1
|
Ador T, Fournié M, Rigollet S, Counil C, Stupar V, Barbier EL, Pichon C, Delalande A. Ultrasound-Assisted Blood-Brain Barrier Opening Monitoring by Photoacoustic and Fluorescence Imaging Using Indocyanine Green. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:1059-1069. [PMID: 40155229 DOI: 10.1016/j.ultrasmedbio.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 04/01/2025]
Abstract
OBJECTIVE The blood-brain barrier (BBB) is a selectively permeable membrane that restricts drug delivery to the central nervous system. Focused ultrasound (FUS) combined with microbubbles (MBs) is a promising technique to transiently open the BBB, enabling therapeutic delivery. However, real-time monitoring of BBB permeability changes remains challenging. This study investigated the use of indocyanine green (ICG) as a bi-modal contrast agent for photoacoustic and fluorescence imaging to assess BBB opening and closure dynamics. METHODS BALB/c mice underwent FUS-mediated BBB opening with different doses of MBs and ICG administration. Photoacoustic and fluorescence imaging were performed at various time points post-FUS to evaluate ICG extravasation dynamics. Magnetic resonance imaging (MRI) with gadolinium contrast was used as the gold standard for BBB permeability assessment. The effect of MB dose and injection timing on BBB closure kinetics was analyzed. RESULTS Photoacoustic imaging provided reliable BBB monitoring within the first hour post-FUS, whereas fluorescence imaging was more effective at detecting ICG extravasation at 24 h. A strong correlation was observed between fluorescence intensity and MRI-based contrast enhancement, confirming BBB opening dynamics. BBB closure followed an exponential decay model, with a half-closure time of approximately 81 min. The degree of BBB opening was proportional to the MB dose administered. CONCLUSION ICG-based photoacoustic and fluorescence imaging provide a non-invasive and cost-effective alternative to MRI for monitoring FUS-induced BBB opening. These techniques offer complementary temporal windows for assessment, improving the precision of BBB permeability evaluation in preclinical and potentially clinical applications.
Collapse
Affiliation(s)
- Thomas Ador
- ART mRNA Inserm US55, Orléans, France; Université d'Orléans, LI²RSO, Orléans, France; Laboratory of Experimental and Molecular Immunology and Neuromodulation, UMR 7355 CNRS-Université d'Orléans, Orléans, France
| | | | - Sébastien Rigollet
- Université Grenoble Alpes, Inserm, Grenoble Institut Neurosciences, Grenoble, France; Image Guided Therapy, Pessac, France
| | - Claire Counil
- ART mRNA Inserm US55, Orléans, France; Université d'Orléans, LI²RSO, Orléans, France
| | - Vasile Stupar
- Université Grenoble Alpes, Inserm, Grenoble Institut Neurosciences, Grenoble, France; Université Grenoble Alpes, Inserm, CNRS, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Emmanuel L Barbier
- Université Grenoble Alpes, Inserm, Grenoble Institut Neurosciences, Grenoble, France; Université Grenoble Alpes, Inserm, CNRS, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Chantal Pichon
- ART mRNA Inserm US55, Orléans, France; Université d'Orléans, LI²RSO, Orléans, France; Institut Universitaire de France, Paris, France
| | - Anthony Delalande
- ART mRNA Inserm US55, Orléans, France; Université d'Orléans, LI²RSO, Orléans, France.
| |
Collapse
|
2
|
Chen Z, Sang L, Qixi Z, Li X, Liu Y, Bai Z. Ultrasound-responsive nanoparticles for imaging and therapy of brain tumors. Mater Today Bio 2025; 32:101661. [PMID: 40206140 PMCID: PMC11979416 DOI: 10.1016/j.mtbio.2025.101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Central nervous system (CNS) cancers, particularly glioblastoma (GBM), are associated with high mortality and disability rates. Despite aggressive surgical resection, radiotherapy, and chemotherapy, patient survival remains poor. The blood-brain barrier (BBB) significantly impedes therapeutic efficacy, making BBB penetration a critical focus of research. Focused ultrasound (FUS) combined with microbubbles (MBs) can transiently open the BBB through mechanisms such as cavitation, modulation of tight junction protein expression, and enhanced vesicular transport in endothelial cells. This review highlights precision delivery and personalized treatment strategies under ultrasound visualization, including precise control of ultrasound parameters and modulation of the immune microenvironment. We discuss the applications of ultrasound-responsive nanoparticles in brain tumor therapy, including enhanced radiotherapy, gene delivery, immunotherapy, and sonodynamic therapy (SDT), with a particular emphasis on piezoelectric catalytic immunotherapy. Finally, we provide insights into the clinical translation potential of ultrasound-responsive nanoparticles for personalized and precision treatment of brain tumors.
