1
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2025; 30:213-228. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
2
|
Qiu L, Jiang H, Cho K, Yu Y, Jones LA, Huang T, Perlmutter JS, Gropler RJ, Brier MR, Patti GJ, Benzinger TLS, Tu Z. Metabolite Study and Structural Authentication for the First-in-Human Use Sphingosine-1-phosphate Receptor 1 Radiotracer. ACS Chem Neurosci 2024; 15:1882-1892. [PMID: 38634759 PMCID: PMC11103254 DOI: 10.1021/acschemneuro.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The sphingosine-1-phosphate receptor 1 (S1PR1) radiotracer [11C]CS1P1 has shown promise in proof-of-concept PET imaging of neuroinflammation in multiple sclerosis (MS). Our HPLC radiometabolite analysis of human plasma samples collected during PET scans with [11C]CS1P1 detected a radiometabolite peak that is more lipophilic than [11C]CS1P1. Radiolabeled metabolites that cross the blood-brain barrier complicate quantitative modeling of neuroimaging tracers; thus, characterizing such radiometabolites is important. Here, we report our detailed investigation of the metabolite profile of [11C]CS1P1 in rats, nonhuman primates, and humans. CS1P1 is a fluorine-containing ligand that we labeled with C-11 or F-18 for preclinical studies; the brain uptake was similar for both radiotracers. The same lipophilic radiometabolite found in human studies also was observed in plasma samples of rats and NHPs for CS1P1 labeled with either C-11 or F-18. We characterized the metabolite in detail using rats after injection of the nonradioactive CS1P1. To authenticate the molecular structure of this radiometabolite, we injected rats with 8 mg/kg of CS1P1 to collect plasma for solvent extraction and HPLC injection, followed by LC/MS analysis of the same metabolite. The LC/MS data indicated in vivo mono-oxidation of CS1P1 produces the metabolite. Subsequently, we synthesized three different mono-oxidized derivatives of CS1P1 for further investigation. Comparing the retention times of the mono-oxidized derivatives with the metabolite observed in rats injected with CS1P1 identified the metabolite as N-oxide 1, also named TZ82121. The MS fragmentation pattern of N-oxide 1 also matched that of the major metabolite in rat plasma. To confirm that metabolite TZ82121 does not enter the brain, we radiosynthesized [18F]TZ82121 by the oxidation of [18F]FS1P1. Radio-HPLC analysis confirmed that [18F]TZ82121 matched the radiometabolite observed in rat plasma post injection of [18F]FS1P1. Furthermore, the acute biodistribution study in SD rats and PET brain imaging in a nonhuman primate showed that [18F]TZ82121 does not enter the rat or nonhuman primate brain. Consequently, we concluded that the major lipophilic radiometabolite N-oxide [11C]TZ82121, detected in human plasma post injection of [11C]CS1P1, does not enter the brain to confound quantitative PET data analysis. [11C]CS1P1 is a promising S1PR1 radiotracer for detecting S1PR1 expression in the CNS.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Hao Jiang
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Kevin Cho
- Center for Mass Spectrometry and Metabolic Tracing, Department of Chemistry, Department of Medicine, Washington University, Saint Louis, Missouri 63130, United States
| | - Yanbo Yu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Lynne A Jones
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Tianyu Huang
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
- Departments of Neurology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Matthew R Brier
- Departments of Neurology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Gary J Patti
- Center for Mass Spectrometry and Metabolic Tracing, Department of Chemistry, Department of Medicine, Washington University, Saint Louis, Missouri 63130, United States
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| |
Collapse
|
3
|
Jiang H, Zhou C, Qiu L, Gropler RJ, Brier MR, Wu GF, Cross AH, Perlmutter JS, Benzinger TLS, Tu Z. Quantitative Analysis of S1PR1 Expression in the Postmortem Multiple Sclerosis Central Nervous System. ACS Chem Neurosci 2023; 14:4039-4050. [PMID: 37882753 PMCID: PMC11037862 DOI: 10.1021/acschemneuro.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease that is characterized by demyelination and inflammation in the central nervous system (CNS). Previous studies demonstrated that sphingosine-1-phosphate receptor (S1PR) modulators effectively inhibit S1PR1 in immune cell trafficking and reduce entry of pathogenic cells into the CNS. Studies have also implicated a nonimmune, inflammatory role of S1PR1 within the CNS in MS. In this study, we explored the expression of S1PR1 in the development and progression of demyelinating pathology of MS by quantitative assessment of S1PR1 expression using our S1PR1-specific radioligand, [3H]CS1P1, in the postmortem human CNS tissues including cortex, cerebellum, and spinal cord of MS cases and age- and sex-matched healthy cases. Immunohistochemistry with whole slide scanning for S1PR1 and various myelin proteins was also performed. Autoradiographic analysis using [3H]CS1P1 showed that the expression of S1PR1 was statistically significantly elevated in lesions compared to nonlesion regions in the MS cases, as well as normal healthy controls. The uptake of [3H]CS1P1 in the gray matter and nonlesion white matter did not significantly differ between healthy and MS CNS tissues. Saturation autoradiography analysis showed an increased binding affinity (Kd) of [3H]CS1P1 to S1PR1 in both gray matter and white matter of MS brains compared to healthy brains. Our blocking study using NIBR-0213, a S1PR1 antagonist, indicated [3H]CS1P1 is highly specific to S1PR1. Our findings demonstrated the activation of S1PR1 and an increased uptake of [3H]CS1P1 in the lesions of MS CNS. In summary, our quantitative autoradiography analysis using [3H]CS1P1 on human postmortem tissues shows the feasibility of novel imaging strategies for MS by targeting S1PR1.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Charles Zhou
