1
|
Kim E, Lee C, Seo Y, Hong D, Song B, Kim J, Jeong W, Kwon SY, Kim DY, Pyo A. Synthesis and evaluation of a 68Ga-labeled iodinated benzamide derivative as a PET imaging agent for malignant melanoma. Appl Radiat Isot 2025; 220:111791. [PMID: 40127585 DOI: 10.1016/j.apradiso.2025.111791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
Malignant melanoma is a highly aggressive skin cancer with increasing prevalence worldwide. The 5-year survival rate for localized malignant melanoma is 90%, but this drops to 6% if metastasis has occurred at diagnosis. Current positron emission tomography (PET) imaging probes, such as 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), show low sensitivity for metastatic melanoma, underscoring the need for new probes. This study explores the potential of 68Ga-labeled 2,2',2″,2‴-(2-(4-(3-(2-((2-(5-iodopicolinamido)ethyl)(methyl)amino)ethyl)thioureido)benzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (68Ga-MI-0202F1) as a novel PET imaging probe designed for enhanced specificity and sensitivity towards melanin. The precursor MI-0202F1 was synthesized from 5-iodopicolinic acid, 2,2'-diamino-N-methyldiethylamine, and 2,2',2″,2‴-(2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid ((p-SCN-Bn)-DOTA). The precursor was labeled with 68Ga in a reaction vial at 95°C and pH 5.0 for 10 min. The radiochemical purity of the 68Ga-labeled compound was determined using radio-thin-layer chromatography. Cellular uptake of the iodinated benzamide derivative was evaluated in the B16F10 cell line (mouse melanoma) following L-tyrosine treatment. MicroPET studies were conducted at 30 and 60 min post-intravenous injection of the labeled complex into B16F10 tumor-bearing mice. The non-decay-corrected radiochemical yield was 95.96 ± 3.73% (n = 3), and the radiochemical purity exceeded 98%. In vitro studies demonstrated significantly higher uptake of 68Ga-MI-0202F1 in L-tyrosine-treated B16F10 cells compared with untreated cells. In vivo PET imaging showed rapid accumulation and sustained retention of 68Ga-MI-0202F1 in melanoma tumors, with high tumor-to-background ratios. Overall, 68Ga-MI-0202F1 demonstrates potential as an innovative molecular imaging probe for malignant melanoma. Further studies are needed to investigate the potential of MI-0202F1 as a theranostic agent incorporating the radioisotope pairs 68Ga and 177Lu.
Collapse
Affiliation(s)
- Eunsu Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Chaewon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Yejin Seo
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Dagyeong Hong
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Boreum Song
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jiyu Kim
- CNCure Biotech, Hwasun, Republic of Korea
| | | | - Seong-Young Kwon
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Dong-Yeon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea; CNCure Biotech, Hwasun, Republic of Korea.
| | - Ayoung Pyo
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
2
|
Geaneotes PJ, Janosko CP, Afeke C, Deiters A, Floreancig PE. Potent and Selective Oxidatively Labile Ether-Based Prodrugs through Late-Stage Boronate Incorporation. Angew Chem Int Ed Engl 2024; 63:e202409229. [PMID: 38986017 DOI: 10.1002/anie.202409229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
This manuscript describes a new strategy for prodrug synthesis in which a relatively inert ether group is introduced at an early stage in a synthetic sequence and functionalized in the final step to introduce a prodrug-activating group through a chemoselective process. Boryl allyloxy (BAO) ether groups are synthesized through several metal-mediated processes to form entities that are readily cleaved under oxidative conditions commonly found in cancer cells. The high cleavage propensity of the BAO group allows for ether cleavage, making these compounds substantially more hydrolytically stable in comparison to acyl-linked prodrugs while retaining the ability to release alcohols. We report the preparation of prodrug analogues of the natural products camptothecin and pederin from acetal precursors that serve as protecting groups in their synthetic sequences. The BAO acetal groups cleave in the presence of hydrogen peroxide to release the cytotoxic agents. The pederin-based prodrug shows dramatically greater cytotoxicity than negative controls and outstanding selectivity and potency toward cancer cell lines in comparison to non-cancerous cell lines. This late-stage functionalization approach to prodrug synthesis should be applicable to numerous systems that can be accessed through chemoselective processes.