Collapse
Affiliation(s)
- Zhiguang Chen
- Department of Ultrasound, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Zhai Qixi
- Department of Ultrasound, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | | | | | | |
Collapse
|
3
|
Durham PG, Butnariu A, Alghorazi R, Pinton G, Krishna V, Dayton PA. Current clinical investigations of focused ultrasound blood-brain barrier disruption: A review. Neurotherapeutics 2024; 21:e00352. [PMID: 38636309 PMCID: PMC11044032 DOI: 10.1016/j.neurot.2024.e00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
The blood-brain barrier (BBB) presents a formidable challenge in delivering therapeutic agents to the central nervous system. Ultrasound-mediated BBB disruption has emerged as a promising non-invasive technique to enhance drug delivery to the brain. This manuscript reviews fundamental principles of ultrasound-based techniques and their mechanisms of action in temporarily permeabilizing the BBB. Clinical trials employing ultrasound for BBB disruption are discussed, summarizing diverse applications ranging from the treatment of neurodegenerative diseases to targeted drug delivery for brain tumors. The review also addresses safety considerations, outlining the current understanding of potential risks and mitigation strategies associated with ultrasound exposure, including real-time monitoring and assessment of treatment efficacy. Among the large number of studies, significant successes are highlighted thus providing perspective on the future direction of the field.
Collapse
Affiliation(s)
- Phillip G Durham
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, USA
| | | | - Rizk Alghorazi
- School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Gianmarco Pinton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, USA
| | - Vibhor Krishna
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, USA; School of Medicine, University of North Carolina, Chapel Hill, NC, United States.
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Ibrahim AA, Nsairat H, Al-Sulaibi M, El-Tanani M, Jaber AM, Lafi Z, Barakat R, Abuarqoub DA, Mahmoud IS, Obare SO, Aljabali AAA, Alkilany AM, Alshaer W. Doxorubicin conjugates: a practical approach for its cardiotoxicity alleviation. Expert Opin Drug Deliv 2024; 21:399-422. [PMID: 38623735 DOI: 10.1080/17425247.2024.2343882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Doxorubicin (DOX) emerges as a cornerstone in the arsenal of potent chemotherapeutic agents. Yet, the clinical deployment of DOX is tarnished by its proclivity to induce severe cardiotoxic effects, culminating in heart failure and other consequential morbidities. In response, a panoply of strategies has undergone rigorous exploration over recent decades, all aimed at attenuating DOX's cardiotoxic impact. The advent of encapsulating DOX within lipidic or polymeric nanocarriers has yielded a dual triumph, augmenting DOX's therapeutic efficacy while mitigating its deleterious side effects. AREAS COVERED Recent strides have spotlighted the emergence of DOX conjugates as particularly auspicious avenues for ameliorating DOX-induced cardiotoxicity. These conjugates entail the fusion of DOX through physical or chemical bonds with diminutive natural or synthetic moieties, polymers, biomolecules, and nanoparticles. This spectrum encompasses interventions that impinge upon DOX's cardiotoxic mechanism, modulate cellular uptake and localization, confer antioxidative properties, or refine cellular targeting. EXPERT OPINION The endorsement of DOX conjugates as a compelling stratagem to mitigate DOX-induced cardiotoxicity resounds from this exegesis, amplifying safety margins and the therapeutic profile of this venerated chemotherapeutic agent. Within this ambit, DOX conjugates stand as a beacon of promise in the perpetual pursuit of refining chemotherapy-induced cardiac compromise.
