1
|
Rishan ST, Kline RJ, Rahman MS. Exploitation of environmental DNA (eDNA) for ecotoxicological research: A critical review on eDNA metabarcoding in assessing marine pollution. CHEMOSPHERE 2024; 351:141238. [PMID: 38242519 DOI: 10.1016/j.chemosphere.2024.141238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The rise in worldwide population has led to a noticeable spike in the production, consumption, and transportation of energy and food, contributing to elevated environmental pollution. Marine pollution is a significant global environmental issue with ongoing challenges, including plastic waste, oil spills, chemical pollutants, and nutrient runoff, threatening marine ecosystems, biodiversity, and human health. Pollution detection and assessment are crucial to understanding the state of marine ecosystems. Conventional approaches to pollution evaluation usually represent laborious and prolonged physical and chemical assessments, constraining their efficacy and expansion. The latest advances in environmental DNA (eDNA) are valuable methods for the detection and surveillance of pollution in the environment, offering enhanced sensibility, efficacy, and involvement. Molecular approaches allow genetic information extraction from natural resources like water, soil, or air. The application of eDNA enables an expanded evaluation of the environmental condition by detecting both identified and unidentified organisms and contaminants. eDNA methods are valuable for assessing community compositions, providing indirect insights into the intensity and quality of marine pollution through their effects on ecological communities. While eDNA itself is not direct evidence of pollution, its analysis offers a sensitive tool for monitoring changes in biodiversity, serving as an indicator of environmental health and allowing for the indirect estimation of the impact and extent of marine pollution on ecosystems. This review explores the potential of eDNA metabarcoding techniques for detecting and identifying marine pollutants. This review also provides evidence for the efficacy of eDNA assessment in identifying a diverse array of marine pollution caused by oil spills, harmful algal blooms, heavy metals, ballast water, and microplastics. In this report, scientists can expand their knowledge and incorporate eDNA methodologies into ecotoxicological research.
Collapse
Affiliation(s)
- Sakib Tahmid Rishan
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Richard J Kline
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| |
Collapse
|
2
|
Ibor OR, Khan EA, Arkuwe A. A bioanalytical approach for assessing the effects of soil extracts from solid waste dumpsite in Calabar (Nigeria) on lipid and estrogenic signaling of fish Poeciliopsis lucida hepatocellular carcinoma-1 cells in vitro and in vivo African catfish ( Clarias gariepinus). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:774-789. [PMID: 37504673 DOI: 10.1080/15287394.2023.2240839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In applying bioanalytical approaches, the aim of this study was to determine the toxicity of contaminants derived from a solid waste dumpsite in Calabar (Nigeria), by investigating the alterations of lipid and estrogen signaling pathways in Poeciliopsis lucida hepatocellular carcinoma-1 (PLHC-1) cells and compared to in vivo African catfish (Clarias gariepinus), using polar, nonpolar and elutriate extraction methods. Cells were exposed for 48 hr period to different concentrations of the contaminant extracts. The PLHC-1 cells were evaluated for lipid responses as follows adipoRed assay, retinoid x receptor (rxr), peroxisome proliferator-activated receptor isoforms (ppar-α and γ), estrogen receptor (er-α) and vitellogenin (vtg) transcripts. The lipid signaling activation was also assessed in vivo using C. gariepinus, where hepatic levels of ppar-α were determined at both transcript and functional proteins levels. Data showed variable-, extract type and concentration-specific elevations in mRNA and protein levels for lipidomic and estrogenic effects. These effects were either biphasic at low and high concentrations, depending upon extract type, or concentration-dependent elevations. In general, these toxicological responses may be attributed to soil organic and inorganic contaminants burden previously derived from the dumpsite. Thus, our data demonstrate a unique lipid and endocrine-disruptive chemical (EDC) effects of each soil extract, suggesting multiple and complex contaminant interactions in the environment and biota. Analysis of numerous soil- or sediment-bound contaminants have numerous limitations and cost implications for developing countries. Our approach provides a bioanalytical protocol and endpoints for measuring the metabolic and EDC effects of complex environmental matrices for ecotoxicological assessment and monitoring.
Collapse
Affiliation(s)
- Oju Richard Ibor
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Essa Ahsan Khan
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Augustine Arkuwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
3
|
Almeda R, Kuddithamby G, Alonso-Lópeza O, Vilas A, Christelle C, Loisel T, Nielsen TG, Cachot J, Beiras R. A protocol for lixiviation of micronized plastics for aquatic toxicity testing. CHEMOSPHERE 2023; 333:138894. [PMID: 37164198 DOI: 10.1016/j.chemosphere.2023.138894] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Plastics contain various types and amounts of additives that can leach into the water column when entering aquatic ecosystems. Some leached plastic additives are hazardous to marine biota at environmentally relevant concentrations. Disparate methodological approaches have been adopted for toxicity testing of plastic leachates, making comparison difficult. Here we propose a protocol to standardize the methodology to obtain leachates from microplastics (MPs) for aquatic toxicity testing. Literature reviewing and toxicity tests using marine model organisms and different types of MPs were conducted to define the main methodological aspects of the protocol. Acute exposure to leachates from the studied plastics caused negative effects on the early life stages of sea urchins and marine bacteria. We provide recommendations of key factors influencing MPs lixiviation, such as MP size (<250 μm), solid-to-liquid ratio (1-10 g/L), mixing conditions (1-60 rpm), and lixiviation time (72 h). The proposed methodology was successful to determine the toxicity of leachates from different micronized plastics on marine biota. Our recommendations balance feasibility and environmental relevance, and their use would help ensure comparability amongst studies for a better assessment of the toxicity of plastic leachates on aquatic biota.
Collapse
Affiliation(s)
- Rodrigo Almeda
- EOMAR Group, ECOAQUA, University of Las Palmas de Gran Canaria, Spain.
| | | | - Olalla Alonso-Lópeza
- EOMAR Group, ECOAQUA, University of Las Palmas de Gran Canaria, Spain; ECOTOX Group, ECIMAT-CIM, University of Vigo, Spain
| | | | | | - Tara Loisel
- EPOC UMR 5805, University of Bordeaux, CNRS and INP Bordeaux, France
| | | | - Jérôme Cachot
- EPOC UMR 5805, University of Bordeaux, CNRS and INP Bordeaux, France
| | | |
Collapse
|
4
|
Palumbo MT, Russo S, Polesello S, Guzzella L, Roscioli C, Marziali L, Valsecchi L, Cappelli F, Pascariello S, Tasselli S, Villa S, Peruzzo M, Culatina S, Bellotti G, Turolla A, Antonelli M, Malpei F, Valsecchi S. Integrated Exposure and Algal Ecotoxicological Assessments of Effluents from Secondary and Advanced-Tertiary Wastewater-Treatment Plants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2404-2419. [PMID: 35781318 PMCID: PMC9804270 DOI: 10.1002/etc.5424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/16/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The great concern over the environmental impact of wastewaters has led to the designing of advanced treatment processes to upgrade conventional treatment plants and achieve a significant reduction of contaminants in receiving waters. In the present study we combined chemical and ecotoxicological analyses, aiming to evaluate the reduction of toxicity effects associated with the removal of micropollutants and to define the contribution of the detected compounds to the overall toxicity of the mixtures in a series of wastewater effluents collected from a secondary treatment (OUT 2) and from a tertiary activated carbon treatment (OUT 3) plant. The target compounds were selected after a screening procedure among pharmaceuticals, musk fragrances, and trace metals. The classical algal growth inhibition test was conducted on the original effluent samples and on different fractions obtained by solid-phase extraction (SPE) treatment. A good accordance was found between the removal of toxicity (30%-80%) and organic compounds (70%-80%) after the tertiary treatment, suggesting its high efficiency to improve the wastewater quality. The discrepancy between the contribution to the overall toxicity of the nonadsorbable compounds (i.e., inorganic or very polar organic compounds) as experimentally measured by the SPE bioassays (18%-76%) and calculated by the concentration addition approach (>97%) could be mitigated by including the bioavailability correction in metal-toxicity modeling of wastewater mixtures. For the organic compounds, the toxic equivalency method enabled us to quantify the portion of toxicity explained by the detected chemicals in both OUT 2 (82%-104%) and OUT 3 (5%-57%), validating the selection of the target molecules. The applied integrating approach could be implemented by the inclusion of both additional target chemicals and toxicity endpoints. Environ Toxicol Chem 2022;41:2404-2419. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Simona Russo
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
- Department of Environmental SciencesUniversity of Milano BicoccaMilanItaly
| | - Stefano Polesello
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
| | - Licia Guzzella
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
| | - Claudio Roscioli
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
| | - Laura Marziali
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
| | - Lucia Valsecchi
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
| | - Francesca Cappelli
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
- Department of Science and High TechnologyUniversity of InsubriaComoItaly
| | - Simona Pascariello
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
| | - Stefano Tasselli
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
| | - Sara Villa
- Department of Environmental SciencesUniversity of Milano BicoccaMilanItaly
| | | | | | | | - Andrea Turolla
- Department of Civil and Environmental EngineeringPolitecnico di MilanoMilanItaly
| | - Manuela Antonelli
- Department of Civil and Environmental EngineeringPolitecnico di MilanoMilanItaly
| | - Francesca Malpei
- Department of Civil and Environmental EngineeringPolitecnico di MilanoMilanItaly
| | - Sara Valsecchi
- Water Research Institute‐National Research Council (IRSA‐CNR)BrugherioItaly
| |
Collapse
|
5
|
Della Torre C, Liberatori G, Ghilardi A, Del Giacco L, Puccini M, Ferraro F, Vitolo S, Corsi I. The zebrafish (Danio rerio) embryo-larval contact assay combined with biochemical biomarkers and swimming performance in sewage sludge and hydrochar hazard assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119053. [PMID: 35227847 DOI: 10.1016/j.envpol.2022.119053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Hydrothermal carbonization is considered a powerful technology to convert sewage sludge (SS) into a valuable carbonaceous solid known as hydrochar (HC). Up to now criteria for landfill application of SS and HC are based only on physicochemical properties and levels of pollutant residues. Nevertheless, to ensure their safe environmental applications it is mandatory to develop biosensors which can provide relevant information on their toxic potential for natural ecosystems. Therefore, this study aimed to assess the suitability of a contact assay using zebrafish embryo/larvae combined with sub-lethal end-points to evaluate the hazard associated with SS and related HC exposure. A suite of biomarkers was also applied on larvae, related to detoxification and oxidative stress as the activity of Ethoxyresorufin-O-deethylase, glutathione-S-transferase, and catalase, the content of reactive oxygen species and the behavioral assay using the DanioVision™ chamber. Legacy priority pollutants were also measured either in SS and HC tested samples and in contact waters. The exposure to SS caused higher lethality compared to HC. No significant changes in the activity of oxidative stress markers was observed upon exposure to both matrices. The behavioral test showed a hypoactivity condition in larvae exposed to both SS and HC with the effects of SS stronger than HC. Chemical analysis revealed the presence of trace elements and halogenated compounds in either SS, HC. Heavy metals were also released in contact waters, while volatile hydrocarbons (C6-C10) and halogenated compounds resulted below LOD (<0.05 μ L-1). Our study highlights the suitability of zebrafish embryotoxicity test, coupled with behavioral traits, as screening tool for assessing potential risks, associated with the landfill application of both SS and HC, for aquatic wildlife.
Collapse
Affiliation(s)
| | - Giulia Liberatori
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Anna Ghilardi
- Department of Biosciences, University of Milano, Milano, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Luca Del Giacco
- Department of Biosciences, University of Milano, Milano, Italy
| | - Monica Puccini
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Fabrizio Ferraro
- Laboratori pH - Gruppo TÜV SÜD, Loc. Sambuca Tavarnelle Val Di Pesa, Italy
| | - Sandra Vitolo
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| |
Collapse
|
6
|
Schuijt LM, Peng FJ, van den Berg SJP, Dingemans MML, Van den Brink PJ. (Eco)toxicological tests for assessing impacts of chemical stress to aquatic ecosystems: Facts, challenges, and future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148776. [PMID: 34328937 DOI: 10.1016/j.scitotenv.2021.148776] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Monitoring of chemicals in the aquatic environment by chemical analysis alone cannot completely assess and predict the effects of chemicals on aquatic species and ecosystems. This is primarily because of the increasing number of (unknown) chemical stressors and mixture effects present in the environment. In addition, the ability of ecological indices to identify underlying stressors causing negative ecological effects is limited. Therefore, additional complementary methods are needed that can address the biological effects in a direct manner and provide a link to chemical exposure, i.e. (eco)toxicological tests. (Eco)toxicological tests are defined as test systems that expose biological components (cells, individuals, populations, communities) to (environmental mixtures of) chemicals to register biological effects. These tests measure responses at the sub-organismal (biomarkers and in vitro bioassays), whole-organismal, population, or community level. We performed a literature search to obtain a state-of-the-art overview of ecotoxicological tests available for assessing impacts of chemicals to aquatic biota and to reveal datagaps. In total, we included 509 biomarkers, 207 in vitro bioassays, 422 tests measuring biological effects at the whole-organismal level, and 78 tests at the population- community- and ecosystem-level. Tests at the whole-organismal level and biomarkers were most abundant for invertebrates and fish, whilst in vitro bioassays are mostly based on mammalian cell lines. Tests at the community- and ecosystem-level were almost missing for organisms other than microorganisms and algae. In addition, we provide an overview of the various extrapolation challenges faced in using data from these tests and suggest some forward looking perspectives. Although extrapolating the measured responses to relevant protection goals remains challenging, the combination of ecotoxicological experiments and models is key for a more comprehensive assessment of the effects of chemical stressors to aquatic ecosystems.
