1
|
Song H, Chen SF, Si G, Bhatt K, Chen SH, Chen WJ. Removal of environmental pollutants using biochar: current status and emerging opportunities. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:384. [PMID: 39167116 DOI: 10.1007/s10653-024-02142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
In recent times, biochar has emerged as a novel approach for environmental remediation due to its exceptional adsorption capacity, attributed to its porous structure formed by the pyrolysis of biomass at elevated temperatures in oxygen-restricted conditions. This characteristic has driven its widespread use in environmental remediation to remove pollutants. When biochar is introduced into ecosystems, it usually changes the makeup of microbial communities by offering a favorable habitat. Its porous structure creates a protective environment that shields them from external pressures. Consequently, microorganisms adhering to biochar surfaces exhibit increased resilience to environmental conditions, thereby enhancing their capacity to degrade pollutants. During this process, pollutants are broken down into smaller molecules through the collaborative efforts of biochar surface groups and microorganisms. Biochar is also often used in conjunction with composting techniques to enhance compost quality by improving aeration and serving as a carrier for slow-release fertilizers. The utilization of biochar to support sustainable agricultural practices and combat environmental contamination is a prominent area of current research. This study aims to examine the beneficial impacts of biochar application on the absorption and breakdown of contaminants in environmental and agricultural settings, offering insights into its optimization for enhanced efficacy.
Collapse
Affiliation(s)
- Haoran Song
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Guiling Si
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Kalpana Bhatt
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Hua Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Li J, Ou Y, Wang L, Zheng Y, Xu W, Peng J, Zhang X, Cao Z, Ye J. Responses of a polycyclic aromatic hydrocarbon-degrading bacterium, Paraburkholderia fungorum JT-M8, to Cd (II) under P-limited oligotrophic conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133123. [PMID: 38056271 DOI: 10.1016/j.jhazmat.2023.133123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/28/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
For the bioremediation of mixed-contamination sites, studies on polycyclic aromatic hydrocarbon (PAH) degradation or Cd (II) tolerance in bacteria are commonly implemented in nutrient-rich media. In contrast, in the field, inocula usually encounter harsh oligotrophic habitats. In this study, the environmental strain Paraburkholderia fungorum JT-M8 was used to explore the overlooked Cd (II) defense mechanism during PAH dissipation under P-limited oligotrophic condition. The results showed that the growth and PAH degradation ability of JT-M8 under Cd (II) stress were correlated with phosphate contents and exhibited self-regulating properties. Phosphates mainly affected the Cd (II) content in solution, while the cellular distribution of Cd (II) depended on Cd (II) levels; Cd (II) was mainly located in the cytoplasm when exposed to less Cd (II), and vice versa. The unique Cd (II) detoxification pathways could be classified into three aspects: (i) Cd (II) ionic equilibrium and dose-response effects regulated by environmental matrices (phosphate contents); (ii) bacterial physiological self-regulation, e.g., cell surface-binding, protein secretion and active transport systems; and (iii) specific adaptive responses (flagellum aggregation). This study emphasizes the importance of considering culture conditions when assessing the metal tolerance and provides new insight into the bacterial detoxification process of complex PAH-Cd (II) pollutants.
Collapse
Affiliation(s)
- Jinghua Li
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China; International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan 453007, PR China.