Collapse
Affiliation(s)
- Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mazen Al-Sulaibi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Areej M Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Rahmeh Barakat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Duaa Azmi Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Ismail Sami Mahmoud
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Sherine O Obare
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | | | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| |
Collapse
|
5
|
Eleni Karakatsani M, Estrada H, Chen Z, Shoham S, Deán-Ben XL, Razansky D. Shedding light on ultrasound in action: Optical and optoacoustic monitoring of ultrasound brain interventions. Adv Drug Deliv Rev 2024; 205:115177. [PMID: 38184194 PMCID: PMC11298795 DOI: 10.1016/j.addr.2023.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Monitoring brain responses to ultrasonic interventions is becoming an important pillar of a growing number of applications employing acoustic waves to actuate and cure the brain. Optical interrogation of living tissues provides a unique means for retrieving functional and molecular information related to brain activity and disease-specific biomarkers. The hybrid optoacoustic imaging methods have further enabled deep-tissue imaging with optical contrast at high spatial and temporal resolution. The marriage between light and sound thus brings together the highly complementary advantages of both modalities toward high precision interrogation, stimulation, and therapy of the brain with strong impact in the fields of ultrasound neuromodulation, gene and drug delivery, or noninvasive treatments of neurological and neurodegenerative disorders. In this review, we elaborate on current advances in optical and optoacoustic monitoring of ultrasound interventions. We describe the main principles and mechanisms underlying each method before diving into the corresponding biomedical applications. We identify areas of improvement as well as promising approaches with clinical translation potential.
Collapse
Affiliation(s)
- Maria Eleni Karakatsani
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, NY, USA
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
6
|
Wu Y, Cheng H, Zhu M, Zhang L, Mao Z, Wang C, Liu Z. Monitoring Subtle Changes of Blood-Brain Barrier Permeability via Detection of MiRNA-155 in Brain Microvasculature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21893-21903. [PMID: 37115727 DOI: 10.1021/acsami.3c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The changes of blood-brain barrier (BBB) permeability need to be sensitively reported when purposefully regulating the BBB or during some brain diseases. Currently available techniques for assessment of BBB integrity all suffer from limited sensitivity and only report serious BBB damage. Here, a targeted activatable nanoprobe is created to monitor subtle changes of BBB permeability by detecting the expression levels of BBB permeability-related miRNA (miRNA-155) in brain microvessel endothelial cells (BMECs). The probe is fabricated by coating the BMEC membrane on calcium phosphate (CaP)-mineralized metal-organic framework (MOF) nanoparticles loaded with hybridization chain reaction (HCR) probes. The coating of the BMEC membrane endows the nanoprobe with homologous targeting ability to BBB, and HCR probes released and escaped from lysosomes can be specifically lightened by miRNA-155. The activatable nanoprobe is able to monitor BBB permeability in inflammatory and AD mice. This work provides a new idea for highly sensitive evaluation of the BBB permeability, which has guiding significance in regulating BBB and formulating targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yuting Wu
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Hemei Cheng
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Mengting Zhu
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Li Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, China
| | - Zhennan Mao
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Caixia Wang
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhihong Liu
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, China
| |
Collapse
|
7
|
Salih AK, ALWAN AH, Opulencia MJC, Uinarni H, Khamidova FM, Atiyah MS, Awadh SA, Hammid AT, Arzehgar Z. Evaluation of Cholesterol Thickness of Blood Vessels Using Photoacoustic Technology. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2721427. [PMID: 37090193 PMCID: PMC10115531 DOI: 10.1155/2023/2721427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/05/2022] [Accepted: 06/24/2022] [Indexed: 04/25/2023]
Abstract
One of the primary indicators of plaque vulnerability is the lipid composition of atherosclerotic plaques. Therefore, the medical industry requires a method to evaluate necrotic nuclei in atherosclerosis imaging with sensitivity. In this regard, photoacoustic imaging is a plaque detection method that provides chemical information on lipids and cholesterol thickness in the arterial walls of the patient. This aspect aims to increase the low-frequency axial resolution by developing a new photoacoustic-based system. A photoacoustic system has been developed to detect the cholesterol thickness of the blood vessels to observe the progression of plaque in the heart's blood vessels. The application of the coherent photoacoustic discontinuous correlation tomography technique, which is based on a novel signal processing, significantly increased the cholesterol oleate's sensitivity to plaque necrosis. By enhancing the quality of thickness detection, the system for measuring the thickness of cholesterol in blood vessels has been reduced to approximately 23 microns. The results show that the phase spectrum peaked at 100 Hz at 58.66 degrees, and at 400 Hz, the phase spectrum was 46.37 degrees. The minimum amplitude is 1.95 at 100 Hz and 17.67 at 400 Hz. In conclusion, it can be stated that photoacoustic imaging as a method based on new technologies is of great importance in medical research, which is based on the use of nonionizing radiation to perform diagnostic processes and measure different types of body tissues.
