1
|
Li C, Li Y, Xu Z, Liu Y, Zhong S, Wang C, Du D. The nitrogen-sulfur ratio of acid rain modulates the leaf- and root-mediated co-allelopathy of Solidago canadensis. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:893-904. [PMID: 39031252 DOI: 10.1007/s10646-024-02788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
The majority of allelopathic studies on invasive plants have focused primarily on their leaf-mediated allelopathy, with relatively little attention paid to their root-mediated allelopathy, especially co-allelopathy mediated by both leaves and roots. It is conceivable that the diversified composition of acid rain may influence the allelopathy of invasive plants. This study aimed to evaluate the leaf and root-mediated co-allelopathy of the invasive plant Solidago canadensis L. under acid rain with different nitrogen-sulfur ratios (N/S) on Lactuca sativa L. via a hydroponic incubation. The root-mediated allelopathy of S. canadensis was found to be more pronounced than the leaf-mediated allelopathy of S. canadensis with nitric acid at pH 4.5, but the leaf-mediated allelopathy of S. canadensis was observed to be more pronounced than the root-mediated allelopathy of S. canadensis with sulfuric-rich acid at pH 4.5. The leaf and root-mediated co-allelopathy of S. canadensis was more pronounced than that of either part alone with sulfuric acid at pH 5.6 and nitric acid at pH 4.5, but not with nitric-rich acid at pH 4.5 and sulfuric-rich acid at pH 4.5. Sulfuric acid and sulfuric-rich acid with stronger acidity intensified the leaf-mediated allelopathy of S. canadensis. Nitric acid and nitric-rich acid attenuated the leaf-mediated allelopathy of S. canadensis, and most types of acid rain (especially nitric acid and nitric-rich acid) also attenuated the root-mediated allelopathy of S. canadensis and the leaf and root-mediated co-allelopathy of S. canadensis. Sulfuric acid and sulfuric-rich acid produced a more pronounced effect than nitric acid and nitric-rich acid. Hence, the N/S ratio of acid rain influenced the allelopathy of S. canadensis under acid rain with multiple N/S ratios.
Collapse
Affiliation(s)
- Chuang Li
- Institute of Environment and Ecology & School of Environment and Safety Engineering & School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Yue Li
- Institute of Environment and Ecology & School of Environment and Safety Engineering & School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Zhelun Xu
- Institute of Environment and Ecology & School of Environment and Safety Engineering & School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- Weed Research Laboratory, College of life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingsheng Liu
- Institute of Environment and Ecology & School of Environment and Safety Engineering & School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Shanshan Zhong
- Institute of Environment and Ecology & School of Environment and Safety Engineering & School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Congyan Wang
- Institute of Environment and Ecology & School of Environment and Safety Engineering & School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Daolin Du
- Jingjiang College & Institute of Environment and Ecology & School of Emergency Management & School of Environment and Safety Engineering & School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Afzal MR, Naz M, Ullah R, Du D. Persistence of Root Exudates of Sorghum bicolor and Solidago canadensis: Impacts on Invasive and Native Species. PLANTS (BASEL, SWITZERLAND) 2023; 13:58. [PMID: 38202366 PMCID: PMC10781015 DOI: 10.3390/plants13010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Root exudates of the invasive Solidago canadensis and the cereal crop Sorghum bicolor (L.) Moench cv. 'Hybridsorgo' were tested for allelopathic interactions against native and invasive plant species in a controlled environment. After the surface was sterilized, the seeds of two invasive species (Bromus sterilis and Veronica persica) and two native species (Youngia japonica and Rumex acetosa) were germinated and transplanted into the soil (1:1 mixture of coco peat and sand) that had been conditioned for one month by the cultivation of Solidago canadensis and Sorghum bicolor, both in combination or as unplanted controls. After an additional eight weeks of growth, morphometric measurements of the shoot and root, including foliar characteristics and above- and below-ground biomass accumulation, were performed. The results revealed significant inhibitory effects of root exudates released by Sorghum bicolor and Solidago canadensis on native species' productivity and physiology. The invasive species exhibited variable growth responses, with Veronica persica showing reduced shoot and root expansion, but Bromus sterilis revealed increased shoot and root biomass allocation and nutrition under the exudate treatments. Exudates from Solidago canadensis and Sorghum bicolor together showed synergistic negative effects on native species, while they promoted growth and nutrition in Veronica persica. Taken together, the differential species responses indicate that the tested native species were more sensitive to the allelopathic compounds than the invasive species, which is in line with the theory of novel weapons. The legacy effects of root exudates of both Sorghum bicolor and Solidago canadensis could promote invasive establishment through imposing allelochemical interference competition against native plant species. Understanding the specific allelopathic mechanisms may help with the development of integrated strategies for managing invasive species.
