Cu-fonctionalized NLC in atherosclerotic mice. 64Cu-chelating-NLC (51.8±3.1 nm diameter) with low dispersity index (0.066±0.016) were produced by high pressure homogenization at tens-of-grams scale. 24 h after injection of 64Cu-chelated particles in ApoE-/- mice, focal regions of the aorta showed accumulation of particles on autoradiography that colocalized with Oil Red O lipid mapping. Signal intensity was significantly greater in aortas isolated from ApoE-/- mice compared to wild type (WT) control (8.95 [7.58, 10.16]×108 vs 4.59 [3.11, 5.03]×108 QL/mm2, P < 0.05). Moreover, NLC seemed safe in relevant biocompatibility studies. NLC could constitute an interesting platform with high clinical translation potential for targeted delivery and imaging purposes in atherosclerosis.
Collapse
Affiliation(s)
- Jonathan Vigne
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - Claudia Cabella
- Centro Ricerche Bracco, Bracco Imaging SpA, Colleretto Giacosa, Italy
| | - László Dézsi
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | | | | | - Rachida Aid
- Université de Paris, UMS34 FRIM, Paris, France
| | | | | | | | - Dominique Le Guludec
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - François Rouzet
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - Fabien Hyafil
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - Tamás Mészáros
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Tamás Fülöp
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - János Szebeni
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Alessia Cordaro
- Centro Ricerche Bracco, Bracco Imaging SpA, Colleretto Giacosa, Italy
| | - Paolo Oliva
- Centro Ricerche Bracco, Bracco Imaging SpA, Colleretto Giacosa, Italy
| | | | | |
Collapse
|
15
|
Rucher G, Cameliere L, Fendri J, Anfray A, Abbas A, Kamel S, Dupas Q, Delcroix N, Berger L, Manrique A, on behalf of the STOP-AS investigators. Molecular imaging of endothelial activation and mineralization in a mouse model of accelerated atherosclerosis. EJNMMI Res 2019; 9:80. [PMID: 31440854 PMCID: PMC6706501 DOI: 10.1186/s13550-019-0550-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Preclinical imaging of endothelial activation and mineralization using both positron emission tomography (PET) and magnetic resonance (MR) remains scarce. PROCEDURES A group of uremic ApoE-/- (Ur), non-uremic ApoE-/- (NUr), and control C57Bl/6 J mice (Ctl) were investigated. Mineralization process was assessed using sodium fluoride ([18F]NaF) PET, and MR imaging combined with intravenous injection of MPIO-αVCAM-1 was used to evaluate endothelial activation. Micro- and macrocalcifications were evaluated by flame atomic absorption spectroscopy and von Kossa staining, respectively. RESULTS Ur mice showed an active and sustained mineralization process compared to Ctl mice (p = 0.002) using [18F]NaF PET imaging. Calcium plasma level was increased in Ur (2.54 ± 0.09 mM, n = 17) compared to NUr and Ctl mice (2.24 ± 0.01, n = 22, and 2.14 ± 0.02, n = 27, respectively; p < 0.0001). Likewise, vascular calcium content was increased in Ur (0.51 ± 0.06 μg Ca2+ per milligram of dry weight aorta, n = 11) compared to NUr (0.27 ± 0.05, n = 9, p = 0.013) and Ctl (0.28 ± 0.05, n = 11, p = 0.014). Ur mice also had a higher inflammatory state using MPIO-αVCAM-1 MR (p global = 0.01, post hoc analysis Ur vs. Ctl p = 0.003) associated with increased VCAM-1 expression (p global = 0.02). Aortic remodeling at the level of the brachiocephalic trunk, brachiocephalic trunk itself, and aortic arch in Ur mice was also demonstrated using MR. CONCLUSIONS Preclinical molecular imaging allowed in vivo characterization of the early phase of atherosclerosis. [18F]NaF PET showed early and sustained vascular mineralization in uremic ApoE-/- mice. MPIO-αVCAM-1 MR imaging demonstrated aortic endothelial activation, predominantly in segments with vascular remodeling.