Collapse
Affiliation(s)
| | - Ala Hadi ALWAN
- Ibn Al-Bitar Specialized Center for Cardiac Surgery, Baghdad, Iraq
| | | | - Herlina Uinarni
- Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- Pantai Indah Kapuk Hospital, North Jakarta, Indonesia
| | - Firuza M. Khamidova
- Department of Ophthalmology, Samarkand State Medical Institute, Samarkand, Uzbekistan
- Tashkent State Dental Institute, Tashkent, Uzbekistan
| | | | | | | | - Zeinab Arzehgar
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
8
|
Blackmore DG, Razansky D, Götz J. Ultrasound as a versatile tool for short- and long-term improvement and monitoring of brain function. Neuron 2023; 111:1174-1190. [PMID: 36917978 DOI: 10.1016/j.neuron.2023.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 03/15/2023]
Abstract
Treating the brain with focused ultrasound (FUS) at low intensities elicits diverse responses in neurons, astroglia, and the extracellular matrix. In combination with intravenously injected microbubbles, FUS also opens the blood-brain barrier (BBB) and facilitates focal drug delivery. However, an incompletely understood cellular specificity and a wide parameter space currently limit the optimal application of FUS in preclinical and human studies. In this perspective, we discuss how different FUS modalities can be utilized to achieve short- and long-term improvements, thereby potentially treating brain disorders. We review the ongoing efforts to determine which parameters induce neuronal inhibition versus activation and how mechanoreceptors and signaling cascades are activated to induce long-term changes, including memory improvements. We suggest that optimal FUS treatments may require different FUS modalities and devices, depending on the targeted brain area or local pathology, and will be greatly enhanced by new techniques for monitoring FUS efficacy.
Collapse
Affiliation(s)
- Daniel G Blackmore
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Razansky
- Institute for Biomedical Engineering, Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
9
|
Jo S, Sun IC, Ahn CH, Lee S, Kim K. Recent Trend of Ultrasound-Mediated Nanoparticle Delivery for Brain Imaging and Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:120-137. [PMID: 35184560 DOI: 10.1021/acsami.1c22803] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In view of the fact that the blood-brain barrier (BBB) prevents the transport of imaging probes and therapeutic agents to the brain and thus hinders the diagnosis and treatment of brain-related disorders, methods of circumventing this problem (e.g., ultrasound-mediated nanoparticle delivery) have drawn much attention. Among the related techniques, focused ultrasound (FUS) is a favorite means of enhancing drug delivery via transient BBB opening. Photoacoustic brain imaging relies on the conversion of light into heat and the detection of ultrasound signals from contrast agents, offering the benefits of high resolution and large penetration depth. The extensive versatility and adjustable physicochemical properties of nanoparticles make them promising therapeutic agents and imaging probes, allowing for successful brain imaging and treatment through the combined action of ultrasound and nanoparticulate agents. FUS-induced BBB opening enables nanoparticle-based drug delivery systems to efficiently access the brain. Moreover, photoacoustic brain imaging using nanoparticle-based contrast agents effectively visualizes brain morphologies or diseases. Herein, we review the progress in the simultaneous use of nanoparticles and ultrasound in brain research, revealing the potential of ultrasound-mediated nanoparticle delivery for the effective diagnosis and treatment of brain disorders.