| | - Yiwen Ou
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China; School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Lijuan Wang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yue Zheng
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Weiyun Xu
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jianbiao Peng
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China; International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan 453007, PR China
| | - Xin Zhang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China; International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan 453007, PR China
| | - Zhiguo Cao
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China; International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan 453007, PR China
| | - Junpei Ye
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China; International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan 453007, PR China
| |
Collapse
|
3
|
Su Y, Zhu M, Zhang H, Chen H, Wang J, Zhao C, Liu Q, Gu Y. Application of bacterial agent YH for remediation of pyrene-heavy metal co-pollution system: Efficiency, mechanism, and microbial response. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119841. [PMID: 38109828 DOI: 10.1016/j.jenvman.2023.119841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/22/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023]
Abstract
The combination of organic and heavy metal pollutants can be effectively and sustainably remediated using bioremediation, which is acknowledged as an environmentally friendly and economical approach. In this study, bacterial agent YH was used as the research object to explore its potential and mechanism for bioremediation of pyrene-heavy metal co-contaminated system. Under the optimal conditions (pH 7.0, temperature 35°C), it was observed that pyrene (PYR), Pb(II), and Cu(II) were effectively eliminated in liquid medium, with removal rates of 43.46%, 97.73% and 81.60%, respectively. The microscopic characterization (SEM/TEM-EDS, XPS, XRD and FTIR) results showed that Pb(II) and Cu(II) were eliminated by extracellular adsorption and intracellular accumulation of YH. Furthermore, the presence of resistance gene clusters (cop, pco, cus and pbr) plays an important role in the detoxification of Pb(II) and Cu(II) by strains YH. The degradation rate of PYR reached 72.51% in composite contaminated soil, which was 4.33 times that of the control group, suggesting that YH promoted the dissipation of pyrene. Simultaneously, the content of Cu, Pb and Cr in the form of F4 (residual state) increased by 25.17%, 6.34% and 36.88%, respectively, indicating a decrease in the bioavailability of heavy metals. Furthermore, YH reorganized the microbial community structure and enriched the abundance of hydrocarbon degradation pathways and enzyme-related functions. This study would provide an effective microbial agent and new insights for the remediation of soil and water contaminated with organic pollutants and heavy metals.
Collapse
Affiliation(s)
- Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Mingjun Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hang Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hongxu Chen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiguo Wang
- Toroivd Technology Company Limited, Shanghai, 200439, China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China.
| | - Yingying Gu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| |
Collapse
|
4
|
George II, Nawawi MGM, Mohd ZJ, Farah BS. Environmental effects from petroleum product transportation spillage in Nigeria: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1719-1747. [PMID: 38055166 DOI: 10.1007/s11356-023-31117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Nigeria has struggled to meet sustainable development goals (SDGs) on environmental sustainability, transportation, and petroleum product distribution for decades, endangering human and ecological health. Petroleum product spills contaminate soil, water, and air, harming humans, aquatic life, and biodiversity. The oil and gas industry contributes to environmental sustainability and scientific and technological advancement through its supply chain activities in the transport and logistics sectors. This paper reviewed the effects of petroleum product transportation at three accident hotspots on Nigeria highway, where traffic and accident records are alarming due to the road axis connecting the southern and northern regions of the country. The preliminary data was statistically analysed to optimise the review process and reduce risk factors through ongoing data monitoring. Studies on Nigeria's petroleum product transportation spills and environmental impacts between the years 2013 and 2023 were critically analysed to generate updated information. The searches include Scopus, PubMed, and Google Scholar. Five hundred and forty peer-reviewed studies were analysed, and recommendations were established through the conclusions. The findings show that petroleum product transport causes heavy metal deposition in the environment as heavy metals damage aquatic life and build up in the food chain, posing a health risk to humans. The study revealed that petroleum product spills have far-reaching environmental repercussions and, therefore, recommended that petroleum product spills must be mitigated immediately. Furthermore, the study revealed that better spill response and stricter legislation are needed to reduce spills, while remediation is necessary to lessen the effects of spills on environmental and human health.
Collapse
Affiliation(s)
- Ikenna Ignatius George
- Department of Petroleum Engineering (FKT), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM JB, 81310, Skudai, Johor, Malaysia.
- Transport Technology Center, Nigerian Institute of Transport Technology, NITT, P. M. B. 1147, Kaduna State, Zaria, Nigeria.