Collapse
Affiliation(s)
- Lara M Schuijt
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Feng-Jiao Peng
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Sanne J P van den Berg
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Milou M L Dingemans
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
7
|
Yang Y, Chen Z, Zhang J, Wu S, Yang L, Chen L, Shao Y. The challenge of micropollutants in surface water of the Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146537. [PMID: 33774309 DOI: 10.1016/j.scitotenv.2021.146537] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The Yangtze River, the third largest river and supporting nearly one-third of Chinese population, has been severely polluted in recent decades. Among the numerous pollutants, organic micropollutants, as one kind of important emerging contaminants, are currently key contaminants of concern. However, few studies have focused on their mixture environmental impacts, especially for the complex environmental mixtures. In the current study, four categories of organic micropollutants, including 16 polycyclic aromatic hydrocarbons (PAHs), 32 polychlorinated biphenyls (PCBs), 27 organochlorine pesticides (OCPs) and 20 pharmaceutical and personal care products (PPCPs) are analyzed in 10 study sites on the Yangtze River. Subsequently, comprehensive risk assessment for micropollutant mixtures was conducted by risk quotient based on the sum of PEC/PNEC values (RQMEC/PNEC) and risk quotient based on the toxic units (RQSTU). The mixture risk evaluation based on the detected environmental concentrations indicates that micropollutant mixtures in surface water of the Yangtze River exhibited relative high risks for aquatic organisms. The observed results revealed that mixture risk assessments have to consider the complexity of environmental samples; PCBs dominated main mixture risks in the upper stream; PAHs contributed major comprehensive risks in the middle stream; and OCPs were the key micropollutants in the downstream. The outcomes of the present study here can serve for pollution control in the Yangtze River, which provide the scientific underpinnings and regulatory reference for risk management and river protection.
Collapse
Affiliation(s)
- Yinjie Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Jialing Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Siqi Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Li Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Lin Chen
- Department of Otorhinolaryngology, The first Hospital Affiliated to Army Medical University (Southwest Hospital), Chongqing 400038, PR China
| | - Ying Shao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
8
|
Dopp E, Pannekens H, Gottschlich A, Schertzinger G, Gehrmann L, Kasper-Sonnenberg M, Richard J, Joswig M, Grummt T, Schmidt TC, Wilhelm M, Tuerk J. Effect-based evaluation of ozone treatment for removal of micropollutants and their transformation products in waste water. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:418-439. [PMID: 33622194 DOI: 10.1080/15287394.2021.1881854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aim of this interdisciplinary research project in North Rhine-Westphalia (NRW), Germany, entitled "Elimination of pharmaceuticals and organic micropollutants from waste water" involved the conception of cost-effective and innovative waste-water cleaning methods. In this project in vitro assays, in vivo assays and chemical analyses were performed on three municipal waste-water treatment plants (WWTP). This publication focuses on the study of the in vitro bioassays. Cytotoxic, estrogenic, genotoxic and mutagenic effects of the original as well as enriched water samples were monitored before and after wastewater treatment steps using MTT and PAN I, ER Calux and A-YES, micronucleus and Comet assays as well as AMES test. In most cases, the measured effects were reduced after ozonation, but in general, the biological response depended upon the water composition of the WWTP, in particular on the formed by-products and concentration of micropollutants. In order to be able to assess the genotoxic and/or mutagenic potential of waste-water samples using bioassays like Ames test, Comet assay or micronucleus test an enrichment of the water sample via solid-phase extraction is recommended. This is in agreement with previous studies such as the "ToxBox"-Project of the Environmental Agency in Germany.
Collapse
Affiliation(s)
- Elke Dopp
- Department of Toxicology, IWW Water Center, Mülheim A. D. Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Helena Pannekens
- Department of Toxicology, IWW Water Center, Mülheim A. D. Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Anne Gottschlich
- Department of Toxicology, IWW Water Center, Mülheim A. D. Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Gerhard Schertzinger
- Department of Toxicology, IWW Water Center, Mülheim A. D. Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Linda Gehrmann
- Department of Environmental Hygiene and Trace Substances, Institute of Energy and Environmental Technology (IUTA), Duisburg, Germany
| | - Monika Kasper-Sonnenberg
- Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Jessica Richard
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Matthias Joswig
- Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Tamara Grummt
- Department of Water Hygiene and Toxicology, Umweltbundesamt (UBA), Bad Elster, Germany
| | - Torsten C Schmidt
- Department of Toxicology, IWW Water Center, Mülheim A. D. Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
- Faculty of Chemistry, Instrumental Analytical Chemistry (IAC), University of Duisburg-Essen, Essen, Germany
| | - Michael Wilhelm
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
- Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Jochen Tuerk
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
- Department of Environmental Hygiene and Trace Substances, Institute of Energy and Environmental Technology (IUTA), Duisburg, Germany
| |
Collapse
|
9
|
Ibor OR, Khan EA, Arukwe A. Toxicity assessment of Lemna solid waste dumpsite (Calabar, Nigeria) using different extraction methods and toxicological responses of PLHC-1 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103554. [PMID: 33290873 DOI: 10.1016/j.etap.2020.103554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
In the present study, we have investigated the effects of three (elutriate, polar and non-polar) different soil extraction methods from the Lemna solid waste dumpsite (Calabar, Nigeria) on the biotransformation, antioxidant and cellular defense responses of PLHC-1 cell line. Following a 48 h exposure period to different concentrations of each extract, the PLHC-1 cells were evaluated for enzymatic activities - glutathione peroxidase (Gpx), glutathione reductase (Gr), glutathione S-transferase (Gst), 7-ethoxy-, pentoxy-, and benzyloxyresorufin O-deethylase (EROD, PROD and BROD) and mRNA expressions for catalase (cat), gpx, gst, cyp1a, cyp3a, mammalian target of rapamycin (mtor), nuclear factor erythroid 2-related factor 2 (nrf2) and Kelch-like erythroid cell-derived protein (keap-1). Overall, our results showed parameter-, extract- and concentration-specific increases in transcripts and functional product levels for biotransformation, antioxidant and cellular defense/cytoprotective responses, compared with control. These responses were mostly characterized by a biphasic pattern of effects by either, increasing at low concentration, and thereafter decrease, as the concentration increases or vice versa, depending on the extract type. These observations paralleled soil contaminants (organics and inorganics) burden from the dumpsite. Principal component analysis (PCA) showed that cells treated with the non-polar extract produced more pronounced effects on the measured toxicological responses, compared with the polar and elutriate extracts. Thus, our data highlight peculiar risks to cells exposed to each soil extract, indicating complex and multiple chemical interactions with diverse functional groups that contaminants may have in mixture scenarios. Given the limitations and cost implications of contaminants analysis for the numerous soil- or sediment-bound compounds, we propose that this approach represents an analytical benchmark and endpoints for assessing the risk of complex environmental matrices such as soil and sediments, for ecotoxicological monitoring programs.
Collapse
Affiliation(s)
- Oju R Ibor
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491, Trondheim, Norway; Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Essa A Khan
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491, Trondheim, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491, Trondheim, Norway.
| |
Collapse
|
10
|
Oberleitner D, Stütz L, Schulz W, Bergmann A, Achten C. Seasonal performance assessment of four riverbank filtration sites by combined non-target and effect-directed analysis. CHEMOSPHERE 2020; 261:127706. [PMID: 32717513 DOI: 10.1016/j.chemosphere.2020.127706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Targeting the most relevant organic micropollutants (OMP) in routine analysis appears difficult due to formation of transformation products of unknown concentration or toxicity. Performance assessment of water purification processes is still based upon limited target data. Therefore, we broadened the assessment of the removal efficiencies with combined non-target and effect-directed analysis at four riverbank filtration (RBF) sites in Germany. To assess micropollutant elimination, constancy and formation during different seasons, considering local redox conditions, travel distances and total component number in the river, non-target analysis features were grouped into categories. Furthermore, RBF sites were investigated with four endpoints (baseline toxicity, acetylcholinesterase inhibition, antibiotic effects and estrogenic effects) for thin-layer chromatography - effect-directed analysis for the first time. Results showed elimination or reduction of many features and effects, but also constancy and formation of varying proportions. Fall river samples showed precipitation-caused dilution in both tests. Spring samples showed increased effects only in acetylcholinesterase inhibition and estrogenic effects, probably due to phytoestrogens or algae bloom during vegetation period. Sites were ranked considering the total number of features, group proportions, seasonal variations and intensity and number of effects in abstraction wells. Oxic conditions and low initial component numbers in the river (Ruhr sites) resulted in less effects and fewer formations. Longer travel distances were important for a more efficient reduction of effects and features. Combination of non-target and effect-directed analysis proved to be valuable for a more comprehensive assessment of process performance beyond target analysis as also unknown OMP are observed with both methods.
Collapse
Affiliation(s)
- Daniela Oberleitner
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstraße 24, 48149 Münster, Germany
| | - Lena Stütz
- Laboratory for Operation Control and Research, Zweckverband Landeswasserversorgung, Am Spitzigen Berg 1, 89129 Langenau, Germany
| | - Wolfgang Schulz
- Laboratory for Operation Control and Research, Zweckverband Landeswasserversorgung, Am Spitzigen Berg 1, 89129 Langenau, Germany
| | - Axel Bergmann
- Rheinisch-Westfälische Wasserwerksgesellschaft mbH, Am Schloß Broich 1-3, 45479 Mülheim (Ruhr), Germany
| | - Christine Achten
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstraße 24, 48149 Münster, Germany.
| |
Collapse
|
11
|
Identification of acetylcholinesterase inhibitors in water by combining two-dimensional thin-layer chromatography and high-resolution mass spectrometry. J Chromatogr A 2020; 1624:461239. [PMID: 32540077 DOI: 10.1016/j.chroma.2020.461239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 11/22/2022]
Abstract
Effect-directed analysis (EDA) is increasingly used in environmental monitoring to detect and identify key toxicants. High-performance thin-layer chromatography (HPTLC) has proven to be a very suitable fractionation technique for this purpose. However, HPTLC is limited in its separation efficiency. Thus, separated fractions could still contain many different components and identification of the effective substances remains difficult. Therefore, in this study a workflow for selective EDA with two-dimensional HPTLC in combination with high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) was developed. The aim of the workflow was the stepwise reduction of the sample complexity in order to reduce the number of signals that could be responsible for the measured effects. As a consequence, the identification of effective substances should be facilitated. The acetylcholinesterase inhibition assay (AChE assay) for the detection of potential neurotoxic compounds was applied for biotesting. The transfer of effective zones from the first to the second dimension and also to the mass spectrometric measurement was enabled by extraction. A proof of concept was performed by spiking six acetylcholinesterase inhibiting substances into three different water matrices that were investigated with the developed workflow. The successful prioritization of all spiked compounds confirmed the efficiency of the workflow, regardless of the sample matrix. Biotesting of different water samples resulted in numerous potentially neurotoxic effects, which overlapped strongly in the first separation dimension. The higher peak capacity reached by two-dimensional HPTLC, on the other hand, resulted in discrete effective zones and enabled the identification of several compounds. For the substances lumichrome, a derivate of riboflavin and paraxanthine as well as for linear alkylbenzene sulfonates that were applied as anionic surfactants in detergents, the inhibiting effect to the AChE could be confirmed.
Collapse
|
12
|
de Souza Celente G, Colares GS, da Silva Araújo P, Machado ÊL, Lobo EA. Acute ecotoxicity and genotoxicity assessment of two wastewater treatment units. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10520-10527. [PMID: 31940141 DOI: 10.1007/s11356-019-07308-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Water contamination by discharge of untreated or poorly treated wastewater into water bodies is a current issue that may cause harm to humans. Water quality assessment targets general parameters, which often misleads to underestimation of their implication in the environment. Acute and genotoxicity assays using Daphnia magna is a reliable tool for testing deleterious effects of wastewater exposure. This paper aimed at evaluating acute ecotoxicity as well as genotoxicity of a biological treatment system composed by an anaerobic bioreactor (AR), algal turf scrubber (ATS), followed by two downflow constructed wetlands (CW). The university's wastewater treatment plant (WWTP) composed by an equalization tank (ET), an upflow anaerobic sludge blanket (UASB), followed by an aerobic bioreactor (AB) was also assessed for acute and genotoxicity. Our results showed the acute ecotoxicity ranged from moderately to extremely toxic, and from nontoxic to moderately toxic for ET and AB. For AR, most samples were moderately toxic. The outflow from ATS and CW's tanks completely eliminated acute toxicity and genotoxicity evidencing that the proposed system combining ATS and vertical CWs is suitable for treating sanitary wastewater.