Collapse
Affiliation(s)
- SeongHoon Jo
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul08826, Republic of Korea
| | - In-Cheol Sun
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Cheol-Hee Ahn
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul08826, Republic of Korea
| | - Sangmin Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul02447, Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Gandhi K, Barzegar-Fallah A, Banstola A, Rizwan SB, Reynolds JNJ. Ultrasound-Mediated Blood-Brain Barrier Disruption for Drug Delivery: A Systematic Review of Protocols, Efficacy, and Safety Outcomes from Preclinical and Clinical Studies. Pharmaceutics 2022; 14:pharmaceutics14040833. [PMID: 35456667 PMCID: PMC9029131 DOI: 10.3390/pharmaceutics14040833] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Ultrasound-mediated blood-brain barrier (BBB) disruption has garnered focus as a method of delivering normally impenetrable drugs into the brain. Numerous studies have investigated this approach, and a diverse set of ultrasound parameters appear to influence the efficacy and safety of this approach. An understanding of these findings is essential for safe and reproducible BBB disruption, as well as in identifying the limitations and gaps for further advancement of this drug delivery approach. We aimed to collate and summarise protocols and parameters for achieving ultrasound-mediated BBB disruption in animal and clinical studies, as well as the efficacy and safety methods and outcomes associated with each. A systematic search of electronic databases helped in identifying relevant, included studies. Reference lists of included studies were further screened to identify supplemental studies for inclusion. In total, 107 articles were included in this review, and the following parameters were identified as influencing efficacy and safety outcomes: microbubbles, transducer frequency, peak-negative pressure, pulse characteristics, and the dosing of ultrasound applications. Current protocols and parameters achieving ultrasound-mediated BBB disruption, as well as their associated efficacy and safety outcomes, are identified and summarised. Greater standardisation of protocols and parameters in future preclinical and clinical studies is required to inform robust clinical translation.
Collapse
Affiliation(s)
- Kushan Gandhi
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (K.G.); (A.B.-F.); (A.B.)
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand;
| | - Anita Barzegar-Fallah
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (K.G.); (A.B.-F.); (A.B.)
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand;
| | - Ashik Banstola
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (K.G.); (A.B.-F.); (A.B.)
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand;
| | - Shakila B. Rizwan
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand;
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand
| | - John N. J. Reynolds
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (K.G.); (A.B.-F.); (A.B.)
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand;
- Correspondence: ; Tel.: +64-3479-5781; Fax: +64-3479-7254
| |
Collapse
|
11
|
Ashrafizadeh M, Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Raei M, Hushmandi K, Zarrabi A, Voelcker NH, Aref AR, Hamblin MR, Varma RS, Samarghandian S, Arostegi IJ, Alzola M, Kumar AP, Thakur VK, Nabavi N, Makvandi P, Tay FR, Orive G. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr Polym 2021; 272:118491. [PMID: 34420747 DOI: 10.1016/j.carbpol.2021.118491] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
An important motivation for the use of nanomaterials and nanoarchitectures in cancer therapy emanates from the widespread emergence of drug resistance. Although doxorubicin (DOX) induces cell cycle arrest and DNA damage by suppressing topoisomerase activity, resistance to DOX has severely restricted its anti-cancer potential. Hyaluronic acid (HA) has been extensively utilized for synthesizing nanoparticles as it interacts with CD44 expressed on the surface of cancer cells. Cancer cells can take up HA-modified nanoparticles through receptor-mediated endocytosis. Various types of nanostructures such as carbon nanomaterials, lipid nanoparticles and polymeric nanocarriers have been modified with HA to enhance the delivery of DOX to cancer cells. Hyaluronic acid-based advanced materials provide a platform for the co-delivery of genes and drugs along with DOX to enhance the efficacy of anti-cancer therapy and overcome chemoresistance. In the present review, the potential methods and application of HA-modified nanostructures for DOX delivery in anti-cancer therapy are discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiobiology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - I J Arostegi
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - M Alzola
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
12
|
Recent Technical Progression in Photoacoustic Imaging—Towards Using Contrast Agents and Multimodal Techniques. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11219804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For combining optical and ultrasonic imaging methodologies, photoacoustic imaging (PAI) is the most important and successful hybrid technique, which has greatly contributed to biomedical research and applications. Its theoretical background is based on the photoacoustic effect, whereby a modulated or pulsed light is emitted into tissue, which selectively absorbs the optical energy of the light at optical wavelengths. This energy produces a fast thermal expansion in the illuminated tissue, generating pressure waves (or photoacoustic waves) that can be detected by ultrasonic transducers. Research has shown that optical absorption spectroscopy offers high optical sensitivity and contrast for ingredient determination, for example, while ultrasound has demonstrated good spatial resolution in biomedical imaging. Photoacoustic imaging combines these advantages, i.e., high contrast through optical absorption and high spatial resolution due to the low scattering of ultrasound in tissue. In this review, we focus on advances made in PAI in the last five years and present categories and key devices used in PAI techniques. In particular, we highlight the continuously increasing imaging depth achieved by PAI, particularly when using exogenous reagents. Finally, we discuss the potential of combining PAI with other imaging techniques.