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Lin Qiu
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Matthew R Brier
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Gregory F Wu
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| |
Collapse
|
4
|
Qiu L, Jiang H, Zhou C, Wang J, Yu Y, Zhao H, Huang T, Gropler R, Perlmutter JS, Benzinger TLS, Tu Z. Discovery of a Promising Fluorine-18 Positron Emission Tomography Radiotracer for Imaging Sphingosine-1-Phosphate Receptor 1 in the Brain. J Med Chem 2023; 66:4671-4688. [PMID: 36926861 PMCID: PMC11037415 DOI: 10.1021/acs.jmedchem.2c01752] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Sphingosine-1-phosphate receptor 1 (S1PR1) is recognized as a novel therapeutic and diagnostic target in neurological disorders. We recently transferred the S1PR1 radioligand [11C]CS1P1 into clinical investigation for multiple sclerosis. Herein, we reported the design, synthesis and evaluation of novel F-18 S1PR1 radioligands. We combined the structural advantages of our two lead S1PR1 radioligands and synthesized 14 new S1PR1 compounds, then performed F-18 radiochemistry on the most promising compounds. Compound 6h is potent (IC50 = 8.7 nM) and selective for S1PR1. [18F]6h exhibited a high uptake in macaque brain (SUV > 3.0) and favorable brain washout pharmacokinetics in positron emission tomography (PET) study. PET blocking and displacement studies confirmed the specificity of [18F]6h in vivo. Radiometabolite analysis confirmed no radiometabolite of [18F]6h entered into the brain to confound the PET measurement. In summary, [18F]6h is a promising radioligand to image S1PR1 and worth translational clinical investigation for humans with brain disorders.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Hao Jiang
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Charles Zhou
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Jinzhi Wang
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Yanbo Yu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Haiyang Zhao
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Tianyu Huang
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Robert Gropler
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Joel S Perlmutter
- Department of Neurology, Radiology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| |
Collapse
|
5
|
Brier MR, Hamdi M, Rajamanikam J, Zhao H, Mansor S, Jones LA, Rahmani F, Jindal S, Koudelis D, Perlmutter JS, Wong DF, Nickels M, Ippolito JE, Gropler RJ, Schindler TH, Laforest R, Tu Z, Benzinger TLS. Phase 1 Evaluation of 11C-CS1P1 to Assess Safety and Dosimetry in Human Participants. J Nucl Med 2022; 63:1775-1782. [PMID: 35332093 PMCID: PMC9635683 DOI: 10.2967/jnumed.121.263189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 03/02/2022] [Indexed: 01/07/2023] Open
Abstract
This study evaluated the safety, dosimetry, and characteristics of 3-((2-fluoro-4-(5-(2'-methyl-2-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)-1,2,4-oxadiazol-3-yl)benzyl)(methyl-11C)amino)propanoic acid (11C-CS1P1), a radiotracer targeting sphingosine-1-phosphate receptor (S1PR) 1 (S1PR1). S1PR1 is of clinical interest because of its role in multiple sclerosis (and other conditions), with an expanding class of S1PR modulators approved for relapsing multiple sclerosis. 11C-CS1P1 binds S1PR1 with high specificity and has shown promise in animal models of inflammatory diseases. Methods: 11C-CS1P1 was injected into 5 male and 6 female healthy participants. Ten participants were imaged with PET using a multipass whole-body continuous-bed-motion acquisition, and one had dedicated head and neck PET and MRI. Participants were continuously monitored for safety events. Organ time-activity curve data were collected, integrated, and normalized to the injected activity. Organ radiation doses and effective dose were computed using the adult male and female models in OLINDA, version 2.2. SUV images were evaluated for qualitative biodistribution. Results: No adverse events were observed after the dose, including no bradycardia. The liver was the critical organ from dosimetry analysis (mean ± SD: female, 23.12 ± 5.19 μSv/MBq; male, 21.06 ± 1.63 μSv/MBq). The whole-body effective dose (as defined by International Commission on Radiological Protection publication 103) was 4.18 ± 0.30 μSv/MBq in women and 3.54 ± 0.14 μSv/MBq in men. Using a maximum delivered dose of 740 MBq (20 mCi), the effective dose for women would be 3.1 mSv (0.31 rem), with a liver dose of 17.1 mSv (1.7 rem); the effective dose for men would be 2.6 mSv (0.26 rem), with a liver dose of 15.6 mSv (1.56 rem). Brain uptake was seen predominantly in gray matter and correlated with regional S1PR1 RNA expression (r = 0.84). Conclusion: These results support the safety of 11C-CS1P1 for evaluation of inflammation in human clinical populations. Dosimetry permits repeated measures in the same participants. Brain uptake correlates well with known target topography.