| | - Mohd Ghazali Mohd Nawawi
- Department of Chemical Engineering, (FKT), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM JB, 81310, Skudai, Johor, Malaysia
| | - Zaidi Jafaar Mohd
- Department of Petroleum Engineering (FKT), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM JB, 81310, Skudai, Johor, Malaysia
| | - Bayero Salih Farah
- Office of the Director General Chief Executive, Nigerian Institute of Transport Technology, NITT, P. M. B. 1147, Kaduna State, Zaria, Nigeria
| |
Collapse
|
5
|
Li W, Zhu Y, Li K, Wang L, Li D, Liu N, Huang S. Synergistic remediation of phenanthrene-cadmium co-contaminants by an immobilized acclimated bacterial-fungal consortium and its community response. CHEMOSPHERE 2023:139234. [PMID: 37327827 DOI: 10.1016/j.chemosphere.2023.139234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Bioremediation has tremendous potential to mitigate the serious threats posed by polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs). In the present study, nine bacterial-fungal consortia were progressively acclimated under different culture conditions. Among them, a microbial consortium 1, originating from activated sludge and copper mine sludge microorganisms, was developed through the acclimation of a multi-substrate intermediate (catechol)-target contaminant (Cd2+, phenanthrene (PHE)). Consortium 1 exhibited the best PHE degradation, with an efficiency of 95.6% after 7 d of inoculation, and its tolerance concentration for Cd2+ was up to 1800 mg/L within 48 h. Bacteria Pandoraea and Burkholderia-Caballeronia-Paraburkholderia, as well as fungi Ascomycota and Basidiomycota predominated in the consortium 1. Furthermore, a biochar-loaded consortium was constructed to better cope with the co-contamination behavior, which exhibited excellent adaptation to Cd2+ ranging of 50-200 mg/L. Immobilized consortium efficiently degraded 92.02-97.77% of 50 mg/L PHE within 7 d while removing 93.67-99.04% of Cd2+. In remediation of co-pollution, immobilization technology improved the bioavailability of PHE and dehydrogenase activity of the consortium to enhance PHE degradation, and the phthalic acid pathway was the main metabolic pathway. As for Cd2+ removal, oxygen-containing functional groups (-OH, C=O, and C-O) of biochar or microbial cell walls and EPS components, fulvic acid and aromatic proteins, participated through chemical complexation and precipitation. Furthermore, immobilization led to more active consortium metabolic activity during the reaction, and the community structure developed in a more favorable direction. The dominant species were Proteobacteria, Bacteroidota, and Fusarium, and the predictive expression of functional genes corresponding to key enzymes was elevated. This study provides a basis for combining biochar and acclimated bacterial-fungal consortia for co-contaminated site remediation.
Collapse
Affiliation(s)
- Wei Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yanfeng Zhu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Kang Li
- College of Environmental Science and Engineering, Peking University, Beijing, 100871, China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Dan Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Na Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Shaomeng Huang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
6
|
Bravo D, Braissant O. Cadmium-tolerant bacteria: current trends and applications in agriculture. Lett Appl Microbiol 2022; 74:311-333. [PMID: 34714944 PMCID: PMC9299123 DOI: 10.1111/lam.13594] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022]
Abstract
Cadmium (Cd) is considered a toxic heavy metal; nevertheless, its toxicity fluctuates for different organisms. Cadmium-tolerant bacteria (CdtB) are diverse and non-phylogenetically related. Because of their ecological importance these bacteria become particularly relevant when pollution occurs and where human health is impacted. The aim of this review is to show the significance, culturable diversity, metabolic detoxification mechanisms of CdtB and their current uses in several bioremediation processes applied to agricultural soils. Further discussion addressed the technological devices and the possible advantages of genetically modified CdtB for diagnostic purposes in the future.