Collapse
Affiliation(s)
- Paul J Geaneotes
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Chasity P Janosko
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Cephas Afeke
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Paul E Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
3
|
Lewis MR, Schaedler AW, Ho KV, Golzy M, Mathur A, Pun M, Gallazzi F, Watkinson LD, Carmack TL, Sikligar K, Anderson CJ, Smith CJ. Evaluation of a bimodal, matched pair theranostic agent targeting prostate-specific membrane antigen. Nucl Med Biol 2024; 136-137:108938. [PMID: 39032262 DOI: 10.1016/j.nucmedbio.2024.108938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Prostate cancer affects 1 in 6 men, and it is the second‑leading cause of cancer-related death in American men. Surgery is one of the main treatment modalities for prostate cancer, but it often results in incomplete resection margins or complete resection that leads to nerve damage and undesirable side effects. In the present work, we have developed a new bimodal tracer, NODAGA-sCy7.5 PSMAi (prostate-specific membrane antigen inhibitor), labeled with the true matched theranostic pair 64Cu/67Cu and a near-infrared fluorescent dye. This agent could potentially be used for concomitant PET imaging, optical surgical navigation, and targeted radiopharmaceutical therapy. METHODS A prostate-specific membrane antigen (PSMA)-targeting urea derivative was conjugated to NODAGA for copper radiolabeling and to the near-infrared fluorophore sulfo-Cy7.5 (sCy7.5). Binding studies were performed in PSMA-positive PC-3 PIP cells, as well as uptake and internalization assays in PC-3 PIP cells and PSMA-negative PC-3 wild type cells. Biodistribution studies of the 64Cu-labeled compound were performed in PC-3 PIP- and PC-3 tumor-bearing mice, and 67Cu biodistributions of the agent were obtained in PC-3 PIP tumor-carrying mice. PET imaging and fluorescence imaging were also performed, using the same molar doses, in the two mouse models. RESULTS The PSMA conjugate bound with high affinity to PSMA-positive prostate cancer cells, as opposed to cells that were PSMA-negative. Uptake and internalization were rapid and PSMA-mediated in PC-3 PIP cells, while only minimal non-specific uptake was observed in PC-3 cells. Biodistribution studies showed specific uptake in PC-3 PIP tumors, while accumulation in PC-3 tumor-bearing mice was low. Furthermore, tumor uptake of the 67Cu-labeled agent in the PC-3 PIP model was statistically equivalent to that of 64Cu. PET and fluorescence imaging at 0.5 nmol per mouse also demonstrated that PC-3 PIP tumors could be clearly detected, while PC-3 tumors showed no tumor accumulation. CONCLUSIONS NODAGA-sCy7.5-PSMAi was specific and selective in detecting PSMA-positive, as opposed to PSMA-negative, tumors in mouse models of prostate cancer. This bioconjugate could potentially be used for PET staging with 64Cu, targeted radiopharmaceutical therapy with 67Cu, and/or image-guided surgery with sCy7.5.
Collapse
Affiliation(s)
- Michael R Lewis
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States of America; Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, United States of America.
| | - Alexander W Schaedler
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States of America; Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America
| | - Khanh-Van Ho
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Department of Chemistry, University of Missouri, Columbia, MO, United States of America
| | - Mojgan Golzy
- Biostatistics Unit, University of Missouri, Columbia, MO, United States of America
| | - Anupam Mathur
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Research Reactor Center, Columbia, MO, United States of America
| | - Michael Pun
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Department of Chemistry, University of Missouri, Columbia, MO, United States of America
| | - Fabio Gallazzi
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Molecular Interactions Core, University of Missouri, Columbia, MO, United States of America
| | - Lisa D Watkinson
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Research Reactor Center, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America
| | - Terry L Carmack
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Research Reactor Center, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America
| | - Kanishka Sikligar
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Department of Chemistry, University of Missouri, Columbia, MO, United States of America
| | - Carolyn J Anderson
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, United States of America; Department of Chemistry, University of Missouri, Columbia, MO, United States of America; Department of Radiology, University of Missouri, Columbia, MO, United States of America
| | - Charles J Smith
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America; Department of Radiology, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
4
|
Filderman JN, Taylor JL, Wang J, Zhang Y, Singh P, Ross MA, Watkins SC, Nedal Al Bzour A, Karapetyan L, Kalinski P, Storkus WJ. Antagonism of regulatory ISGs enhances the anti-melanoma efficacy of STING agonists. Front Immunol 2024; 15:1334769. [PMID: 38312842 PMCID: PMC10835797 DOI: 10.3389/fimmu.2024.1334769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Background Stimulator of Interferon Genes (STING) is a dsDNA sensor that triggers type I inflammatory responses. Recent data from our group and others support the therapeutic efficacy of STING agonists applied intratumorally or systemically in a range of murine tumor models, with treatment benefits associated with tumor vascular normalization and improved immune cell recruitment and function within the tumor microenvironment (TME). However, such interventions are rarely curative and STING agonism coordinately upregulates expression of immunoregulatory interferon-stimulated genes (ISGs) including Arg2, Cox2, Isg15, Nos2, and Pdl1 that may limit treatment benefits. We hypothesized that combined treatment of melanoma-bearing mice with STING agonist ADU-S100 together with antagonists of regulatory ISGs would result in improved control of tumor growth vs. treatment with ADU-S100 alone. Methods Mice bearing either B16 (BRAFWTPTENWT) or BPR20 (BRAFV600EPTEN-/-) melanomas were treated with STING agonist ADU-S100 plus various inhibitors of ARG2, COX2, NOS2, PD-L1, or ISG15. Tumor growth control and changes in the TME were evaluated for combination treatment vs ADU-S100 monotherapy by tumor area measurements and flow cytometry/transcriptional profiling, respectively. Results In the B16 melanoma model, we noted improved antitumor efficacy only when ADU-S100 was combined with neutralizing/blocking antibodies against PD-L1 or ISG15, but not inhibitors of ARG2, COX2, or NOS2. Conversely, in the BPR20 melanoma model, improved tumor growth control vs. ADU-S100 monotherapy was only observed when combining ADU-S100 with ARG2i, COX2i, and NOS2i, but not anti-PD-L1 or anti-ISG15. Immune changes in the TME associated with improved treatment outcomes were subtle but included increases in proinflammatory innate immune cells and activated CD8+CD69+ T cells and varied between the two tumor models. Conclusions These data suggest contextual differences in the relative contributions of individual regulatory ISGs that serve to operationally limit the anti-tumor efficacy of STING agonists which should be considered in future design of novel combination protocols for optimal treatment benefit.