Collapse
Affiliation(s)
- Gleison de Souza Celente
- Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul, 96815-900, Brazil.
| | - Gustavo Stolzenberg Colares
- Environmental Technology, University of Santa Cruz do Sul (UNISC), Avenida Independência, 2293, Santa Cruz do Sul, Rio Grande do Sul, 96815-900, Brazil
| | | | - Ênio Leandro Machado
- Environmental Technology Program (Master and Doctoral courses), University of Santa Cruz do Sul (UNISC), Santa Cruz do Sul, Brazil
| | - Eduardo Alexis Lobo
- Environmental Technology Program (Master and Doctoral courses), University of Santa Cruz do Sul (UNISC), Santa Cruz do Sul, Brazil
| |
Collapse
|
13
|
Pochiraju SS, Linden K, Gu AZ, Rosenblum J. Development of a separation framework for effects-based targeted and non-targeted toxicological screening of water and wastewater. WATER RESEARCH 2020; 170:115289. [PMID: 31785562 DOI: 10.1016/j.watres.2019.115289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 05/25/2023]
Abstract
An environmental water sample fractionation framework was developed based on effects-directed analysis (EDA) to detect known and unknown compounds of concern in different waters. Secondary effluent from a wastewater treatment plant was used to demonstrate the effectiveness of the developed framework for characterizing estrogenic compounds in the effluent. The effluent was spiked with known estrogenic compounds to validate the framework in a targeted approach and an unspiked sample was also investigated in a non-targeted approach. The framework separated compounds based on polarity and adsorption using liquid-liquid extraction followed by solid phase extraction. The targeted and non-targeted effluents generated six fractions each, which were assessed for estrogenic activity using an in vitro bioassay (yeast estrogen screen - YES). Three out of the six fractions in each case, along with the raw effluent, showed estrogen equivalent concentrations (EEQs) ranging between 1.0 and 3.0 μg/L. Directed by the assay results, these estrogenic fractions were further analyzed using liquid- and gas-chromatography coupled with mass spectrometry for compound identification. The developed separation framework coupled with a bioassay aided in identification of both known and unknown compounds producing estrogenic effects in the water sample. The approach of fractionation followed by concentration helped isolate and elevate contaminant levels without necessarily concentrating potential matrix effects that could cause interfering cytotoxicity and inhibition in the bioassay. The targeted analysis showed consistency between predicted and observed results, while the non-targeted analysis revealed the presence of three estrogenic compounds in the unspiked effluent: di-isobutyl phthalate, diethyl phthalate and benzophenone, that were confirmed with standards. The study mainly aimed at development and validation of a simple yet effective EDA framework with low cost techniques for water and wastewater toxicity screening and evaluation, and the results suggested that the developed framework could be used as a screening tool for isolating and identifying unknown compounds in a complex water sample.
Collapse
Affiliation(s)
- Susheera S Pochiraju
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Karl Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - April Z Gu
- Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - James Rosenblum
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA; Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA.
| |
Collapse
|
14
|
Shao Y, Xiao H, Di Paolo C, Deutschmann B, Brack W, Hollert H, Seiler TB. Integrated zebrafish-based tests as an investigation strategy for water quality assessment. WATER RESEARCH 2019; 150:252-260. [PMID: 30528920 DOI: 10.1016/j.watres.2018.11.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/30/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Water pollution risks to human health and the environment are emerging as serious concerns in the European Union and worldwide. With the aim to achieve good ecological and chemical status of all European water bodies, the "European Water Framework Directive" (WFD) was enacted. With the framework, bioanalytical techniques have been recognized as an important aspect. However, there are limitations to the application of bioassays directly for water quality assessment. Such approaches often fail to identify pollutants of concern, since the defined priority and monitored pollutants often fail to explain the observed toxicity. In this study, we integrated an effect-based risk assessment with a zebrafish-based investigation strategy to evaluate water sample extracts and fractions collected from the Danube. Four tiered bioassays were implemented, namely RNA-level gene expression assay, protein-level ethoxyresorufin-O-deethylase (EROD) assay, cell-level micronucleus assay and organism-level fish embryo test (FET). The results show that teratogenicity and lethality during embryonic development might be induced by molecular or cellular damages mediated by the aryl hydrocarbon receptor (AhR) -mediated activity, estrogenic activity and genotoxic activity. With the combination of high-throughput fractionation, this effect-based strategy elucidated the major responsible mixtures of each specific toxic response. In particularly, the most toxic mixture in faction F4, covering a log Kow range from 2.83 to 3.42, was composed by 12 chemicals, which were then evaluated as a designed mixture. Our study applied tiered bioassays with zebrafish to avoid interspecies differences and highlights effect-based approaches to address toxic mixtures in water samples. This strategy can be applied for large throughput screenings to support the main toxic compounds identification in water quality assessment.
Collapse
Affiliation(s)
- Ying Shao
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; UFZ - Helmholtz Centre for Environmental Research GmbH, Department of Cell Toxicology, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Hongxia Xiao
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Carolina Di Paolo
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Björn Deutschmann
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Werner Brack
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; UFZ - Helmholtz Centre for Environmental Research GmbH, Department for Effect-Directed Analysis, Permoserstraße 15, 04318, Leipzig, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; College of Resources and Environmental Science, Chongqing University, 174 Shazheng Road Shapingba, 400044, Chongqing, China; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, 200092, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 200023, Nanjing, China
| | - Thomas Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| |
Collapse
|
15
|
Hollert H, Crawford SE, Brack W, Brinkmann M, Fischer E, Hartmann K, Keiter S, Ottermanns R, Ouellet JD, Rinke K, Rösch M, Roß-Nickoll M, Schäffer A, Schüth C, Schulze T, Schwarz A, Seiler TB, Wessels M, Hinderer M, Schwalb A. Looking back - Looking forward: A novel multi-time slice weight-of-evidence approach for defining reference conditions to assess the impact of human activities on lake systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:1036-1046. [PMID: 29898512 DOI: 10.1016/j.scitotenv.2018.01.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 06/08/2023]
Abstract
Lake ecosystems are sensitive recorders of environmental changes that provide continuous archives at annual to decadal resolution over thousands of years. The systematic investigation of land use changes and emission of pollutants archived in Holocene lake sediments as well as the reconstruction of contamination, background conditions, and sensitivity of lake systems offer an ideal opportunity to study environmental dynamics and consequences of anthropogenic impact that increasingly pose risks to human well-being. This paper discusses the use of sediment and other lines of evidence in providing a record of historical and current contamination in lake ecosystems. We present a novel approach to investigate impacts from human activities using chemical-analytical, bioanalytical, ecological, paleolimnological, paleoecotoxicological, archeological as well as modeling techniques. This multi-time slice weight-of-evidence (WOE) approach will generate knowledge on conditions prior to anthropogenic influence and provide knowledge to (i) create a better understanding of the effects of anthropogenic disturbances on biodiversity, (ii) assess water quality by using quantitative data on historical pollution and persistence of pollutants archived over thousands of years in sediments, and (iii) define environmental threshold values using modeling methods. This technique may be applied in order to gain insights into reference conditions of surface and ground waters in catchments with a long history of land use and human impact, which is still a major need that is currently not yet addressed within the context of the European Water Framework Directive.
Collapse
Affiliation(s)
- Henner Hollert
- Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, China; School of Environment, Nanjing University, Nanjing, China; College of Resources and Environmental Science, Chongqing University, Chongqing, China.
| | - Sarah E Crawford
- Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Werner Brack
- Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Markus Brinkmann
- Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon S7N 5B3, Saskatchewan, Canada
| | - Elske Fischer
- Laboratory for Archaeobotany, Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Fischersteig 9, 78343 Gaienhofen-Hemmenhofen, Germany
| | - Kai Hartmann
- Institute for Geographical Sciences, Freie Universität Berlin, Malteserstrasse 74-100, 12249 Berlin, Germany
| | - Steffen Keiter
- Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, SE-701 82 Örebro, Sweden
| | - Richard Ottermanns
- Institute for Environmental Research (Biology V), Department of Environmental Biology and Chemodynamics, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Jacob D Ouellet
- Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Karsten Rinke
- Department of Lake Research, Helmholtz Centre for Environmental Research - UFZ, Brückstrasse 3a, 39114 Magdeburg, Germany
| | - Manfred Rösch
- Laboratory for Archaeobotany, Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Fischersteig 9, 78343 Gaienhofen-Hemmenhofen, Germany
| | - Martina Roß-Nickoll
- Institute for Environmental Research (Biology V), Department of Environmental Biology and Chemodynamics, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Andreas Schäffer
- Institute for Environmental Research (Biology V), Department of Environmental Biology and Chemodynamics, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Christoph Schüth
- Institute for Applied Geoscience, Technische Universität Darmstadt, Schnittspahnstrasse 9, 64287 Darmstadt, Germany
| | - Tobias Schulze
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Anja Schwarz
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| | - Thomas-Benjamin Seiler
- Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Martin Wessels
- Institute for Lake Research, State Institute for Environment, Measurements and Nature Conservation Baden-Württemberg (LUBW), Postfach 4253, 88081 Langenargen, Germany
| | - Matthias Hinderer
- Institute for Applied Geoscience, Technische Universität Darmstadt, Schnittspahnstrasse 9, 64287 Darmstadt, Germany
| | - Antje Schwalb
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| |
Collapse
|
16
|
Díaz-Garduño B, Perales JA, Biel-Maeso M, Pintado-Herrera MG, Lara-Martin PA, Garrido-Pérez C, Martín-Díaz ML. Biochemical responses of Solea senegalensis after continuous flow exposure to urban effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:486-497. [PMID: 29017122 DOI: 10.1016/j.scitotenv.2017.09.304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/20/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Urban effluent potential toxicity was assessed by a battery of biomarkers aimed at determining sub-lethal effects after continuous exposure on the marine organism Solea senegalensis. Specimens were exposed to five effluent concentrations (1/2, 1/4, 1/8, 1/16, 1/32) during 7-days, simulating the dispersion plume at the discharge point. Three different groups of biomarkers were selected in the present study: biomarkers of exposure (Phase I: EROD and DBF; Phase II: GST), biomarkers with antioxidant responses (GR and GPX) and biomarkers of effects (DNA damage and LPO). Additionally, a biological depuration treatment (photobiotreatment (PhtBio)) was tested in order to reduce the adverse effects on aquatic organisms. Effluent exposure caused sub-lethal responses in juvenile fish suggesting oxidative stress. After PhtBio application, concentrations of the major part of measured contaminants were reduced, as well as their bioavailability and adverse effects.
Collapse
Affiliation(s)
- B Díaz-Garduño
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain.
| | - J A Perales
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - M Biel-Maeso
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - M G Pintado-Herrera
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - P A Lara-Martin
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - C Garrido-Pérez
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - M L Martín-Díaz
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
17
|
Legradi JB, Di Paolo C, Kraak MHS, van der Geest HG, Schymanski EL, Williams AJ, Dingemans MML, Massei R, Brack W, Cousin X, Begout ML, van der Oost R, Carion A, Suarez-Ulloa V, Silvestre F, Escher BI, Engwall M, Nilén G, Keiter SH, Pollet D, Waldmann P, Kienle C, Werner I, Haigis AC, Knapen D, Vergauwen L, Spehr M, Schulz W, Busch W, Leuthold D, Scholz S, vom Berg CM, Basu N, Murphy CA, Lampert A, Kuckelkorn J, Grummt T, Hollert H. An ecotoxicological view on neurotoxicity assessment. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:46. [PMID: 30595996 PMCID: PMC6292971 DOI: 10.1186/s12302-018-0173-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/31/2018] [Indexed: 05/04/2023]
Abstract
The numbers of potential neurotoxicants in the environment are raising and pose a great risk for humans and the environment. Currently neurotoxicity assessment is mostly performed to predict and prevent harm to human populations. Despite all the efforts invested in the last years in developing novel in vitro or in silico test systems, in vivo tests with rodents are still the only accepted test for neurotoxicity risk assessment in Europe. Despite an increasing number of reports of species showing altered behaviour, neurotoxicity assessment for species in the environment is not required and therefore mostly not performed. Considering the increasing numbers of environmental contaminants with potential neurotoxic potential, eco-neurotoxicity should be also considered in risk assessment. In order to do so novel test systems are needed that can cope with species differences within ecosystems. In the field, online-biomonitoring systems using behavioural information could be used to detect neurotoxic effects and effect-directed analyses could be applied to identify the neurotoxicants causing the effect. Additionally, toxic pressure calculations in combination with mixture modelling could use environmental chemical monitoring data to predict adverse effects and prioritize pollutants for laboratory testing. Cheminformatics based on computational toxicological data from in vitro and in vivo studies could help to identify potential neurotoxicants. An array of in vitro assays covering different modes of action could be applied to screen compounds for neurotoxicity. The selection of in vitro assays could be guided by AOPs relevant for eco-neurotoxicity. In order to be able to perform risk assessment for eco-neurotoxicity, methods need to focus on the most sensitive species in an ecosystem. A test battery using species from different trophic levels might be the best approach. To implement eco-neurotoxicity assessment into European risk assessment, cheminformatics and in vitro screening tests could be used as first approach to identify eco-neurotoxic pollutants. In a second step, a small species test battery could be applied to assess the risks of ecosystems.