Collapse
Affiliation(s)
- D. Bravo
- Laboratory of Soil Microbiology & CalorimetryCorporación Colombiana de Investigación Agropecuaria AGROSAVIAMosqueraColombia
| | - O. Braissant
- Department of Biomedical EngineeringFaculty of MedicineUniversity of BaselAllschwillSwitzerland
| |
Collapse
|
7
|
Ali M, Song X, Ding D, Wang Q, Zhang Z, Tang Z. Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118686. [PMID: 34920044 DOI: 10.1016/j.envpol.2021.118686] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/20/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Systemic studies on the bioremediation of co-contaminated PAHs and heavy metals are lacking, and this paper provides an in-depth review on the topic. The released sources and transport of co-contaminated PAHs and heavy metals, including their co-occurrence through formation of cation-π interactions and their adsorption in soil are examined. Moreover, it is investigated that co-contamination of PAHs and heavy metals can drive a synergistic positive influence on bioremediation through enhanced secretion of extracellular polymeric substances (EPSs), production of biosynthetic genes, organic acid and enzymatic proliferation. However, PAHs molecular structure, PAHs-heavy metals bioavailability and their interactive cytotoxic effects on microorganisms can exert a challenging influence on the bioremediation under co-contaminated conditions. The fluctuations in bioavailability for microorganisms are associated with soil properties, chemical coordinative interactions, and biological activities under the co-contaminated PAHs-heavy metals conditions. The interactive cytotoxicity caused by the emergence of co-contaminants includes microbial cell disruption, denaturation of DNA and protein structure, and deregulation of antioxidant biological molecules. Finally, this paper presents the emerging strategies to overcome the bioavailability problems and recommends the use of biostimulation and bioaugmentation along with the microbial immobilization for enhanced bioremediation of PAHs-heavy metals co-contaminated sites. Better knowledge of the bioremediation potential is imperative to improve the use of these approaches for the sustainable and cost-effective remediation of PAHs and heavy metals co-contamination in the near future.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Da Ding
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Gran-Scheuch A, Ramos-Zuñiga J, Fuentes E, Bravo D, Pérez-Donoso JM. Effect of Co-contamination by PAHs and Heavy Metals on Bacterial Communities of Diesel Contaminated Soils of South Shetland Islands, Antarctica. Microorganisms 2020; 8:microorganisms8111749. [PMID: 33171767 PMCID: PMC7695015 DOI: 10.3390/microorganisms8111749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 01/04/2023] Open
Abstract
Diesel oil is the main source of energy used in Antarctica. Since diesel is composed of toxic compounds such as polycyclic aromatic hydrocarbons (PAHs) and heavy metals, it represents a constant threat to the organisms inhabiting this continent. In the present study, we characterized the chemical and biological parameters of diesel-exposed soils obtained from King George Island in Antarctica. Contaminated soils present PAH concentrations 1000 times higher than non-exposed soils. Some contaminated soil samples also exhibited high concentrations of cadmium and lead. A 16S metagenome analysis revealed the effect of co-contamination on bacterial communities. An increase in the relative abundance of bacteria known as PAH degraders or metal resistant was determined in co-contaminated soils. Accordingly, the soil containing higher amounts of PAHs exhibited increased dehydrogenase activity than control soils, suggesting that the microorganisms present can metabolize diesel. The inhibitory effect on soil metabolism produced by cadmium was lower in diesel-contaminated soils. Moreover, diesel-contaminated soils contain higher amounts of cultivable heterotrophic, cadmium-tolerant, and PAH-degrading bacteria than control soils. Obtained results indicate that diesel contamination at King George island has affected microbial communities, favoring the presence of microorganisms capable of utilizing PAHs as a carbon source, even in the presence of heavy metals.
Collapse
Affiliation(s)
- Alejandro Gran-Scheuch
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Republica # 330, Santiago 8370146, Chile; (A.G.-S.); (J.R.-Z.)
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone Pohlhammer # 1007, Santiago 8380000, Chile;
| | - Javiera Ramos-Zuñiga
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Republica # 330, Santiago 8370146, Chile; (A.G.-S.); (J.R.-Z.)
| | - Edwar Fuentes
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone Pohlhammer # 1007, Santiago 8380000, Chile;
| | - Denisse Bravo
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Sergio Livingstone Pohlhammer # 943, Santiago 8380453, Chile;
| | - José M. Pérez-Donoso
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Republica # 330, Santiago 8370146, Chile; (A.G.-S.); (J.R.-Z.)