Collapse
Affiliation(s)
- Muhammad Rahil Afzal
- Jingjiang College, Jiangsu University, Zhenjiang 212013, China
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Raza Ullah
- Institute of Environmental and Agricultural Science, Faculty of Life Sciences, University of Okara, Okara 56130, Pakistan;
| | - Daolin Du
- Jingjiang College, Jiangsu University, Zhenjiang 212013, China
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Xu Z, Zhong S, Li Y, Li C, Liu J, Xu Z, Zhu M, Wang C, Du D. The co-phytotoxicity of two Asteraceae invasive plants Solidago canadensis L. and Bidens pilosa L. with different invasion degrees. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1221-1232. [PMID: 38032393 DOI: 10.1007/s10646-023-02716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
The phytotoxicity of invasive plants (IPS) has been identified as one of the main factors influencing their invasion success. The invasion of IPS can occur to varying degrees in the habitats. Two IPS can invade one habitat. This study aimed to evaluate the mono- and co-phytotoxicity of two Asteraceae IPS Solidago canadensis L. and Bidens pilosa L. with different invasion degrees (including light invasion (relative abundance <50%) and heavy invasion (relative abundance ≥50%)) on the horticultural Asteraceae species Lactuca sativa L., through a hydroponic experiment conducted on 9 cm Petri dishes. Leaf extracts of the two IPS can cause significant mono- and co-phytotoxicity. The mono- and co-phytotoxicity of the two IPS were concentration-dependent. The mono-phytotoxicity of S. canadensis was significantly increased with increasing invasion degree, but the opposite was true for the mono-phytotoxicity of B. pilosa. Leaf extracts of B. pilosa with light invasion caused stronger phytotoxicity than those of S. canadensis with light invasion. There may be an antagonistic effect for the co-phytotoxicity caused by mixed leaf extracts of the two IPS compared with those of either S. canadensis or B. pilosa. The phytotoxicity of the two IPS on the growth performance of neighboring plants may play a more important role in their mono-invasion than in their co-invasion. The phytotoxicity appeared to affect the growth performance of S. canadensis individuals more significantly when the invasion was heavy, while the growth performance of B. pilosa individuals seemed to be more influenced by phytotoxicity when the invasion was light. Consequently, the concentration of leaf extracts of IPS, the invasion degree of IPS, the species identity of IPS, and the species number of IPS modulated the mono- and co-phytotoxicity of the two IPS.
Collapse
Affiliation(s)
- Zhelun Xu
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Polluants, Jiangsu University, Zhenjiang, 212013, China
| | - Shanshan Zhong
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Polluants, Jiangsu University, Zhenjiang, 212013, China
| | - Yue Li
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Polluants, Jiangsu University, Zhenjiang, 212013, China
| | - Chuang Li
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Polluants, Jiangsu University, Zhenjiang, 212013, China
| | - Jun Liu
- Zhenjiang Environmental Monitoring Center of Jiangsu Province, Zhenjiang, 212009, China
| | - Zhongyi Xu
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Polluants, Jiangsu University, Zhenjiang, 212013, China
| | - Mawei Zhu
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Polluants, Jiangsu University, Zhenjiang, 212013, China
| | - Congyan Wang
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China.
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Polluants, Jiangsu University, Zhenjiang, 212013, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Daolin Du
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China.