Collapse
|
13
|
Joiner JB, Pylayeva-Gupta Y, Dayton PA. Focused Ultrasound for Immunomodulation of the Tumor Microenvironment. THE JOURNAL OF IMMUNOLOGY 2021; 205:2327-2341. [PMID: 33077668 DOI: 10.4049/jimmunol.1901430] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Focused ultrasound (FUS) has recently emerged as a modulator of the tumor microenvironment, paving the way for FUS to become a safe yet formidable cancer treatment option. Several mechanisms have been proposed for the role of FUS in facilitating immune responses and overcoming drug delivery barriers. However, with the wide variety of FUS parameters used in diverse tumor types, it is challenging to pinpoint FUS specifications that may elicit the desired antitumor response. To clarify FUS bioeffects, we summarize four mechanisms of action, including thermal ablation, hyperthermia/thermal stress, mechanical perturbation, and histotripsy, each inducing unique vascular and immunological effects. Notable tumor responses to FUS include enhanced vascular permeability, increased T cell infiltration, and tumor growth suppression. In this review, we have categorized and reviewed recent methods of using therapeutic ultrasound to elicit an antitumor immune response with examples that reveal specific solutions and challenges in this new research area.
Collapse
Affiliation(s)
- Jordan B Joiner
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yuliya Pylayeva-Gupta
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; .,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Paul A Dayton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; .,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and.,Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599
| |
Collapse
|
14
|
Ultrasound. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Devos D, Hirsch E, Wyse R. Seven Solutions for Neuroprotection in Parkinson's Disease. Mov Disord 2020; 36:306-316. [PMID: 33184908 DOI: 10.1002/mds.28379] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra and accumulation of iron and alpha-synuclein; it follows a characteristic pattern throughout the nervous system. Despite decades of successful preclinical neuroprotective studies, no drug has then shown efficacy in clinical trials. Considering this dilemma, we have reviewed and organized solutions of varying importance that can be exclusive or additive, and we outline approaches to help generate successful development of neuroprotective drugs for PD: (1) select patients in which the targeted mechanism is involved in the pathological process associated with the monitoring of target engagement, (2) combine treatments that target multiple pathways, (3) establish earliest interventions and develop better prodromal biomarkers, (4) adopt rigorous methodology and specific disease-relevant designs for disease-modifying clinical trials, (5) customize drug with better brain biodistribution, (6) prioritize repurposed drugs as a first line approach, and (7) adapt preclinical models to the targeted mechanisms with translational biomarkers to increase their predictive value. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David Devos
- Department of Medical Pharmacology, Expert Center for Parkinson, CHU-Lille, Lille Neuroscience & Cognition, Inserm, zUMR-S1172, LICEND, University of Lille, Lille, France
| | - Etienne Hirsch
- Institut du Cerveau-ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Richard Wyse
- The Cure Parkinson's Trust, London, United Kingdom
| |
Collapse
|
16
|
Yan P, Liu LH, Wang P. Sonodynamic Therapy (SDT) for Cancer Treatment: Advanced Sensitizers by Ultrasound Activation to Injury Tumor. ACS APPLIED BIO MATERIALS 2020; 3:3456-3475. [DOI: 10.1021/acsabm.0c00156] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ping Yan
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou 510515, P. R. China
| | - Li-Han Liu
- School of Pharmaceutical Sciences, Guangdong Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ping Wang
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou 510515, P. R. China
| |
Collapse
|