Collapse
Affiliation(s)
- Guillaume Rucher
- Normandie Univ, UNICAEN, EA 4650, GIP Cyceron, 14000 Caen, France
| | - Lucie Cameliere
- Normandie Univ, UNICAEN, EA 4650, GIP Cyceron, 14000 Caen, France
- Chirurgie Vasculaire, CHU de Caen, Avenue de la Côte de Nacre, 14000 Caen, France
| | - Jihene Fendri
- Normandie Univ, UNICAEN, EA 4650, GIP Cyceron, 14000 Caen, France
- Chirurgie Vasculaire, CHU de Caen, Avenue de la Côte de Nacre, 14000 Caen, France
| | - Antoine Anfray
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
| | - Ahmed Abbas
- Normandie Univ, UNICAEN, EPHE, INSERM, U1077, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| | - Saïd Kamel
- EA7517, MP3CV, CURS, University of Picardie Jules Verne, Amiens, France
- Biochemistry Laboratory, Amiens University Hospital, Amiens, France
| | - Quentin Dupas
- Normandie Univ, UNICAEN, EA 4650, GIP Cyceron, 14000 Caen, France
| | - Nicolas Delcroix
- CNRS, UMS-3048, GIP Cyceron, Campus Jules Horowitz, 14000 Caen, France
| | - Ludovic Berger
- Normandie Univ, UNICAEN, EA 4650, GIP Cyceron, 14000 Caen, France
- Chirurgie Vasculaire, CHU de Caen, Avenue de la Côte de Nacre, 14000 Caen, France
| | - Alain Manrique
- Normandie Univ, UNICAEN, EA 4650, GIP Cyceron, 14000 Caen, France
- Médecine Nucléaire, CHU de Caen, Avenue de la Côte de Nacre, 14000 Caen, France
- GIP Cyceron, Campus Jules Horowitz, Boulevard Henri Becquerel, 5229, 14074 Caen, BP France
| | - on behalf of the STOP-AS investigators
- Normandie Univ, UNICAEN, EA 4650, GIP Cyceron, 14000 Caen, France
- Chirurgie Vasculaire, CHU de Caen, Avenue de la Côte de Nacre, 14000 Caen, France
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
- Normandie Univ, UNICAEN, EPHE, INSERM, U1077, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
- EA7517, MP3CV, CURS, University of Picardie Jules Verne, Amiens, France
- Biochemistry Laboratory, Amiens University Hospital, Amiens, France
- CNRS, UMS-3048, GIP Cyceron, Campus Jules Horowitz, 14000 Caen, France
- Médecine Nucléaire, CHU de Caen, Avenue de la Côte de Nacre, 14000 Caen, France
- GIP Cyceron, Campus Jules Horowitz, Boulevard Henri Becquerel, 5229, 14074 Caen, BP France
| |
Collapse
|
16
|
Abstract
Noninvasive imaging technologies offer to identify several anatomic and molecular features of high-risk plaques. For the noninvasive molecular imaging of atherosclerotic plaques, nuclear medicine constitutes one of the best imaging modalities, thanks to its high sensitivity for the detection of probes in tissues. 18F-fluorodeoxyglucose (FDG) is currently the most widely used radiopharmaceutical for molecular imaging of atherosclerotic plaques with positron emission tomography. The intensity of FDG uptake in the vascular wall correlates closely with the degree of macrophage infiltration in atherosclerotic plaques. FDG positron emission tomographic imaging has become a powerful tool to identify and monitor noninvasively inflammatory activities in atherosclerotic plaques over time. This review examines how FDG positron emission tomographic imaging has given us deeper insight into the role of inflammation in atherosclerotic plaque progression and discusses perspectives for alternative radiopharmaceuticals to FDG that could provide a more specific and simple identification of high-risk lesions and help improve risk stratification of atherosclerotic patients.
Visual Overview—
An online visual overview is available for this article.