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Polluants, Jiangsu University, Zhenjiang, 212013, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
4
|
Perera PCD, Chmielowiec C, Szymura TH, Szymura M. Effects of extracts from various parts of invasive Solidago species on the germination and growth of native grassland plant species. PeerJ 2023; 11:e15676. [PMID: 37529210 PMCID: PMC10389070 DOI: 10.7717/peerj.15676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
Allelopathy is an important factor influencing whether an invasive plant species can become successfully established in a new range through disrupting the germination and growth of native plant species. Goldenrods (Solidago species) are one of the most widespread invasive taxa in Central Europe of North American origin. Owing to their high environmental impact and wide distribution range, invasive Solidago species should be controlled in Europe, and the areas invaded by them should be restored. Numerous studies have reported the allelopathic effects of Solidago gigantea and Solidago canadensis, but the results are inconsistent regarding differences in the allelopathic effects of particular plant parts and in the sensitivity to Solidago allelopathic effects among native species as well as between the two invasive species themselves. In this study, we aimed to analyse the effect of water extracts from S. canadensis and S. gigantea parts (roots, rhizomes, stems, leaves, and inflorescences) on the germination and initial growth of seedlings of 13 grassland species that typically grow in Central Europe. The tested grassland species differed in susceptibility to Solidago allelopathy, with the most resistant species being Schedonorus pratensis, Lolium perenne, Trifolium pratense, Daucus carota and Leucanthemum vulgare. The inhibitory effect of 10% water extracts from leaves and flowers were stronger than those from rhizomes, roots, and stems without leaves, regardless of the Solidago species. Our study results imply that reducing the allelopathic effect of Solidago during habitat restoration requires removal of the aboveground parts, including fallen leaves. The allelopathic effects of roots and rhizomes seem to be of secondary importance.
Collapse
Affiliation(s)
| | - Cezary Chmielowiec
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Magdalena Szymura
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
5
|
Zhong S, Xu Z, Li Y, Li C, Yu Y, Wang C, Du D. What modulates the impacts of acid rain on the allelopathy of the two Asteraceae invasives? ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:114-126. [PMID: 36652123 DOI: 10.1007/s10646-023-02623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Most of the allelopathic studies have focused on the independent allelopathy of one invasive plant, but have ignored the co-allelopathy of the two invasives. The variations in the type of acid rain can modulate the invasiveness of invasives via the changes in the allelopathy. Thus, it is vital to elucidate the allelopathy of invasives, particularly the co-allelopathy of the two invasives, under acid rain with different types, to illuminate the mechanisms driving the co-invasion of two invasives under diversified acid rain. However, little progress has been finished in this aspect presently. This study aimed to evaluate the co-allelopathy of two Asteraceae invasives Solidago canadensis L. and Erigeron annuus L. treated with acid rain with different nitrogen-to-sulfur ratios on seed germination and seedling growth of the horticultural Asteraceae species Lactuca sativa L. via a hydroponic experiment. Aqueous extracts of the two Asteraceae invasives generated obvious allelopathy on L. sativa. S. canadensis aqueous extracts caused stronger allelopathy. There may be an antagonistic effect for the co-allelopathy of the two Asteraceae invasives. Nitric acid at pH 5.6 weakened the allelopathy of the two Asteraceae invasives, but the other types of acid rain strengthened the allelopathy of the two Asteraceae invasives. The allelopathy of the two Asteraceae invasives increases with the increasing acidity of acid rain, but the allelopathy of the two Asteraceae invasives decreases with the increasing nitrogen-to-sulfur ratio of acid rain. Accordingly, the species number of invasives, and the acidity and type of acid rain modulated the impacts of acid rain on the allelopathy of the two Asteraceae invasives.
Collapse
Affiliation(s)
- Shanshan Zhong
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhelun Xu
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yue Li
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chuang Li
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Youli Yu
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Congyan Wang
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Daolin Du
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
6
|
He YH, Rutherford S, Javed Q, Wan JS, Ren GQ, Hu WJ, Xiang Y, Zhang YR, Sun JF, Du DL. Mixed litter and incubation sites drive non-additive responses in seed germination and seedling growth of lettuce. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Yu Y, Cheng H, Wei M, Wang S, Wang C. Silver nanoparticles intensify the allelopathic intensity of four invasive plant species in the Asteraceae. AN ACAD BRAS CIENC 2022; 94:e20201661. [PMID: 35703691 DOI: 10.1590/0001-3765202220201661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
This study aimed to estimate the allelopathic intensity of four Asteraceae invasive plant species (IPS), including Conyza canadensis (L.) Cronq., Erigeron annuus (L.) Pers., Bidens pilosa (L.), and Aster subulatus Michx., by testing the effect of leaf extracts on the seed germination and seedling growth (SGe and SGr) of lettuce (Lactuca sativa L.) in combination with two particle sizes of silver nanoparticles. These four IPS decreased the germination of lettuce seeds but increased the growth of lettuce seedlings. The allelopathic intensity of the four IPS decreased in the following order: B. pilosa > C. canadensis > E. annuus > A. subulatus. Silver nanoparticles decreased the SGe and SGr of lettuce. The 20 nm silver nanoparticles affected the competition intensity for water and the absorption of inorganic salts by lettuce more intensively than the 80 nm nanoparticles. Silver nanoparticles intensify the allelopathic intensity of the four invasive plant species on the SGe and SGr of lettuce. The allelopathic intensity of B. pilosa was higher than that of the other three IPS when they were polluted with silver nanoparticles. Thus, silver nanoparticles could facilitate the invasion process of the four IPS, particularly B. pilosa, via an increase in the intensity of allelopathy.