Collapse
Affiliation(s)
- J. B. Legradi
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Environment and Health, VU University, 1081 HV Amsterdam, The Netherlands
| | - C. Di Paolo
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - M. H. S. Kraak
- FAME-Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - H. G. van der Geest
- FAME-Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - E. L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - A. J. Williams
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
| | - M. M. L. Dingemans
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
| | - R. Massei
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig, Germany
| | - W. Brack
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig, Germany
| | - X. Cousin
- Ifremer, UMR MARBEC, Laboratoire Adaptation et Adaptabilités des Animaux et des Systèmes, Route de Maguelone, 34250 Palavas-les-Flots, France
- INRA, UMR GABI, INRA, AgroParisTech, Domaine de Vilvert, Batiment 231, 78350 Jouy-en-Josas, France
| | - M.-L. Begout
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, 17137 L’Houmeau, France
| | - R. van der Oost
- Department of Technology, Research and Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, The Netherlands
| | - A. Carion
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - V. Suarez-Ulloa
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - F. Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - B. I. Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geosciences, 72074 Tübingen, Germany
| | - M. Engwall
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - G. Nilén
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - S. H. Keiter
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - D. Pollet
- Faculty of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295 Darmstadt, Germany
| | - P. Waldmann
- Faculty of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295 Darmstadt, Germany
| | - C. Kienle
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - I. Werner
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - A.-C. Haigis
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - D. Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - L. Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - M. Spehr
- Institute for Biology II, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| | - W. Schulz
- Zweckverband Landeswasserversorgung, Langenau, Germany
| | - W. Busch
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - D. Leuthold
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - S. Scholz
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - C. M. vom Berg
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, 8600 Switzerland
| | - N. Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - C. A. Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, USA
| | - A. Lampert
- Institute of Physiology (Neurophysiology), Aachen, Germany
| | - J. Kuckelkorn
- Section Toxicology of Drinking Water and Swimming Pool Water, Federal Environment Agency (UBA), Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - T. Grummt
- Section Toxicology of Drinking Water and Swimming Pool Water, Federal Environment Agency (UBA), Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - H. Hollert
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
18
|
Qi H, Li H, Wei Y, Mehler WT, Zeng EY, You J. Effect-Directed Analysis of Toxicants in Sediment with Combined Passive Dosing and in Vivo Toxicity Testing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6414-6421. [PMID: 28448143 DOI: 10.1021/acs.est.7b00540] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Identifying key toxicants in sediment is a great challenge, particularly if nontarget toxicants are involved. To identify the contaminants responsible for sediment toxicity to Chironomus dilutus in Guangzhou reach of the Pearl River in South China, passive dosing and in vivo toxicity testing were incorporated into effect-directed analysis (EDA) to account for bioavailability. Fractionation of sediment extracts was performed with gel permeation chromatography and reverse phase liquid chromatography sequentially. Polydimethylsiloxane served as passive dosing matrix for midge bioassays. The fractions showing abnormal enzymatic response were subject to a nontarget analysis, which screened out 15 candidate toxicants. The concentrations of the screened contaminants (log-based organic carbon normalized) in sediments of 10 sites were compared to sediment toxicity (10 and 20 day mortality and 10 day enzymatic response) to C. dilutus using correlation analyses. The results suggested that oxidative stress induced by cypermethrin, dimethomorph, pebulate and thenylchlor may have in part caused the observed toxicity to C. dilutus. The present study shows that EDA procedures coupled with passive dosing and in vivo toxicity testing can be effective in identifying sediment-bound toxicants, which may pose high risk to benthic organisms but are not routinely monitored and/or regulated. The findings of the present study highlight the importance of incorporating environmentally relevant approaches in assessing sediment heavily impacted by a multitude of contaminants, which is often the case in many developing countries.
Collapse
Affiliation(s)
- Hongxue Qi
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- College of Chemistry and Chemical Engineering, Jinzhong University , Jinzhong 030619, China
- University of Chinese Academy of Sciences , Beijing 10049, China
| | - Huizhen Li
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - Yanli Wei
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - W Tyler Mehler
- School of Biosciences, Centre for Aquatic Pollution Identification and Management, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Eddy Y Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - Jing You
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| |
Collapse
|
19
|
Chibwe L, Titaley IA, Hoh E, Massey Simonich SL. Integrated Framework for Identifying Toxic Transformation Products in Complex Environmental Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2017; 4:32-43. [PMID: 35600207 PMCID: PMC9119311 DOI: 10.1021/acs.estlett.6b00455] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Complex environmental mixtures consist of hundreds to thousands of unknown and unregulated organic compounds that may have toxicological relevance, including transformation products (TPs) of anthropogenic organic pollutants. Non-targeted analysis and suspect screening analysis offer analytical approaches for potentially identifying these toxic transformation products. However, additional tools and strategies are needed in order to reduce the number of chemicals of interest and focus analytical efforts on chemicals that may pose risks to humans and the environment. This brief review highlights recent developments in this field and suggests an integrated framework that incorporates complementary instrumental techniques, computational chemistry, and toxicity analysis, for prioritizing and identifying toxic TPs in the environment.
Collapse
Affiliation(s)
- Leah Chibwe
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Ivan A. Titaley
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Eunha Hoh
- Graduate School of Public Health, San Diego State University, San Diego, CA, 92182, USA
| | - Staci L. Massey Simonich
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
20
|
Yuan N, Wang C, Pei Y. Bacterial toxicity assessment of drinking water treatment residue (DWTR) and lake sediment amended with DWTR. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 182:21-28. [PMID: 27454093 DOI: 10.1016/j.jenvman.2016.07.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Drinking water treatment residue (DWTR) seems to be very promising for controlling lake sediment pollution. Logically, acquisition of the potential toxicity of DWTR will be beneficial for its applications. In this study, the toxicity of DWTR and sediments amended with DWTR to Aliivibrio fischeri was evaluated based on the Microtox(®) solid and leachate phase assays, in combination with flow cytometry analyses and the kinetic luminescent bacteria test. The results showed that both solid particles and aqueous/organic extracts of DWTR exhibited no toxicity to the bacterial luminescence and growth. The solid particles of DWTR even promoted bacterial luminescence, possibly because DWTR particles could act as a microbial carrier and provide nutrients for bacteria growth. Bacterial toxicity (either luminescence or growth) was observed from the solid phase and aqueous/organic extracts of sediments with or without DWTR addition. Further analysis showed that the solid phase toxicity was determined to be related mainly to the fixation of bacteria to fine particles and/or organic matter, and all of the observed inhibition resulting from aqueous/organic extracts was identified as non-significant. Moreover, DWTR addition not only had no adverse effect on the aqueous/organic extract toxicity of the sediment but also reduced the solid phase toxicity of the sediment. Overall, in practical application, the solid particles, the water-soluble substances transferred to surface water or the organic substances in DWTR had no toxicity or any delayed effect on bacteria in lakes, and DWTR can therefore be considered as a non-hazardous material.
Collapse
Affiliation(s)
- Nannan Yuan
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Yuansheng Pei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, China.
| |
Collapse
|
21
|
Xiao H, Krauss M, Floehr T, Yan Y, Bahlmann A, Eichbaum K, Brinkmann M, Zhang X, Yuan X, Brack W, Hollert H. Effect-Directed Analysis of Aryl Hydrocarbon Receptor Agonists in Sediments from the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11319-11328. [PMID: 27640527 DOI: 10.1021/acs.est.6b03231] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The construction of the Three Gorges Dam (TGD) in the Yangtze River raises great concern in ecotoxicological research since large amounts of pollutants enter the Three Gorges Reservoir (TGR) water bodies after TGD impoundment. In this work, effect-directed analysis (EDA), combining effect assessment, fractionation procedure, and target and nontarget analyses, was used to characterize aryl hydrocarbon receptor (AhR) agonists in sediments of the TGR. Priority polycyclic aromatic hydrocarbons (PAHs) containing four to five aromatic rings were found to contribute significantly to the overall observed effects in the area of Chongqing. The relatively high potency fractions in the Kaixian area were characterized by PAHs and methylated derivatives thereof and heterocyclic polycyclic aromatic compounds (PACs) such as dinaphthofurans. Benzothiazole and derivatives were identified as possible AhR agonists in the Kaixian area based on nontarget liquid chromatography-high resolution mass spectrometry (LC-HRMS). To our knowledge, this study is the first one applying the EDA approach and identifying potential AhR agonists in TGR.
Collapse
Affiliation(s)
- Hongxia Xiao
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
| | - Martin Krauss
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ , Leipzig 04318, Germany
| | - Tilman Floehr
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
| | - Yan Yan
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
| | - Arnold Bahlmann
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ , Leipzig 04318, Germany
| | - Kathrin Eichbaum
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
| | - Markus Brinkmann
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
- School of Environment and Sustainability, University of Saskatchewan , Saskatoon S7N 5B3, Canada
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210046, China
| | - Xingzhong Yuan
- College of Resources and Environmental Science, Chongqing University , Chongqing 400030, China
| | - Werner Brack
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ , Leipzig 04318, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University , Aachen 52074, Germany
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210046, China
- College of Resources and Environmental Science, Chongqing University , Chongqing 400030, China
- Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University , Shanghai 200092, China
| |
Collapse
|
22
|
Hong S, Lee J, Lee C, Yoon SJ, Jeon S, Kwon BO, Lee JH, Giesy JP, Khim JS. Are styrene oligomers in coastal sediments of an industrial area aryl hydrocarbon-receptor agonists? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:913-921. [PMID: 27043777 DOI: 10.1016/j.envpol.2016.03.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
Effect-directed analysis (EDA) was performed to identify the major aryl hydrocarbon receptor (AhR) agonists in sediments collected from a highly industrialized area (Lake Shihwa, Korea). Great AhR-mediated potencies were found in fractions containing aromatic compounds with log Kow values of 5-8, and relatively great concentrations of styrene oligomers (SOs) and polycyclic aromatic hydrocarbons (PAHs) were detected in those fractions. Until now, there was little information on occurrences and toxic relative potencies (RePs) of SOs in coastal environments. In the present study; i) distributions and compositions, ii) AhR binding affinities, and iii) contributions of SOs to total AhR-mediated potencies were determined in coastal sediments. Elevated concentrations of 10 SOs were detected in sediments of inland creeks ranging from 61 to 740 ng g(-1) dry mass (dm), while lesser concentrations were found in inner (mean = 33 ng g(-1) dm) and outer regions (mean = 25 ng g(-1) dm) of the lake. Concentrations of PAHs in sediments were comparable to those of SOs. 2,4-diphenyl-1-butene (SD3) was the predominant SO analogue in sediments. SOs and PAHs were accumulated in sediments near sources, and could not be transported to remote regions due to their hydrophobicity. RePs of 3 SOs could be derived, which were 1000- to 10,000-fold less than that of one representative potent AhR active PAH, benzo[a]pyrene. Although concentrations of SOs in sediments were comparable to those of PAHs, the collective contribution of SOs to total AhR-mediated potencies were rather small (<1%), primarily due to their smaller RePs. Overall, the present study provides information on distributions and AhR binding affinities for SOs as baseline data for degradation products of polystyrene plastic in the coastal environment.
Collapse
Affiliation(s)
- Seongjin Hong
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Seo Joon Yoon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Seungyeon Jeon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Bong-Oh Kwon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Jong-Hyeon Lee
- Institute of Environmental Protection and Safety, NeoEnBiz Co., Bucheon, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Zoology & Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; School of Biological Sciences, University of Hong Kong, Hong Kong, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Floehr T, Scholz-Starke B, Xiao H, Hercht H, Wu L, Hou J, Schmidt-Posthaus H, Segner H, Kammann U, Yuan X, Roß-Nickoll M, Schäffer A, Hollert H. Linking Ah receptor mediated effects of sediments and impacts on fish to key pollutants in the Yangtze Three Gorges Reservoir, China - A comprehensive perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 538:191-211. [PMID: 26298852 DOI: 10.1016/j.scitotenv.2015.07.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 06/04/2023]
Abstract
The Three Gorges Reservoir (TGR), created in consequence of the Yangtze River's impoundment by the Three Gorges Dam, faces numerous anthropogenic impacts that challenge its unique ecosystem. Organic pollutants, particularly aryl hydrocarbon receptor (AhR) agonists, have been widely detected in the Yangtze River, but only little research was yet done on AhR-mediated activities. Hence, in order to assess effects of organic pollution, with particular focus on AhR-mediated activities, several sites in the TGR area were examined applying the "triad approach". It combines chemical analysis, in vitro, in vivo and in situ investigations to a holistic assessment. Sediments and the benthic fish species Pelteobagrus vachellii were sampled in 2011/2012, respectively, to identify relevant endpoints. Sediment was tested in vitro with the ethoxyresorufin-O-deethylase (EROD) induction assay, and in vivo with the Fish Embryo Toxicity Test and Sediment Contact Assay with Danio rerio. Activities of phase I (EROD) and phase II (glutathione-S-transferase) biotransformation enzymes, pollutant metabolites and histopathological alterations were studied in situ in P. vachellii. EROD induction was tested in vitro and in situ to evaluate possible relationships. Two sites, near Chongqing and Kaixian city, were identified as regional hot-spots and further investigated in 2013. The sediments induced in the in vitro/in vivo bioassays AhR-mediated activities and embryotoxic/teratogenic effects - particularly on the cardiovascular system. These endpoints could be significantly correlated to each other and respective chemical data. However, particle-bound pollutants showed only low bioavailability. The in situ investigations suggested a rather poor condition of P. vachellii, with histopathological alterations in liver and excretory kidney. Fish from Chongqing city exhibited significant hepatic EROD induction and obvious parasitic infestations. The polycyclic aromatic hydrocarbon (PAH) metabolite 1-hydroxypyrene was detected in bile of fish from all sites. All endpoints in combination with the chemical data suggest a pivotal role of PAHs in the observed ecotoxicological impacts.