Collapse
Affiliation(s)
- Jessica N Filderman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jennifer L Taylor
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Prashant Singh
- Genomics Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Mark A Ross
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ayah Nedal Al Bzour
- Department of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Lilit Karapetyan
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Benfante V, Stefano A, Ali M, Laudicella R, Arancio W, Cucchiara A, Caruso F, Cammarata FP, Coronnello C, Russo G, Miele M, Vieni A, Tuttolomondo A, Yezzi A, Comelli A. An Overview of In Vitro Assays of 64Cu-, 68Ga-, 125I-, and 99mTc-Labelled Radiopharmaceuticals Using Radiometric Counters in the Era of Radiotheranostics. Diagnostics (Basel) 2023; 13:diagnostics13071210. [PMID: 37046428 PMCID: PMC10093267 DOI: 10.3390/diagnostics13071210] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Radionuclides are unstable isotopes that mainly emit alpha (α), beta (β) or gamma (γ) radiation through radiation decay. Therefore, they are used in the biomedical field to label biomolecules or drugs for diagnostic imaging applications, such as positron emission tomography (PET) and/or single-photon emission computed tomography (SPECT). A growing field of research is the development of new radiopharmaceuticals for use in cancer treatments. Preclinical studies are the gold standard for translational research. Specifically, in vitro radiopharmaceutical studies are based on the use of radiopharmaceuticals directly on cells. To date, radiometric β- and γ-counters are the only tools able to assess a preclinical in vitro assay with the aim of estimating uptake, retention, and release parameters, including time- and dose-dependent cytotoxicity and kinetic parameters. This review has been designed for researchers, such as biologists and biotechnologists, who would like to approach the radiobiology field and conduct in vitro assays for cellular radioactivity evaluations using radiometric counters. To demonstrate the importance of in vitro radiopharmaceutical assays using radiometric counters with a view to radiogenomics, many studies based on 64Cu-, 68Ga-, 125I-, and 99mTc-labeled radiopharmaceuticals have been revised and summarized in this manuscript.
Collapse
Affiliation(s)
- Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | | | - Walter Arancio
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
| | - Antonino Cucchiara
- Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Via Tricomi 5, 90127 Palermo, Italy
| | - Fabio Caruso
- Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Via Tricomi 5, 90127 Palermo, Italy
| | - Francesco Paolo Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Claudia Coronnello
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Monica Miele
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
| | - Alessandra Vieni
- Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Via Tricomi 5, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | - Anthony Yezzi
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
6
|
Lauwerys L, Smits E, Van den Wyngaert T, Elvas F. Radionuclide Imaging of Cytotoxic Immune Cell Responses to Anti-Cancer Immunotherapy. Biomedicines 2022; 10:biomedicines10051074. [PMID: 35625811 PMCID: PMC9139020 DOI: 10.3390/biomedicines10051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer immunotherapy is an evolving and promising cancer treatment that takes advantage of the body’s immune system to yield effective tumor elimination. Importantly, immunotherapy has changed the treatment landscape for many cancers, resulting in remarkable tumor responses and improvements in patient survival. However, despite impressive tumor effects and extended patient survival, only a small proportion of patients respond, and others can develop immune-related adverse events associated with these therapies, which are associated with considerable costs. Therefore, strategies to increase the proportion of patients gaining a benefit from these treatments and/or increasing the durability of immune-mediated tumor response are still urgently needed. Currently, measurement of blood or tissue biomarkers has demonstrated sampling limitations, due to intrinsic tumor heterogeneity and the latter being invasive. In addition, the unique response patterns of these therapies are not adequately captured by conventional imaging modalities. Consequently, non-invasive, sensitive, and quantitative molecular imaging techniques, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) using specific radiotracers, have been increasingly used for longitudinal whole-body monitoring of immune responses. Immunotherapies rely on the effector function of CD8+ T cells and natural killer cells (NK) at tumor lesions; therefore, the monitoring of these cytotoxic immune cells is of value for therapy response assessment. Different immune cell targets have been investigated as surrogate markers of response to immunotherapy, which motivated the development of multiple imaging agents. In this review, the targets and radiotracers being investigated for monitoring the functional status of immune effector cells are summarized, and their use for imaging of immune-related responses are reviewed along their limitations and pitfalls, of which multiple have already been translated to the clinic. Finally, emerging effector immune cell imaging strategies and future directions are provided.
Collapse
Affiliation(s)
- Louis Lauwerys
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium;
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
- Nuclear Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
- Correspondence:
| |
Collapse
|