- Correspondence:
| |
Collapse
|
9
|
Chen X, Zhao Y, Zhang C, Zhang D, Yao C, Meng Q, Zhao R, Wei Z. Speciation, toxicity mechanism and remediation ways of heavy metals during composting: A novel theoretical microbial remediation method is proposed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 272:111109. [PMID: 32854897 DOI: 10.1016/j.jenvman.2020.111109] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/26/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals (HM) pollution is a major limitation to the application of composting products. Therefore, mitigating the toxicity of HM has attracted wide attention during composting. The toxicity of HM is mainly acted on microorganisms during composting, and the toxicity of different HM speciation is obviously various. There are many pathways to change the speciation to reduce the toxicity during composting. Therefore, in this review, the speciation distribution, toxicity mechanism and remediation ways of HM during composting were discussed in order to better solve HM pollution. The microbial remediation technology holds enormous potential to remediate for HM without damaging composting, however, it is hard to extract HM. The innovation of this review was to outline microbial remediation strategies for HM during composting based on two mechanisms of microbial remediation: extracellular adsorption and intracellular sequestration, to solve the problem how to extract microbial agents from the compost. Ultimately, a novel theoretical method of microbial remediation was proposed to remove HM from the compost.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chuang Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin, 150080, China
| | - Changhao Yao
- Heilongjiang Province Environmental Monitoring Centre, Harbin, 150056, China
| | - Qingqing Meng
- Heilongjiang Province Environmental Monitoring Centre, Harbin, 150056, China
| | - Ran Zhao
- Heilongjiang Province Environmental Monitoring Centre, Harbin, 150056, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
10
|
Xiong W, Yin C, Wang Y, Lin S, Deng Z, Liang R. Characterization of an efficient estrogen-degrading bacterium Stenotrophomonas maltophilia SJTH1 in saline-, alkaline-, heavy metal-contained environments or solid soil and identification of four 17β-estradiol-oxidizing dehydrogenases. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121616. [PMID: 31780289 DOI: 10.1016/j.jhazmat.2019.121616] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 05/26/2023]
Abstract
The efficient bioremediation of estrogen contamination in complex environments is of great concern. Here the strain Stenotrophomonas maltophilia SJTH1 was found with great and stable estrogen-degradation efficiency even under stress environments. The strain could utilize 17β-estradiol (E2) as a carbon source and degrade 90% of 10 mg/L E2 in a week; estrone (E1) was the first degrading intermediate of E2. Notably, diverse pH conditions (3.0-11.0) and supplements of 4% salinity, 6.25 mg/L of heavy metal (Cd2+ or Cu2+), or 1 CMC of surfactant (Tween 80/ Triton X-100) had little effect on its cell growth and estrogen degradation. The addition of low concentrations of copper and Tween 80 even promoted its E2 degradation. Bioaugmentation of strain SJTH1 into solid clay soil achieved over 80% removal of E2 contamination (10 mg/kg) within two weeks. Further, the whole genome sequence of S. maltophilia SJTH1 was obtained, and a series of potential genes participating in stress-tolerance and estrogen-degradation were predicted. Four dehydrogenases similar to 17β-hydroxysteroid dehydrogenases (17β-HSDs) were found to be induced by E2, and the four heterogenous-expressed enzymes could oxidize E2 into E1 efficiently. This work could promote bioremediation appliance potential with microorganisms and biodegradation mechanism study of estrogens in complex real environments.
Collapse
Affiliation(s)
- Weiliang Xiong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chong Yin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanqiu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
11
|
Biswas B, Juhasz AL, Mahmudur Rahman M, Naidu R. Modified clays alter diversity and respiration profile of microorganisms in long-term hydrocarbon and metal co-contaminated soil. Microb Biotechnol 2019; 13:522-534. [PMID: 31713319 PMCID: PMC7017831 DOI: 10.1111/1751-7915.13510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/28/2019] [Accepted: 10/23/2019] [Indexed: 12/01/2022] Open
Abstract
Clays and surfactant‐modified clays (organoclays) are becoming popular as pollutant sorbents due to their high reactivity and low‐cost availability. However, the lack of field testing and data on ecotoxicity limits their application. Considering such aspects, this study assessed the impact of clay amendments to polycyclic aromatic hydrocarbons (PAHs)/cadmium (Cd)‐contaminated soil on microbial respiration profiles (active vs. inactive cells) using redox staining and the relative abundance and diversity of bacteria and archaea. These clay products are bentonite, cationic surfactant‐modified bentonite and palmitic acid‐grafted surfactant‐modified bentonite). After 70 days, the addition of bentonite and its modified forms altered microbial community structure mainly among dominant groups (Actinobacteria, Proteobacteria, Firmicutes and Chloroflexi) with effects varying depending on material loading to soil. Among amendments, fatty acid (palmitic acid) tailored cationic surfactant‐modified bentonite proved to be microbial growth supportive and significantly increased the number of respiration‐active microbial cells by 5% at a low dose of material (e.g. 1%). Even at high dose (5%), the similarity index using operational taxonomic units (OTUs) also indicates that this modified organoclay‐mixed soil provided only slightly different environment than control soil, and therefore, it could offer more biocompatibility than its counterpart organoclay at similar dose (e.g. cationic surfactant‐modified bentonite). This study promotes designing ‘eco‐safe’ clay‐based sorbents for environmental remediation.