Collapse
Affiliation(s)
- Tilman Floehr
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Björn Scholz-Starke
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Hongxia Xiao
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Hendrik Hercht
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Lingling Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, PR China.
| | - Junli Hou
- East China Sea Fisheries Research Institute, Shanghai 200090, PR China.
| | | | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, 3001 Bern, Switzerland.
| | - Ulrike Kammann
- Thünen Institute of Fisheries Ecology, 22767 Hamburg, Germany.
| | - Xingzhong Yuan
- College of Resources and Environmental Science, Chongqing University, Chongqing 400030, PR China.
| | - Martina Roß-Nickoll
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, Chongqing 400030, PR China.
| | - Andreas Schäffer
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, Chongqing 400030, PR China; State Key Laboratory of Pollution Control and Research Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| | - Henner Hollert
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, PR China; College of Resources and Environmental Science, Chongqing University, Chongqing 400030, PR China; State Key Laboratory of Pollution Control and Research Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
24
|
Floehr T, Scholz-Starke B, Xiao H, Koch J, Wu L, Hou J, Wolf A, Bergmann A, Bluhm K, Yuan X, Roß-Nickoll M, Schäffer A, Hollert H. Yangtze Three Gorges Reservoir, China: A holistic assessment of organic pollution, mutagenic effects of sediments and genotoxic impacts on fish. J Environ Sci (China) 2015; 38:63-82. [PMID: 26702969 DOI: 10.1016/j.jes.2015.07.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 06/05/2023]
Abstract
Besides obvious benefits, the Three Gorges Dam's construction resulted in new pollution scenarios with the potentials to threaten the Three Gorges Reservoir (TGR) ecosystem. In order to record organic contamination, to find links to ecotoxicological impacts and to serve as reference for ensuing monitoring, several sites in the TGR area were screened applying the triad approach with additional lines-of-evidence as a holistic assessment method. Sediments and the benthic fish species Pelteobagrus vachellii were sampled in 2011 and 2012 to determine organic pollution levels, mutagenic potentials and genotoxic impacts. Two regional hot-spots near the cities of Chongqing and Kaixian were identified and further investigated in 2013. Only polycyclic aromatic hydrocarbons (PAHs) could be detected in sediments in 2011 (165-1653ng/g), emphasizing their roles as key pollutants of the area. Their ubiquity was confirmed at Chongqing (150-433ng/g) and Kaixian (127-590ng/g) in 2013. Concentrations were comparable to other major Chinese and German rivers. However, the immense sediment influx suggested a deposition of 216-636kgPAH/day (0.2-0.6mgPAH/(m(2)·day)), indicating an ecotoxicological risk. PAH source analysis highlighted primary impacts of combustion sources on the more industrialized upper TGR section, whereas petrogenic sources dominated the mid-low section. Furthermore, sediment extracts from several sites exhibited significant activities of frameshift promutagens in the Ames fluctuation assay. Additionally, significant genotoxic impairments in erythrocytes of P. vachellii were detected (Chongqing/Kaixian), demonstrating the relevance of genotoxicity as an important mode of action in the TGR's fish. PAHs, their derivatives and non-target compounds are considered as main causative agents.
Collapse
Affiliation(s)
- Tilman Floehr
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany.
| | - Björn Scholz-Starke
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Hongxia Xiao
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Josef Koch
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Lingling Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Junli Hou
- East China Sea Fisheries Research Institute, Shanghai 200090, China
| | - Anja Wolf
- IWW Rhenish-Westfalian Institute for Water Research, 45476 Mülheim an der Ruhr, Germany; Institute for Applied Geosciences, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Axel Bergmann
- IWW Rhenish-Westfalian Institute for Water Research, 45476 Mülheim an der Ruhr, Germany
| | - Kerstin Bluhm
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Xingzhong Yuan
- College of Resources and Environmental Science, Chongqing University, Chongqing 400030, China
| | - Martina Roß-Nickoll
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, Chongqing 400030, China
| | - Andreas Schäffer
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany; State Key Laboratory of Pollution Control and Research Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Resources and Environmental Science, Chongqing University, Chongqing 400030, China; State Key Laboratory of Pollution Control and Research Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
25
|
Maletz S, Wollenweber M, Kubiak K, Müller A, Schmitz S, Maier D, Hecker M, Hollert H. Investigation of potential endocrine disrupting effects of mosquito larvicidal Bacillus thuringiensis israelensis (Bti) formulations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 536:729-738. [PMID: 26254073 DOI: 10.1016/j.scitotenv.2015.07.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/10/2015] [Accepted: 07/10/2015] [Indexed: 06/04/2023]
Abstract
Bti is successfully used as a biological control agent for mosquito control. It has proven to be ecological friendly, and thus, is used in ecologically sensitive habitats. Recent investigations of groundwater in Germany have detected estrogenic activity in five consecutive groundwater wells in a region where Bti is applied. Therefore, it was suspected that this compound can act as an environmental xenoestrogen. In the present study, five Bti formulations as well as the active ingredient, VectoBac® TP (TP), were investigated regarding their estrogenic activity using the LYES and ER CALUX® assays. Furthermore, their steroidogenesis disruption properties were studied using the H295R Steroidogenesis Assay. Additionally, field samples from a Bti application area as well as samples from an artificial pond were examined. Three of the Bti formulations and the active ingredient TP showed significant estrogenic activity in the LYES (up to 52 ng·l(-1) estradiol equivalents (EEQ) in the 18-fold concentration) and/or the ER CALUX® (up to 1 ng·EEQ·l(-1) in the 18-fold concentration). In the H295R significant but weak effects with no dose-response-relationship on the production of estradiol, and 21-hydroxyprogesterone (WDG) as well as testosterone (TP) by H295R cells could be observed. The field samples as well as the samples from the artificial pond showed no significant increase of estrogenic activity after application of TP or WDG in the ER CALUX®. With the exception of the controlled laboratory experiments with direct application of Bti to the utilized in vitro test systems the present study did not reveal any significant effects of Bti on endocrine functions that would indicate that the application of Bti could cause adverse endocrine effects to organisms in aquatic ecosystems. Instead, our results support previous studies that the use of Bti products against mosquitos would be safe even for sensitive habitats such as conservation areas.
Collapse
Affiliation(s)
- Sibylle Maletz
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Worringer Weg 1, 52074 Aachen, Germany
| | - Marc Wollenweber
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Worringer Weg 1, 52074 Aachen, Germany
| | - Katharina Kubiak
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Worringer Weg 1, 52074 Aachen, Germany
| | - Annett Müller
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Worringer Weg 1, 52074 Aachen, Germany
| | - Stefan Schmitz
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Worringer Weg 1, 52074 Aachen, Germany
| | - Dieter Maier
- Heinrich-Sontheimer-Laboratories, Prüfstelle Wasser und Korrosion, Water Technology Center, Wasserwerkstr. 4, 76137 Karlsruhe, Germany
| | - Markus Hecker
- University of Saskatchewan, Toxicology Centre, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; University of Saskatchewan, School of the Environment & Sustainability, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Worringer Weg 1, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, 1 Tiansheng Road, Beibei, Chongqing 400715, China; College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China.
| |
Collapse
|
26
|
Assessment of the Mutagenicity of Sediments from Yangtze River Estuary Using Salmonella Typhimurium/Microsome Assay. PLoS One 2015; 10:e0143522. [PMID: 26606056 PMCID: PMC4659643 DOI: 10.1371/journal.pone.0143522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/07/2015] [Indexed: 02/01/2023] Open
Abstract
Sediments in estuaries are of important environmental concern because they may act as pollution sinks and sources to the overlying water body. These sediments can be accumulated by benthic organisms. This study assessed the mutagenic potential of sediment extracts from the Yangtze River estuary by using the Ames fluctuation assay with the Salmonella typhimurium his (-) strain TA98 (frameshift mutagen indicator) and TA100 (baseshift mutagen indicator). Most of the sediment samples were mutagenic to the strain TA98, regardless of the presence or absence of exogenous metabolic activation (S9 induction by β-naphthoflavone/phenobarbital). However, none of the samples were mutagenic to the strain TA100. Thus, the mutagenicity pattern was mainly frameshift mutation, and the responsible toxicants were both direct (without S9 mix) and indirect (with S9 mix) mutagens. The mutagenicity of the sediment extracts increased when S9 was added. Chemical analysis showed a poor correlation between the content of priority polycyclic aromatic hydrocarbons and the detected mutagenicity in each sample. The concept of effect-directed analysis was used to analyze possible compounds responsible for the detected mutagenic effects. With regard to the mutagenicity of sediment fractions, non-polar compounds as well as weakly and moderately polar compounds played a main role. Further investigations should be conducted to identify the responsible components.
Collapse
|
27
|
Morandi GD, Wiseman SB, Pereira A, Mankidy R, Gault IGM, Martin JW, Giesy JP. Effects-Directed Analysis of Dissolved Organic Compounds in Oil Sands Process-Affected Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12395-12404. [PMID: 26381019 DOI: 10.1021/acs.est.5b02586] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Acute toxicity of oil sands process-affected water (OSPW) is caused by its complex mixture of bitumen-derived organics, but the specific chemical classes that are most toxic have not been demonstrated. Here, effects-directed analysis was used to determine the most acutely toxic chemical classes in OSPW collected from the world's first oil sands end-pit lake. Three sequential rounds of fractionation, chemical analysis (ultrahigh resolution mass spectrometry), and acute toxicity testing (96 h fathead minnow embryo lethality and 15 min Microtox bioassay) were conducted. Following primary fractionation, toxicity was primarily attributable to the neutral extractable fraction (F1-NE), containing 27% of original organics mass. In secondary fractionation, F1-NE was subfractionated by alkaline water washing, and toxicity was primarily isolated to the ionizable fraction (F2-NE2), containing 18.5% of the original organic mass. In the final round, chromatographic subfractionation of F2-NE2 resulted in two toxic fractions, with the most potent (F3-NE2a, 11% of original organic mass) containing predominantly naphthenic acids (O2(-)). The less-toxic fraction (F3-NE2b, 8% of original organic mass) contained predominantly nonacid species (O(+), O2(+), SO(+), NO(+)). Evidence supports naphthenic acids as among the most acutely toxic chemical classes in OSPW, but nonacidic species also contribute to acute toxicity of OSPW.
Collapse
Affiliation(s)
- Garrett D Morandi
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Steve B Wiseman
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Alberto Pereira
- Division of Analytical and Environmental Toxicology, University of Alberta , Edmonton, Alberta T6G 2G3, Canada
| | - Rishikesh Mankidy
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Ian G M Gault
- Division of Analytical and Environmental Toxicology, University of Alberta , Edmonton, Alberta T6G 2G3, Canada
| | - Jonathan W Martin
- Division of Analytical and Environmental Toxicology, University of Alberta , Edmonton, Alberta T6G 2G3, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B4, Canada
- Department of Zoology, and Center for Integrative Toxicology, Michigan State University , East Lansing, Michigan 48824, United States
- Department of Biology & Chemistry and State Key Laboratory for Marine Pollution, City University of Hong Kong , Kowloon, Hong Kong Special Administrative Region (SAR), People's Republic of China
- School of Biological Sciences, The University of Hong Kong , Hong Kong SAR, People's Republic of China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, People's Republic of China
- Department of Biology, Hong Kong Baptist University , Hong Kong SAR, People's Republic of China
| |
Collapse
|
28
|
Jasinska EJ, Goss GG, Gillis PL, Van Der Kraak GJ, Matsumoto J, de Souza Machado AA, Giacomin M, Moon TW, Massarsky A, Gagné F, Servos MR, Wilson J, Sultana T, Metcalfe CD. Assessment of biomarkers for contaminants of emerging concern on aquatic organisms downstream of a municipal wastewater discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:140-153. [PMID: 26026416 DOI: 10.1016/j.scitotenv.2015.05.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Contaminants of emerging concern (CECs), including pharmaceuticals, personal care products and estrogens, are detected in wastewater treatment plant (WWTP) discharges. However, analytical monitoring of wastewater and surface water does not indicate whether CECs are affecting the organisms downstream. In this study, fathead minnows (Pimephales promelas) and freshwater mussels Pyganodon grandis Say, 1829 (synonym: Anodonta grandis Say, 1829) were caged for 4 weeks in the North Saskatchewan River, upstream and downstream of the discharge from the WWTP that serves the Edmonton, AB, Canada. Passive samplers deployed indicated that concentrations of pharmaceuticals, personal care products, an estrogen (estrone) and an androgen (androstenedione) were elevated at sites downstream of the WWTP discharge. Several biomarkers of exposure were significantly altered in the tissues of caged fathead minnows and freshwater mussels relative to the upstream reference sites. Biomarkers altered in fish included induction of CYP3A metabolism, an increase in vitellogenin (Vtg) gene expression in male minnows, elevated ratios of oxidized to total glutathione (i.e. GSSG/TGSH), and an increase in the activity of antioxidant enzymes (i.e. glutathione reductase, glutathione-S-transferase). In mussels, there were no significant changes in biomarkers of oxidative stress and the levels of Vtg-like proteins were reduced, not elevated, indicating a generalized stress response. Immune function was altered in mussels, as indicated by elevated lysosomal activity per hemocyte in P. grandis caged closest to the wastewater discharge. This immune response may be due to exposure to bacterial pathogens in the wastewater. Multivariate analysis indicated a response to the CECs Carbamazepine (CBZ) and Trimethoprim (TPM). Overall, these data indicate that there is a 1 km zone of impact for aquatic organisms downstream of WWTP discharge. However, multiple stressors in municipal wastewater make measurement and interpretation of impact of CECs difficult since water temperature, conductivity and bacteria are also inducing biomarker responses in both fish and mussels.