Collapse
Affiliation(s)
- Matthew R Brier
- Department of Neurology, Washington University, St. Louis, Missouri
| | - Mahdjoub Hamdi
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | | | - Haiyang Zhao
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Syahir Mansor
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Lynne A Jones
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Farzaneh Rahmani
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Saurabh Jindal
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Deborah Koudelis
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Joel S Perlmutter
- Department of Neurology, Washington University, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
- Department of Neuroscience, Washington University, St. Louis, Missouri
- Department of Physical and Occupational Therapy, Washington University, St. Louis, Missouri; and
| | - Dean F Wong
- Department of Neurology, Washington University, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
- Department of Neuroscience, Washington University, St. Louis, Missouri
- Department of Psychiatry, Washington University, St. Louis, Missouri
| | - Michael Nickels
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Joseph E Ippolito
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Thomas H Schindler
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Zhude Tu
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri;
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri;
| |
Collapse
|
6
|
Qiu L, Jiang H, Yu Y, Gu J, Wang J, Zhao H, Huang T, Gropler RJ, Klein RS, Perlmutter JS, Tu Z. Radiosynthesis and evaluation of a fluorine-18 radiotracer [ 18F]FS1P1 for imaging sphingosine-1-phosphate receptor 1. Org Biomol Chem 2022; 20:1041-1052. [PMID: 35029272 PMCID: PMC8970350 DOI: 10.1039/d1ob02225c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Assessment of sphingosine-1-phosphate receptor 1 (S1PR1) expression could be a unique tool to determine the neuroinflammatory status for central nervous system (CNS) disorders. Our preclinical results indicate that PET imaging with [11C]CS1P1 radiotracer can quantitatively measure S1PR1 expression changes in different animal models of inflammatory diseases. Here we developed a multiple step F-18 labeling strategy to synthesize the radiotracer [18F]FS1P1, sharing the same structure with [11C]CS1P1. We explored a wide range of reaction conditions for the nucleophilic radiofluorination starting with the key ortho-nitrobenzaldehyde precursor 10. The tertiary amine additive TMEDA proved crucial to achieve high radiochemical yield of ortho-[18F]fluorobenzaldehyde [18F]12 starting with a small amount of precursor. Based on [18F]12, a further four-step modification was applied in one-pot to generate the target radiotracer [18F]FS1P1 with 30-50% radiochemical yield, >95% chemical and radiochemical purity, and a high molar activity (37-166.5 GBq μmol-1, decay corrected to end of synthesis, EOS). Subsequently, tissue distribution of [18F]FS1P1 in rats showed a high brain uptake (ID% g-1) of 0.48 ± 0.06 at 5 min, and bone uptake of 0.27 ± 0.03, 0.11 ± 0.02 at 5, and 120 min respectively, suggesting no in vivo defluorination. MicroPET studies showed [18F]FS1P1 has high macaque brain uptake with a standard uptake value (SUV) of ∼2.3 at 120 min. Radiometabolite analysis of macaque plasma samples indicated that [18F]FS1P1 has good metabolic stability, and no major radiometabolite confounded PET measurements of S1PR1 in nonhuman primate brain. Overall, [18F]FS1P1 is a promising F-18 S1PR1 radiotracer worthy of further clinical investigation for human use.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | - Hao Jiang
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | - Yanbo Yu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | - Jiwei Gu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | - Jinzhi Wang
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | - Haiyang Zhao
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | - Tianyu Huang
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
- Departments of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joel S Perlmutter
- Departments of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Physical Therapy and Occupational Therapy, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| |
Collapse
|
7
|
Pyrazole Scaffold Synthesis, Functionalization, and Applications in Alzheimer's Disease and Parkinson's Disease Treatment (2011-2020). Molecules 2021; 26:molecules26051202. [PMID: 33668128 PMCID: PMC7956461 DOI: 10.3390/molecules26051202] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
The remarkable prevalence of pyrazole scaffolds in a versatile array of bioactive molecules ranging from apixaban, an anticoagulant used to treat and prevent blood clots and stroke, to bixafen, a pyrazole-carboxamide fungicide used to control diseases of rapeseed and cereal plants, has encouraged both medicinal and organic chemists to explore new methods in developing pyrazole-containing compounds for different applications. Although numerous synthetic strategies have been developed in the last 10 years, there has not been a comprehensive overview of synthesis and the implication of recent advances for treating neurodegenerative disease. This review first presents the advances in pyrazole scaffold synthesis and their functionalization that have been published during the last decade (2011-2020). We then narrow the focus to the application of these strategies in the development of therapeutics for neurodegenerative diseases, particularly for Alzheimer's disease (AD) and Parkinson's disease (PD).
Collapse
|