Collapse
Affiliation(s)
- Youli Yu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huiyuan Cheng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mei Wei
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shu Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Congyan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
8
|
Wang C, Yu Y, Cheng H, Du D. Which factor contributes most to the invasion resistance of native plant communities under the co-invasion of two invasive plant species? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152628. [PMID: 34963604 DOI: 10.1016/j.scitotenv.2021.152628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Two invasive plant species (IPS) can co-invade the same plant community. As the number of IPS increases under the co-invasion of two IPS, plant taxonomic and functional diversity, community invasibility, community stability, invasion resistance, and invasion intensity and invasiveness of IPS and their interrelationships may be altered. This study aimed to quantify the contribution of plant taxonomic and functional diversity, community invasibility, community stability, and invasion intensity and invasiveness of IPS to the invasion resistance of native plant communities under the co-invasion of the two IPS Erigeron annuus (L.) Pers. and Solidago canadensis L. in eastern China. This study also defined a method to quantify the invasion resistance of native plant communities designated the invasion resistance index. The community-weighted mean trait values of native plants and plant diversity are the factors that are the most critical to determine the invasion resistance of native plant communities. Thus, the invasion resistance of native plant communities primarily depends on the three following factors: the relative abundance of natives, the growth performance of natives, and the diversity of natives. All levels of invasion significantly decrease the invasion resistance of native plant communities. The two IPS antagonistically affect the invasion resistance of native plant communities less under co-invasion compared with their independent invasion.
Collapse
Affiliation(s)
- Congyan Wang
- School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Youli Yu
- School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China
| | - Huiyuan Cheng
- School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
9
|
Chen R, Jiang W, Liu Y, Wang Y, Fan H, Chen X, Shen X, Yin C, Mao Z. Amygdalin and Benzoic Acid on the Influences of the Soil Environment and Growth of Malus hupehensis Rehd. Seedlings. ACS OMEGA 2021; 6:12522-12529. [PMID: 34056402 PMCID: PMC8154122 DOI: 10.1021/acsomega.1c00206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Crop rotation in fruit trees is an effective approach for addressing some of the problems of continuous cropping. To determine whether aged peach orchard soil is suitable for planting apple trees, we studied the effects of two substances abundant in aged peach orchard soil-amygdalin and benzoic acid-on the soil microbial community structure, soil enzyme activity, and the growth of Malus hupehensis Rehd. seedlings. Soils treated with amygdalin (T1), benzoic acid (T2), and a mixed solution of amygdalin and benzoic acid (T3) were used to plant M. hupehensis Rehd. seedlings. Compared with fallow (control) soil, the soil microbial community structure, soil enzyme activities, and root protective enzyme activities, leaf chlorophyll content, and net photosynthetic rate decreased in the three treatments. The biomass and root index of M. hupehensis Rehd. seedlings significantly decreased. Compared with T3, the plant height, ground diameter, fresh weight, dry weight, root length, root surface area, root volume, and root respiration rate of M. hupehensis Rehd. seedlings in T2 in 2015 (2016 in parentheses) decreased by 19.3% (12.6%), 8.7% (7.1%), 21.2% (13.3%), 9.1% (19.6%), 7.9% (25.3%), 40.7% (28.8%), 46.2% (21.1%), and 44.2% (27.5%), respectively. Compared with T3, the same variables in T1 in 2015 (2016 in parentheses) decreased by 34.9% (16.7%), 27.6% (9.8%), 53.6% (19.4%), and 50% (20.5%), 24.1% (31.4%), 55.1% (37.6%), 63.2% (28.2%), and 47.0% (28.7%), respectively. Thus, the inhibitory effect of T3 was the strongest, followed by T2 and T1. In sum, amygdalin and benzoic acid are harmful substances in aged peach orchard soil that inhibit the growth of M. hupehensis Rehd. seedlings.