Collapse
Affiliation(s)
- Edyta J Jasinska
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Patricia L Gillis
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment Canada, Burlington, ON, Canada
| | | | | | | | - Marina Giacomin
- Instituto de Ciências Biológicas, Universidade Federal de Rio Grande, Rio Grande, Brazil
| | - Thomas W Moon
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON, Canada
| | - Andrey Massarsky
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON, Canada
| | - Francois Gagné
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment Canada, Montreal, QC, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Joanna Wilson
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Tamanna Sultana
- Water Quality Centre, Trent University, Peterborough, ON, Canada
| | - Chris D Metcalfe
- Water Quality Centre, Trent University, Peterborough, ON, Canada
| |
Collapse
|
29
|
Schulze T, Ulrich M, Maier D, Maier M, Terytze K, Braunbeck T, Hollert H. Evaluation of the hazard potentials of river suspended particulate matter and floodplain soils in the Rhine basin using chemical analysis and in vitro bioassays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:14606-14620. [PMID: 25331527 DOI: 10.1007/s11356-014-3707-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 10/07/2014] [Indexed: 06/04/2023]
Abstract
The purpose of the present study was to assess the hazard potentials of contaminated suspended particulate matter (SPM) sampled during a flood event for floodplain soils using in vitro bioassays and chemical analysis. Sediment-contact tests were performed to evaluate the direct exposure of organisms to native soils and SPM at two different trophic levels. For comparison, acetonic extracts were tested using both contact tests and additionally two cell-based biotests for cytotoxicity and Ah receptor-mediated activity (EROD-Assay). The sediment-contact tests were carried out with the dehydrogenase assay with Arthrobacter globiformis and the fish embryo assay with Danio rerio. The results of this study clearly document that native samples may well be significantly more effective than corresponding extracts in the bacteria contact assay or the fish embryo test. These results question the commonly accepted concept that acetonic extracts are likely to overestimate the toxicity of soil and SPM samples. Likewise, the priority organic compounds analyzed failed to fully explain the toxic potential of the samples. The outcomes of this study revealed the insufficient knowledge regarding the relationship between the different exposure pathways. Finally, there is concern about adverse effects by settling suspended particulate matter and remobilized sediments in frequently inundated floodplain soils due to an increase of the hazard potential, if compared with infrequently inundated floodplain soils. We showed that the settling of SPM and sediments revealed a significant impact on the dioxin-like potencies of riparian soils.
Collapse
Affiliation(s)
- Tobias Schulze
- Department of Earth Sciences, Free University Berlin, Malteserstrasse 74-100, 12249, Berlin, Germany.
- UFZ Helmholtz Centre for Environmental Research, Department of Effect Directed Analysis, Permoserstrasse 15, 04318, Leipzig, Germany.
| | - Markus Ulrich
- Aquatic Ecology and Toxicology, COS-Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Dieter Maier
- Stadtwerke Karlsruhe GmbH (SWK), Daxlander Strasse 72, 76185, Karlsruhe, Germany
| | - Matthias Maier
- Stadtwerke Karlsruhe GmbH (SWK), Daxlander Strasse 72, 76185, Karlsruhe, Germany
| | - Konstantin Terytze
- Department of Earth Sciences, Free University Berlin, Malteserstrasse 74-100, 12249, Berlin, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, COS-Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Henner Hollert
- ABBt-Aachen Biology and Biotechnology, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
- School of Environment, Nanjing University, Nanjing, China.
- Key Laboratory of Yangtze River Environment of Education Ministry of China, College of Environmental Science and Engineering, Tongji University, Shanghai, China.
- College of Resources and Environmental Science, Chongqing University, Chongqing, China.
| |
Collapse
|
30
|
Jeong HJ, Lee HJ, Hong S, Khim JS, Shim WJ, Kim GB. DNA damage caused by organic extracts of contaminated sediment, crude, and weathered oil and their fractions recovered up to 5 years after the 2007 Hebei Spirit oil spill off Korea. MARINE POLLUTION BULLETIN 2015; 95:452-457. [PMID: 25869203 DOI: 10.1016/j.marpolbul.2015.03.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/10/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
We examined the degree of DNA damage caused by three fractions (F1, aliphatic hydrocarbons; F2, aromatic hydrocarbons; and F3, polar compounds) of the organic extract of sediments taken from Taean, Korea, following the Hebei Spirit oil spill. DNA damage was measured using the comet assay with blood cells of the striped beakfish (Oplegnathus fasciatus). DNA damage was also examined for fractions of crude oil (Iranian Heavy Crude Oil, IHC), weathered oil and six subfractions (F2.1-F2.6). The greatest DNA damage was found from the Sinduri dune region and DNA damage decreased to 40% weathered oil in F2 fraction compared with crude oil. The DNA damage of the sum of fractions was found higher than the organic extracts of sediments, suggesting antagonistic interactions between the genotoxic compounds. This study confirmed the persistence of potential genotoxicity in sediments of the severely affected regions as long as 5 years after the oil spill.
Collapse
Affiliation(s)
- Hae Jin Jeong
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Hyo Jin Lee
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Seongjin Hong
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Won Joon Shim
- Oil and POPs Research Group, Korea Ocean Research and Development Institute, Geoje, Republic of Korea
| | - Gi Beum Kim
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Republic of Korea; The Institute of Marine Industry College of Marine Science Gyeongsang National University, Tongyeong, Republic of Korea.
| |
Collapse
|
31
|
Gerbersdorf SU, Cimatoribus C, Class H, Engesser KH, Helbich S, Hollert H, Lange C, Kranert M, Metzger J, Nowak W, Seiler TB, Steger K, Steinmetz H, Wieprecht S. Anthropogenic Trace Compounds (ATCs) in aquatic habitats - research needs on sources, fate, detection and toxicity to ensure timely elimination strategies and risk management. ENVIRONMENT INTERNATIONAL 2015; 79:85-105. [PMID: 25801101 DOI: 10.1016/j.envint.2015.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/04/2015] [Accepted: 03/10/2015] [Indexed: 05/05/2023]
Abstract
Anthropogenic Trace Compounds (ATCs) that continuously grow in numbers and concentrations are an emerging issue for water quality in both natural and technical environments. The complex web of exposure pathways as well as the variety in the chemical structure and potency of ATCs represents immense challenges for future research and policy initiatives. This review summarizes current trends and identifies knowledge gaps in innovative, effective monitoring and management strategies while addressing the research questions concerning ATC occurrence, fate, detection and toxicity. We highlight the progressing sensitivity of chemical analytics and the challenges in harmonization of sampling protocols and methods, as well as the need for ATC indicator substances to enable cross-national valid monitoring routine. Secondly, the status quo in ecotoxicology is described to advocate for a better implementation of long-term tests, to address toxicity on community and environmental as well as on human-health levels, and to adapt various test levels and endpoints. Moreover, we discuss potential sources of ATCs and the current removal efficiency of wastewater treatment plants (WWTPs) to indicate the most effective places and elimination strategies. Knowledge gaps in transport and/or detainment of ATCs through their passage in surface waters and groundwaters are further emphasized in relation to their physico-chemical properties, abiotic conditions and biological interactions in order to highlight fundamental research needs. Finally, we demonstrate the importance and remaining challenges of an appropriate ATC risk assessment since this will greatly assist in identifying the most urgent calls for action, in selecting the most promising measures, and in evaluating the success of implemented management strategies.
Collapse
Affiliation(s)
- Sabine U Gerbersdorf
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| | - Carla Cimatoribus
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany; University of Applied Sciences Esslingen, Kanalstrasse 3, 73728 Esslingen, Germany
| | - Holger Class
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| | - Karl-H Engesser
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Steffen Helbich
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China; College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China
| | - Claudia Lange
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Martin Kranert
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Jörg Metzger
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany; University of Applied Sciences Esslingen, Kanalstrasse 3, 73728 Esslingen, Germany
| | - Wolfgang Nowak
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Kristin Steger
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| | - Heidrun Steinmetz
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Silke Wieprecht
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| |
Collapse
|
32
|
TLC-Direct Bioautography as a High Throughput Method for Detection of Antimicrobials in Plants. CHROMATOGRAPHY 2015. [DOI: 10.3390/chromatography2020225] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Simon E, Lamoree MH, Hamers T, de Boer J. Challenges in effect-directed analysis with a focus on biological samples. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Kim Tiam S, Morin S, Bonet B, Guasch H, Feurtet-Mazel A, Eon M, Gonzalez P, Mazzella N. Is the toxicity of pesticide mixtures on river biofilm accounted for solely by the major compounds identified? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4009-4024. [PMID: 25077658 DOI: 10.1007/s11356-014-3373-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/22/2014] [Indexed: 06/03/2023]
Abstract
Comparative effects of long-term exposure to Polar Organic Chemical Integrative Sampler (POCIS) extracts (PE) and to a reconstituted mixture based on the major compounds quantified in the PE were evaluated on river biofilm communities. The study aimed to characterize the effects of long-term and low-dose exposure to pesticides on natural biofilm communities and to evaluate if the effects due to PE exposure could be explained solely by the major compounds identified in the extracts. Biofilms from an uncontaminated site were exposed in artificial channels to realistic environmental concentrations using diluted PE, with the 12 major compounds quantified in the extracts (Mix) or with water not containing pesticides (Ctr). Significant differences between biofilms exposed to pesticides or not were observed with regard to diatom density, biomass (dry weight and ash-free dry mass), photosynthetic efficiency (ΦpsII) and antioxidant enzyme activities. After 14 days of exposure to the different treatments, the observed trend towards a decrease of mean diatom cell biovolumes in samples exposed to pesticides was related to the control biofilms' higher relative abundance of large species like Cocconeis placentula or Amphora copulata and lower relative abundance of small species like Eolimna minima compared to the contaminated ones. Principal component analyses clearly separated contaminated (PE and Mix) from non-contaminated (Ctr) biofilms; on the contrary, the analyses did not reveal separation between biofilms exposed to PE or to the 12 major compounds identified in the extract.
Collapse
Affiliation(s)
- Sandra Kim Tiam
- Irstea, UR REBX, 50 avenue de Verdun, 33612, Cestas cedex, France,
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lei B, Kang J, Wang X, Liu Q, Yu Z, Zeng X, Fu J. The toxicity of sediments from Taihu Lake evaluated by several in vitro bioassays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3419-3430. [PMID: 25367641 DOI: 10.1007/s11356-014-3640-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 09/22/2014] [Indexed: 06/04/2023]
Abstract
In vitro bioassays are useful techniques for the determination of biological effects in sediment samples containing complex mixtures of contaminants. In this study, 28 surface sediment samples from Taihu Lake, East China, were collected for toxicity assessment using a battery of in vitro bioassays. The battery included a two-hybrid yeast bioassay for estrogenic and thyroidal effects, the H4IIE rat hepatoma cell bioassay for aryl hydrocarbon (Ah) receptor (Ah-agonists)-mediated effects as measured by ethoxyresorufin-O-deethylase (EROD) activity, and the SOS/umu bioassay for genotoxic effects. Toxicities were expressed as 17β-estradiol equivalents (EEQs), T3 (3,5,3'-triiodothyronine) equivalents (T3-EQs), 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEQs), and induction ratios (IRs) of β-galactosidase activity. The results showed that total estrogenic effects in sediment samples ranged from 0.0011 to 12.4 pg EEQ/g sediment [dry weight (d.w.)], the thyroidal effects ranged from 0.35 to 24.8 pg T3-EQ/g sediment (d.w.), the Ah-agonist effects varied from 2.70 to 37.8 pg TEQ/g sediment (d.w.), and the weight of soil required for the extracts to lead to a positive result (IR 2.0) in the SOS/umu bioassay was between 1.98 and 15.3 mg (d.w.) per well. Significantly positive correlations were only found between lgT3-EQs and lgEEQs, which indicated similar spatial distributions of estrogenic and thyroidal effects in Taihu Lake. These results suggested that the applied battery of in vitro bioassays represented an efficient (fast and cost-effective) screening system for the identification of emerging contaminants in Taihu Lake and provided meaningful information for further analysis and risk evaluation.