Collapse
Affiliation(s)
- Fabien Hyafil
- From the Department of Nuclear Medicine, Bichat University Hospital, Assistance Publique–Hôpitaux de Paris (F.H.), University Paris 7 René Diderot, France
- INSERM U1148, Laboratory for Vascular Translational Science, DHU FIRE (F.H., J.V.), University Paris 7 René Diderot, France
| | - Jonathan Vigne
- INSERM U1148, Laboratory for Vascular Translational Science, DHU FIRE (F.H., J.V.), University Paris 7 René Diderot, France
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie University, UNICAEN, France (J.V.)
| |
Collapse
|
17
|
Woodside DG. Nanoparticle Imaging of Vascular Inflammation and Remodeling in Atherosclerotic Disease. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9501-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Lawal IO, Ankrah AO, Stoltz AC, Sathekge MM. Radionuclide imaging of inflammation in atherosclerotic vascular disease among people living with HIV infection: current practice and future perspective. Eur J Hybrid Imaging 2019; 3:5. [PMID: 34191183 PMCID: PMC8218042 DOI: 10.1186/s41824-019-0053-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 01/03/2023] Open
Abstract
People living with human immunodeficiency virus (HIV) infection have twice the risk of atherosclerotic vascular disease compared with non-infected individuals. Inflammation plays a critical role in the development and progression of atherosclerotic vascular disease. Therapies targeting inflammation irrespective of serum lipid levels have been shown to be effective in preventing the occurrence of CVD. Radionuclide imaging is a viable method for evaluating arterial inflammation. This evaluation is useful in quantifying CVD risk and for assessing the effectiveness of anti-inflammatory treatment. The most tested radionuclide method for quantifying arterial inflammation among people living with HIV infection has been with F-18 FDG PET/CT. The level of arterial uptake of F-18 FDG correlates with vascular inflammation and with the risk of development and progression of atherosclerotic disease. Several limitations exist to the use of F-18 FDG for PET quantification of arterial inflammation. Many targets expressed on macrophage, a significant player in arterial inflammation, have the potential for use in evaluating arterial inflammation among people living with HIV infection. The review describes the clinical utility of F-18 FDG PET/CT in assessing arterial inflammation as a risk for atherosclerotic disease among people living with HIV infection. It also outlines potential newer probes that may quantify arterial inflammation in the HIV-infected population by targeting different proteins expressed on macrophages.
Collapse
Affiliation(s)
- Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001 South Africa
| | - Alfred O. Ankrah
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001 South Africa
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen & University of Groningen, Groningen, The Netherlands
| | - Anton C. Stoltz
- Infectious Disease Unit, Department of Internal Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001 South Africa
| |
Collapse
|
19
|
Jenkins A, Januszewski A, O’Neal D. The early detection of atherosclerosis in type 1 diabetes: why, how and what to do about it. Cardiovasc Endocrinol Metab 2019; 8:14-27. [PMID: 31646294 PMCID: PMC6739889 DOI: 10.1097/xce.0000000000000169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
The major cause of morbidity and often premature mortality in people with type I diabetes (T1D) is cardiovascular disease owing to accelerated atherosclerosis. We review publications relating to the rationale behind, and clinical tests for, detecting and treating early atherosclerosis in people with T1D. Currently available tools for atherosclerosis assessment include risk equations using vascular risk factors, arterial intima-media thickness, the ankle-brachial index, coronary artery calcification and angiography, and for more advanced lesions, intravascular ultrasound and optical coherence tomography. Evolving research tools include risk equations incorporating novel clinical, biochemical and molecular tests; vascular MRI and molecular imaging. As yet there is little information available to quantify early atherosclerosis. With better means to control the vascular risk factors, such as hypertension, dyslipidaemia and glycaemic control, and emerging therapies to control novel risk factors, further epidemiologic and clinical trials are merited to facilitate the translation into clinical practice of robust means to detect, monitor and treat early atherosclerosis in those with T1D.
Collapse
Affiliation(s)
- Alicia Jenkins
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales
- Department of Endocrinology, St. Vincent’s Hospital, Fitzroy, Victoria, Australia
| | - Andrzej Januszewski
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales
- Department of Endocrinology, St. Vincent’s Hospital, Fitzroy, Victoria, Australia
| | - David O’Neal
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales
- Department of Endocrinology, St. Vincent’s Hospital, Fitzroy, Victoria, Australia
| |
Collapse
|