Collapse
Affiliation(s)
- Ran Chen
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Weitao Jiang
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yusong Liu
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yanfang Wang
- College
of Chemistry and Material Science, Shandong
Agricultural University, Tai’an, Shandong 271018, China
| | - Hai Fan
- College
of Chemistry and Material Science, Shandong
Agricultural University, Tai’an, Shandong 271018, China
| | - Xuesen Chen
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xiang Shen
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Chengmiao Yin
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Zhiquan Mao
- State
Key Laboratory of Crop Biology, College of Horticulture Science and
Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
10
|
Effects of Canada Goldenrod Invasion on Soil Extracellular Enzyme Activities and Ecoenzymatic Stoichiometry. SUSTAINABILITY 2021. [DOI: 10.3390/su13073768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The rapid expansion of Canada goldenrod (Solidago canadensis L.) in China has drawn considerable attention as it may not only decrease vegetation diversity but also alter soil nutrient cycling in the affected ecosystems. Soil extracellular enzymes mediate nutrient cycling by catalyzing the organic matter decomposition; however, the mechanisms by which alien plant invasion may affect soil extracellular enzymes remain unclear. The objective of this study was to investigate the responses of soil extracellular enzyme activities and ecoenzymatic stoichiometry to S. canadensis invasion. Several extracellular enzymatic activities related to carbon, nitrogen, and phosphorus cycling were measured using a fluorometric method. Ecoenzymatic stoichiometry was used as a proxy of soil microbial metabolic limitations. S. canadensis invasion appeared to be associated with decreased activities of enzymes and with substantial conversions of microbial metabolic carbon and nitrogen limitations. The changes in the activities of extracellular enzymes and the limitations of microbial metabolism were correlated with the alterations in the nutrient availability and resource stoichiometry in the soil. These findings reveal that the alterations in soil available nutrients associated with S. canadensis invasion may regulate extracellular enzymatic activities and cause microbial metabolic limitations, suggesting that S. canadensis invasion considerably affects biogeochemical cycling processes.
Collapse
|
11
|
Cheng H, Wu B, Yu Y, Wang S, Wei M, Wang C, Du D. The allelopathy of horseweed with different invasion degrees in three provinces along the Yangtze River in China. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:483-495. [PMID: 33854278 PMCID: PMC7981341 DOI: 10.1007/s12298-021-00962-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED The effect of allelopathy from invasive alien plants (IAPs) on native species is one of the main factors for their adaptation and diffusion. IAPs can have different degrees of invasion under natural succession and are distributed in numerous regions. Seed germination and seedling growth (SGe-SGr) play a crucial role in population recruitment. Thus, it is critical to illustrate the differences in the allelopathy caused by an IAP with different degrees of invasion in numerous regions on SGe-SGr of native species to describe the primary force behind their adaptation and diffusion. This study assessed the allelopathy of the notorious IAP horseweed (Conyza canadensis (L.) Cronq.) on SGe-SGr of the native lettuce species (Lactuca sativa L.) under different degrees of invasion (light degree of invasion and heavy degree of invasion) in three provinces (Jiangsu, Anhui, and Hubei) along the Yangtze River in China. The allelopathy of horseweed leaf extract on lettuce SGe-SGr remarkably increased with the increased degree of invasion, which may be due to the buildup of allelochemicals generated by horseweed with a heavy degree of invasion compared with a light degree of invasion. A high concentration of horseweed leaf extract resulted in noticeably stronger allelopathy on lettuce SGe-SGr compared to the extract with a low concentration. There are noticeable differences in the allelopathy of the extract of horseweed leaves from different provinces on lettuce SGe-SGr with the following order i.e. Jiangsu > Hubei > Anhui. This may be due to the high latitudes for the three sampling sites in Jiangsu compared with the latitudes for the collection sites in Hubei and Anhui. There are certain differences in the environments among the three provinces. Thus, the allelopathy of horseweed on SGe-SGr of lettuce may have a greater negative impact in Jiangsu compared to the other two provinces. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00962-y.
Collapse
Affiliation(s)
- Huiyuan Cheng
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Bingde Wu
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
- School of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, 657000 China
| | - Youli Yu
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Shu Wang
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Mei Wei
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Congyan Wang
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Daolin Du
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| |
Collapse
|