Collapse
Affiliation(s)
- Bingli Lei
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Meyer W, Seiler TB, Christ A, Redelstein R, Püttmann W, Hollert H, Achten C. Mutagenicity, dioxin-like activity and bioaccumulation of alkylated picene and chrysene derivatives in a German lignite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 497-498:634-641. [PMID: 25170829 DOI: 10.1016/j.scitotenv.2014.07.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
In a former study, a German lignite extract exhibited toxicity to Danio rerio and Caenorhabditis elegans and was shown to have mutagenic and dioxin-like activity. Besides the comparatively low content of known toxic polycyclic aromatic hydrocarbons (PAH), highly intensive peaks of m/z 274 and m/z 324 were observed during the chromatographic analysis. These compounds are assumed to be alkylated chrysenes and picenes (3,3,7-trimethyl-1,2,3,4-tetrahydrochrysene, 1,2-(1'-isopropylpropano)-7-methylchrysene and an isomer of the latter, 1,2,9-trimethyl-1,2,3,4-tetrahydropicene and 2,2,9-trimethyl-1,2,3,4-tetrahydropicene). These compounds are intermediates in the diagenetic formation of chrysene and picene from triterpenoids. Due to their general high abundance in lignites and the toxicity observed for the lignite extract, the mechanism-specific toxicity and bioavailability of these compounds were investigated in the present study using the approach of effect-directed analysis. After the separation of the compounds from other PAH, their mutagenic activity (Ames Fluctuation test) and dioxin-like activity (EROD activity) were studied. Both, mutation induction factor (up to 2.9±2.7) and dioxin-like activity (Bio-TEQ of 224±75 pg/g; represents the amount (pg) 2,3,7,8-tetrachlorodibenzo-p-dioxin per g coal that would provoke the same toxic effect) were rather low. Bioavailability estimated by the bioaccumulation test with Lumbriculus variegatus was also very limited. Based on the obtained results, the environmental risk of the highly abundant alkylated chrysenes and picenes in lignites is concluded to be low.
Collapse
Affiliation(s)
- Wiebke Meyer
- University of Münster, Institute of Geology and Palaeontology-Applied Geology, Corrensstrasse 24, 48149 Münster, Germany
| | - Thomas-Benjamin Seiler
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Andreas Christ
- University of Münster, Institute of Geology and Palaeontology-Applied Geology, Corrensstrasse 24, 48149 Münster, Germany
| | - Regine Redelstein
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Wilhelm Püttmann
- J.W.Goethe-University Frankfurt am Main, Institute for Atmospheric and Environmental Sciences, Department of Environmental Analytical Chemistry, Altenhöferallee 1, 60438 Frankfurt/Main, Germany
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany; Key Laboratory of Yangtze River Environment of Education, Ministry of China, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; College of Resources and Environmental Science, Chongqing University, Chongqing 400030, China; School of Environment, Nanjing University, China
| | - Christine Achten
- University of Münster, Institute of Geology and Palaeontology-Applied Geology, Corrensstrasse 24, 48149 Münster, Germany.
| |
Collapse
|
37
|
Simon A, Maletz SX, Hollert H, Schäffer A, Maes HM. Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation. NANOSCALE RESEARCH LETTERS 2014; 9:396. [PMID: 25170332 PMCID: PMC4142056 DOI: 10.1186/1556-276x-9-396] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/09/2014] [Indexed: 05/23/2023]
Abstract
To date, only a few reports about studies on toxic effects of carbon nanotubes (CNT) are available, and their results are often controversial. Three different cell lines (rainbow trout liver cells (RTL-W1), human adrenocortical carcinoma cells (T47Dluc), and human adrenocarcinoma cells (H295R)) were exposed to multiwalled carbon nanotubes, the antimicrobial agent triclocarban (TCC) as well as the mixture of both substances in a concentration range of 3.13 to 50 mg CNT/L, 31.25 to 500 μg TCC/L, and 3.13 to 50 mg CNT/L + 1% TCC (percentage relative to carbon nanotubes concentration), respectively. Triclocarban is a high-production volume chemical that is widely used as an antimicrobial compound and is known for its toxicity, hydrophobicity, endocrine disruption, bioaccumulation potential, and environmental persistence. Carbon nanotubes are known to interact with hydrophobic organic compounds. Therefore, triclocarban was selected as a model substance to examine mixture toxicity in this study. The influence of multiwalled carbon nanotubes and triclocarban on various toxicological endpoints was specified: neither cytotoxicity nor endocrine disruption could be observed after exposure of the three cell lines to carbon nanotubes, but the nanomaterial caused intracellular generation of reactive oxygen species in all cell types. For TCC on the other hand, cell vitality of 80% could be observed at a concentration of 2.1 mg/L for treated RTL-W1 cells. A decrease of luciferase activity in the ER Calux assay at a triclocarban concentration of 125 μg/L and higher was observed. This effect was less pronounced when multiwalled carbon nanotubes were present in the medium. Taken together, these results demonstrate that multiwalled carbon nanotubes induce the production of reactive oxygen species in RTL-W1, T47Dluc, and H295R cells, reveal no cytotoxicity, and reduce the bioavailability and toxicity of the biocide triclocarban.
Collapse
Affiliation(s)
- Anne Simon
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
| | - Sibylle X Maletz
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
| | - Henner Hollert
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
- School of Environment, Nanjing University, Nanjing 210023, China
- Key Laboratory of Yangtze River Environment of Education Ministry of China, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- College of Resources and Environmental Science, Chongqing University, Chongqing 400715, China
| | - Andreas Schäffer
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
- School of Environment, Nanjing University, Nanjing 210023, China
- Key Laboratory of Yangtze River Environment of Education Ministry of China, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- College of Resources and Environmental Science, Chongqing University, Chongqing 400715, China
| | - Hanna M Maes
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
| |
Collapse
|
38
|
Beyer J, Petersen K, Song Y, Ruus A, Grung M, Bakke T, Tollefsen KE. Environmental risk assessment of combined effects in aquatic ecotoxicology: a discussion paper. MARINE ENVIRONMENTAL RESEARCH 2014; 96:81-91. [PMID: 24246633 DOI: 10.1016/j.marenvres.2013.10.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/17/2013] [Accepted: 10/25/2013] [Indexed: 05/22/2023]
Abstract
Environmental regulatory edicts within the EU, such as the regulatory framework for chemicals REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals), the Water Framework Directive (WFD), and the Marine Strategy Framework Directive (MSFD) focus mainly on toxicity assessment of individual chemicals although the effect of contaminant mixtures is a matter of increasing concern. This discussion paper provides an overview of the field of combined effects in aquatic ecotoxicology and addresses some of the major challenges related to assessment of combined effects in connection with environmental risk assessment (ERA) and regulation. Potentials and obstacles related to different experimental, modelling and predictive ERA approaches are described. On-going ERA guideline and manual developments in Europe aiming to incorporate combined effects of contaminants, the use of different experimental approaches for providing combined effect data, the involvement of biomarkers to characterize Mode of Action and toxicity pathways and efforts to identify relevant risk scenarios related to combined effects are discussed.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute of Water Research - NIVA, NO-0349 Oslo, Norway; University of Stavanger, Department of Mathematics and Natural Science, N-4036 Stavanger, Norway.
| | - Karina Petersen
- Norwegian Institute of Water Research - NIVA, NO-0349 Oslo, Norway
| | - You Song
- Norwegian Institute of Water Research - NIVA, NO-0349 Oslo, Norway; Norwegian University of Life Sciences - UMB, N-0033 Oslo, Norway
| | - Anders Ruus
- Norwegian Institute of Water Research - NIVA, NO-0349 Oslo, Norway
| | - Merete Grung
- Norwegian Institute of Water Research - NIVA, NO-0349 Oslo, Norway
| | - Torgeir Bakke
- Norwegian Institute of Water Research - NIVA, NO-0349 Oslo, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute of Water Research - NIVA, NO-0349 Oslo, Norway; Norwegian University of Life Sciences - UMB, N-0033 Oslo, Norway
| |
Collapse
|
39
|
Gillis PL, Gagné F, McInnis R, Hooey TM, Choy ES, André C, Hoque ME, Metcalfe CD. The impact of municipal wastewater effluent on field-deployed freshwater mussels in the Grand River (Ontario, Canada). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:134-143. [PMID: 24115239 DOI: 10.1002/etc.2401] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/16/2013] [Accepted: 09/19/2013] [Indexed: 06/02/2023]
Abstract
To examine effects of municipal wastewater effluent (MWWE) on sentinel organisms, the authors deployed caged freshwater mussels (Lasmigona costata) in the Grand River (ON, Canada) upstream and downstream of an MWWE outfall. Passive sampling devices were deployed alongside caged mussels to confirm exposure. Biomarkers of xenobiotic biotransformation, oxidative stress, estrogenicity, and immunomodulation were investigated. Elevated concentrations of selected pharmaceutical and personal care products (PPCPs) and a natural estrogen (estrone) were found at the downstream sites. Mussels caged downstream of the effluent for 2 wk showed minimal evidence of exposure, while those deployed for 4 wk exhibited significantly higher levels of lipid peroxidation (LPO) and glutathione S-transferase (GST) activity, demonstrating that MWWE-exposed mussels exhibit increased activity in xenobiotic conjugation and oxidative stress. With respect to immune responses, a significant increase in plasma lysozyme activity and hemocyte viability was observed in MWWE-exposed mussels. Vitellogenin (vtg)-like protein in male mussels showed a trend toward induction after 4 wk of deployment at the first downstream site, but mean levels were not significantly different. Discriminant function analysis indicated that mussels deployed for 4 wk upstream and downstream of the MWWE discharge could be discriminated on the basis of LPO, GST, plasma lysozyme, and vtg responses. The physiological stress observed in caged mussels indicates that wild mussels chronically exposed to MWWE in this ecosystem would also be negatively impacted.
Collapse
Affiliation(s)
- Patricia L Gillis
- Aquatic Contaminants Research Division, Water Science & Technology Directorate, Environment Canada, Burlington, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Contribution of priority PAHs and POPs to Ah receptor-mediated activities in sediment samples from the River Elbe Estuary, Germany. PLoS One 2013; 8:e75596. [PMID: 24146763 PMCID: PMC3795708 DOI: 10.1371/journal.pone.0075596] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 08/16/2013] [Indexed: 12/04/2022] Open
Abstract
The estuary of the River Elbe between Hamburg and the North Sea (Germany) is a sink for contaminated sediment and suspended particulate matter (SPM). One major concern is the effect of human activities on the hydrodynamics, particularly the intensive dredging activities in this area that may result in remobilization of sediment-bound pollutants. The aim of this study was to identify pollutants contributing to the toxicological risk associated with re-suspension of sediments in the Elbe Estuary by use of an effect-directed analysis that combines chemical and biological analyses in with specific fractionation techniques. Sediments were collected from sites along the Elbe Estuary and a site from a small harbor basin of the Elbe Estuary that is known to be polluted. The sixteen priority EPA-PAHs were quantified in organic extracts of sediments. In addition, dioxin equivalents of sediments were investigated by use of the 7-ethoxyresorufin O-deethylase assay with RTL-W1 cells and the Ah receptor-mediated luciferase transactivation assay with H4IIE-luc cells. Quantification of the 16 priority PAHs revealed that sediments were moderately contaminated at all of the sites in the Elbe River Estuary (<0.02–0.906 µg/g dw). Sediments contained relatively small concentrations of dioxin equivalents (Bio-TEQ) with concentrations ranging from 15.5 to 322 pg/g dw, which were significantly correlated with dioxin equivalents calculated based on toxicity reference values and concentrations of PAH. The concentration of Bio-TEQ at the reference site exceeded 200,000 pg/g dw. In a potency balance the 16 PAHs explained between 47 and 118% of the Bio-TEQ in the luciferase assay, which can be explained by the constant input of PAHs bound to SPM from the upper course of the Elbe River into its estuary. Successful identification of a significant portion of dioxin-like activity to priority PAHs in complex environmental samples such as sediments has rarely been reported.
Collapse
|
41
|
Floehr T, Xiao H, Scholz-Starke B, Wu L, Hou J, Yin D, Zhang X, Ji R, Yuan X, Ottermanns R, Roß-Nickoll M, Schäffer A, Hollert H. Solution by dilution?--A review on the pollution status of the Yangtze River. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:6934-6971. [PMID: 23608976 DOI: 10.1007/s11356-013-1666-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
The Yangtze River has been a source of life and prosperity for the Chinese people for centuries and is a habitat for a remarkable variety of aquatic species. But the river suffers from huge amounts of urban sewage, agricultural effluents, and industrial wastewater as well as ship navigation wastes along its course. With respect to the vast amounts of water and sediments discharged by the Yangtze River, it is reasonable to ask whether the pollution problem may be solved by simple dilution. This article reviews the past two decades of published research on organic pollutants in the Yangtze River and several adjacent water bodies connected to the main stream, according to a holistic approach. Organic pollutant levels and potential effects of water and sediments on wildlife and humans, measured in vitro, in vivo, and in situ, were critically reviewed. The contamination with organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans, polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs), and others, of water and sediment along the river was described. Especially Wuhan section and the Yangtze Estuary exhibited stronger pollution than other sections. Bioassays, displaying predominantly the endpoints mutagenicity and endocrine disruption, applied at sediments, drinking water, and surface water indicated a potential health risk in several areas. Aquatic organisms exhibited detectable concentrations of toxic compounds like PCBs, OCPs, PBDEs, and PFCs. Genotoxic effects could also be assessed in situ in fish. To summarize, it can be stated that dilution reduces the ecotoxicological risk in the Yangtze River, but does not eliminate it. Keeping in mind an approximately 14 times greater water discharge compared to the major European river Rhine, the absolute pollution mass transfer of the Yangtze River is of severe concern for the environmental quality of its estuary and the East China Sea. Based on the review, further research needs have been identified.
Collapse
Affiliation(s)
- Tilman Floehr
- Institute for Environmental Research, RWTH Aachen University, Aachen, 52074, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Maletz S, Floehr T, Beier S, Klümper C, Brouwer A, Behnisch P, Higley E, Giesy JP, Hecker M, Gebhardt W, Linnemann V, Pinnekamp J, Hollert H. In vitro characterization of the effectiveness of enhanced sewage treatment processes to eliminate endocrine activity of hospital effluents. WATER RESEARCH 2013; 47:1545-57. [PMID: 23305681 DOI: 10.1016/j.watres.2012.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/21/2012] [Accepted: 12/06/2012] [Indexed: 05/10/2023]
Abstract
Occurrence of pharmaceuticals in aquatic ecosystems is related to sewage effluents. Due to the possible adverse effects on wildlife and humans, degradation and removal of pharmaceuticals and their metabolites during wastewater treatment is an increasingly important task. The present study was part of a proof of concept study at a medium sized country hospital in western Germany that investigated efficiency of advanced treatment processes to remove toxic potencies from sewage. Specifically, the efficiency of treatment processes such as a membrane bioreactor (MBR) and ozonation to remove endocrine disruptive potentials was assessed. Estrogenic effects were characterized by use of two receptor-mediated in vitro transactivation assays, the Lyticase Yeast Estrogen Screen (LYES) and the Estrogen Receptor mediated Chemical Activated LUciferase gene eXpression (ER CALUX(®)). In addition, the H295R Steroidogenesis Assay (H295R) was utilized to detect potential disruption of steroidogenesis. Raw sewage contained measurable estrogen receptor (ER)-mediated potency as determined by use of the LYES (28.9 ± 8.6 ng/L, 0.33× concentration), which was reduced after treatment by MBR (2.3 ± 0.3 ng/L) and ozone (1.2 ± 0.4 ng/L). Results were confirmed by use of ER CALUX(®) which measured concentrations of estrogen equivalents (EEQs) of 0.2 ± 0.11 ng/L (MBR) and 0.01 ± 0.02 ng/L (ozonation). In contrast, treatment with ozone resulted in greater production of estradiol and aromatase activity at 3× and greater concentrations in H295R cells. It is hypothesized that this is partly due to formation of active oxidized products during ozonation. Substance-specific analyses demonstrated efficient removal of most of the measured compounds by ozonation. A comparison of the ER-mediated responses measured by use of the LYES and ER CALUX(®) with those from the chemical analysis using a mass-balance approach revealed estrone (E1) to be the main compound that caused the estrogenic effects. Overall, treatment of sewage by use of MBR successfully reduced estrogenicity of hospital effluents as well as substances that are able to alter sex steroid production. However, after ozonation, effluents should undergo further investigations regarding the formation of endocrine active metabolites. The results obtained as part of this study demonstrated applicability of in vitro assays for monitoring of endocrine-modulating potency of treated sewage.
Collapse
Affiliation(s)
- Sibylle Maletz
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Worringer Weg 1, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ribé V, Nehrenheim E, Odlare M, Gustavsson L, Berglind R, Forsberg A. Ecotoxicological assessment and evaluation of a pine bark biosorbent treatment of five landfill leachates. WASTE MANAGEMENT (NEW YORK, N.Y.) 2012; 32:1886-1894. [PMID: 22703999 DOI: 10.1016/j.wasman.2012.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 05/07/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
When selecting a landfill leachate treatment method the contaminant composition of the leachate should be considered in order to obtain the most cost-effective treatment option. In this study the filter material pine bark was evaluated as a treatment for five landfill leachates originating from different cells of the same landfill in Sweden. The objective of the study was to determine the uptake, or release, of metals and dissolved organic carbon (DOC) during a leaching test using the pine bark filter material with the five different landfill leachates. Furthermore the change of toxicity after treatment was studied using a battery of aquatic bioassays assessing luminescent bacteria (Vibrio fischeri) acute toxicity (30-min Microtox®), immobility of the crustacean Daphnia magna, growth inhibition of the algae Pseudokirchneriella subcapitata and the aquatic plant Lemna minor; and genotoxicity with the bacterial Umu-C assay. The results from the toxicity tests and the chemical analysis were analyzed in a Principal Component Analysis and the toxicity of the samples before and after treatment was evaluated in a toxicity classification. The pine bark filter material reduced the concentrations of metal contaminants from the landfill leachates in the study, with some exceptions for Cu and Cd. The Zn uptake of the filter was high for heavily contaminated leachates (≥73%), although some desorption of zinc occurred in less contaminated waters. Some of the leachates may require further treatment due to discharge into a natural recipient in order to reduce the risk of possible biological effects. The difference in pH changes between the different leachates was probably due to variations in buffering capacity, affected by physicochemical properties of the leachate. The greatest desorption of phenol during filtration occurred in leachates with high conductivity or elevated levels of metals or salts. Generally, the toxicity classification of the leachates implies that although filter treatment with pine bark removes metal contaminants from the leachates effectively, it does not alter leachate toxicity noticeably. The leachates with the highest conductivity, pH and metal concentrations are most strongly correlated with an increased toxic response in the score plots of both untreated and treated leachates. This is in line with the toxicity classification of the leachate samples. The results from this study highlight the importance of evaluating treatment efficiency from the perspective of potential recipient effects, rather than in terms of residual concentrations of individual contaminants when treating waters with a complex contamination matrix, such as landfill leachates.
Collapse
Affiliation(s)
- Veronica Ribé
- School of Sustainable Development of Society and Technology, Mälardalen University, SE-72123 Västerås, Sweden.
| | | | | | | | | | | |
Collapse
|
44
|
Toxicology of water. ACTA ACUST UNITED AC 2012; 101:21-46. [PMID: 22945565 DOI: 10.1007/978-3-7643-8340-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
To protect the quality of water from toxic pollutants for the health of humans and the environment, two approaches are generally applied in the field of toxicology to predict the effects of pollutants and to monitor the toxic pollutants in water. Here we provide our perspective on state-of-the-art methods to develop water quality criteria and the use of molecular techniques for monitoring water quality. Emphasized is the recent development and application of cell-based assays and small fish model in toxicology research of water.
Collapse
|
45
|
Schmitt S, Reifferscheid G, Claus E, Schlüsener M, Buchinger S. Effect directed analysis and mixture effects of estrogenic compounds in a sediment of the river Elbe. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:3350-61. [PMID: 22421800 DOI: 10.1007/s11356-012-0852-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/01/2012] [Indexed: 05/15/2023]
Abstract
INTRODUCTION Endocrine disrupting chemicals (EDCs) are present in the environment and can have serious effects on humans and wildlife. For the establishment of environmental quality guidelines and regulation of EDCs, a better understanding and knowledge of the occurrence and the behavior of environmental EDCs is necessary. The aim of the present study was to comprehensively identify substances that are responsible for the estrogenic effect of an environmental sediment sample taken from the river Elbe/Germany. DISCUSSION The estrogenic effect of the organic sediment extract was determined using the yeast-estrogen-screen (YES). The sample was fractionated by liquid chromatography (LC) for effect directed analysis. The composition of estrogen-active fractions was further investigated by gas chromatography-mass spectrometry and high-resolution LC-MS analysis. The composition of the environmental sample was rebuilt with pure compounds in order to assess the partition of estrogenic activity caused by the identified compounds. The organic sediment extract showed an estrogenic potential of 1.9 ± 0.4 ng/g ethinylestradiol equivalents in the sediment. The most prominent contaminants with an estrogenic potential were 17β-estradiol, estrone, and 4-iso-nonylphenols, but other xenoestrogens like bisphenol A and stigmasterol could be found as well. A rebuild of the sample was measured in the YES in order to investigate mixture effects. About 67 % of the observed estrogenic effect in the sediment extract could be explained by a mixture which contained all identified compounds. Chlorophene (o-benzyl-p-chlorophenol)-a widely used antiseptic that was also identified in the sediment extract-has xenoestrogenic properties in the YES that are in the range of other xenoestrogens like 4-n-nonylphenol. This is the first report on chlorophene acting as a xenoestrogen.
Collapse
Affiliation(s)
- Sebastian Schmitt
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | | | | | | | | |
Collapse
|
46
|
Sanchez W, Burgeot T, Perceval O. Perspectives from the French workshop on the development and validation of biomarkers and bioassays for the monitoring of aquatic environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:1345-7. [PMID: 22307901 DOI: 10.1007/s11356-012-0789-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/24/2012] [Indexed: 05/21/2023]
Affiliation(s)
- W Sanchez
- Unité d'Ecotoxicologie in vitro et in vivo, Institut National de l'Environnement Industriel et des Risques (INERIS), 60550, Verneuil en Halatte, France.
| | | | | |
Collapse
|
47
|
Higley E, Grund S, Jones PD, Schulze T, Seiler TB, Lübcke-von Varel U, Brack W, Wölz J, Zielke H, Giesy JP, Hollert H, Hecker M. Endocrine disrupting, mutagenic, and teratogenic effects of upper Danube River sediments using effect-directed analysis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:1053-62. [PMID: 22447245 DOI: 10.1002/etc.1777] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/24/2011] [Accepted: 01/02/2012] [Indexed: 05/02/2023]
Abstract
Effect-directed analysis (EDA) can be useful in identifying and evaluating potential toxic chemicals in matrixes. Previous investigations of extracts of sediments from the upper Danube River in Germany revealed acute nonspecific and mechanism-specific toxicity as determined by several bioassays. In the present study, EDA was used to further characterize these sediments and identify groups of potentially toxic chemicals. Four extracts of sediments were subjected to a novel fractionation scheme coupled with identification of chemicals to characterize their ability to disrupt steroidogenesis or cause mutagenic and/or teratogenic effects. All four whole extracts of sediment caused significant alteration of steroidogenesis and were mutagenic as well as teratogenic. The whole extracts of sediments were separated into 18 fractions and these fractions were then subjected to the same bioassays as the whole extracts. Fractions 7 to 15 of all four extracts were consistently more potent in both the Ames fluctuation and H295R assays. Much of this toxicity could be attributed to polycyclic aromatic hydrocarbons, sterols, and in fraction 7-naphthoic acids. Because the fraction containing polychlorinated biphenyls, polychlorodibenzodioxin/furan, dichlorodiphenyltrichloroethane, and several organophosphates did not cause any observable effects on hormone production or a mutagenic response, or were not detected in any of the samples, these compounds could be eliminated as causative agents for the observed effects. These results demonstrate the value of using EDA, which uses multiple bioassays and new fractionation techniques to assess toxicity. Furthermore, to our knowledge this is the first study using the recently developed H295R assay within EDA strategies.
Collapse
Affiliation(s)
- Eric Higley
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schmitt C, Vogt C, Machala M, de Deckere E. Sediment contact test with Potamopyrgus antipodarum in effect-directed analyses-challenges and opportunities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:1398-1404. [PMID: 21487648 DOI: 10.1007/s11356-011-0497-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/16/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND SCOPE Effect-directed analysis is increasingly used for the identification of key toxicants in environmental samples and there is a growing need for in vivo biotests as diagnostic tools. Within this study, we performed an in vivo sediment contact test, applicable on both native field samples and their extracts or fractions, in order to be able to compare the results from both field and laboratory studies. MATERIAL AND METHODS A sediment contact test with the prosobranch snail, Potamopyrgus antipodarum, was carried out on extracts and fractions of field sediments from three European river basins. The results were compared with previous results of the native field samples. RESULTS In contrast to the native sediments, the extracts of the samples led to an overall decrease in reproduction. Even the chosen reference sites had an adverse effect on the snails' reproduction. It appeared that a higher bioavailability in the organic extracts, together with a changing composition of compounds could have lead to this change in effects. The fractionation of the extracts partly led to a more differentiated picture, but the resolution was not high enough to see any distinct effects on the snails' reproduction. DISCUSSION AND CONCLUSION Our results highlight the importance of the use of in vivo biotests and point out the relevance of bioavailability in native sediments. For further fractionation studies, a more realistic extraction procedure, together with a higher resolution fractionation, would be appropriate in order to separate individual bioavailable compounds more efficient.
Collapse
Affiliation(s)
- Claudia Schmitt
- Ecosystem Management Research Group, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | | | | | |
Collapse
|
49
|
Dévier MH, Mazellier P, Aït-Aïssa S, Budzinski H. New challenges in environmental analytical chemistry: Identification of toxic compounds in complex mixtures. CR CHIM 2011. [DOI: 10.1016/j.crci.2011.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Affiliation(s)
- Ana Ballesteros-Gómez
- Department of Analytical Chemistry, Edificio Anexo Marie Curie, Campus de Rabanales, 14071 Córdoba, Spain
| | - Soledad Rubio
- Department of Analytical Chemistry, Edificio Anexo Marie Curie, Campus de Rabanales, 14071 Córdoba, Spain
| |
Collapse
|