Collapse
Affiliation(s)
- Bhabananda Biswas
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5085, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5085, Australia
| | - Mohammad Mahmudur Rahman
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia.,Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia.,Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
12
|
Enrichment and characterization of a highly efficient tetrahydrofuran-degrading bacterial culture. Biodegradation 2019; 30:467-479. [DOI: 10.1007/s10532-019-09888-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 08/14/2019] [Indexed: 01/26/2023]
|
13
|
Liu XX, Hu X, Cao Y, Pang WJ, Huang JY, Guo P, Huang L. Biodegradation of Phenanthrene and Heavy Metal Removal by Acid-Tolerant Burkholderia fungorum FM-2. Front Microbiol 2019; 10:408. [PMID: 30930861 PMCID: PMC6427951 DOI: 10.3389/fmicb.2019.00408] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 02/18/2019] [Indexed: 11/13/2022] Open
Abstract
Phenanthrene (PHE) is a common pollutant of acidic and non-acidic environments that is recalcitrant to biodegradation. Herein, Burkholderia fungorum FM-2 (GenBank accession no. KM263605) was isolated from oil-contaminated soil in Xinjiang and characterized morphologically, physiologically, and phylogenetically. Environmental parameters including PHE concentration, pH, temperature, and salinity were optimized, and heavy metal tolerance was investigated. The MIC of strain FM-2 tolerant to Pb(II) and Cd(II) was 50 and 400 mg L−1, respectively, while the MIC of Zn(II) was >1,200 mg L−1. Atypically for a B. fungorum strain, FM-2 utilized PHE (300 mg L−1) as a sole carbon source over a wide pH range (between pH 3 and 9). PHE and heavy metal metabolism were assessed using gas chromatography (GC), inductively coupled plasma optical emission spectroscopy (ICP-OES), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Fourier-transform infrared (FTIR) spectroscopy and ultraviolet (UV) absorption spectrometry. The effects of heavy metals on the bioremediation of PHE in soil were investigated, and the findings suggest that FM-2 has potential for combined bioremediation of soils co-contaminated with PHE and heavy metals.
Collapse
Affiliation(s)
- Xin-Xin Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Xin Hu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Yue Cao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Wen-Jing Pang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Jin-Yu Huang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Peng Guo
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Lei Huang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
14
|
Sigmund G, Poyntner C, Piñar G, Kah M, Hofmann T. Influence of compost and biochar on microbial communities and the sorption/degradation of PAHs and NSO-substituted PAHs in contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2018; 345:107-113. [PMID: 29136576 DOI: 10.1016/j.jhazmat.2017.11.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/31/2017] [Accepted: 11/05/2017] [Indexed: 06/07/2023]
Abstract
Diffusely contaminated soils often remain untreated as classical remediation approaches would be disproportionately expensive. Adding compost can accelerate the biodegradation of organic contaminants and adding biochar can immobilize contaminants through sorption. The combined use of compost and biochar to reduce polycyclic aromatic hydrocarbon (PAH) and NSO-substituted PAH contamination has, however, not previously been systematically investigated. We have therefore investigated the processes involved (i) through sorption batch experiments, (ii) by monitoring changes in bacterial, fungal and archaeal communities using denaturing gradient gel electrophoresis, and (iii) through degradation experiments with fluorene, phenanthrene, pyrene, carbazole, dibenzothiophene, and dibenzofuran. Sorption coefficients for organic contaminants in soils increased tenfold following 10% compost addition and up to a hundredfold with further addition of 5% biochar. The rate of PAH and NSO-PAH degradation increased up to twofold following compost addition despite increased sorption, probably due to the introduction of additional microbial species into the autochthonous soil communities. In contrast, degradation of PAHs and NSO-PAHs in soil-compost-biochar mixtures slowed down up to tenfold due to the additional sorption, although some degradation still occurred. The combined use of biochar and compost may therefore provide a strategy for immobilizing PAHs and NSO-PAHs and facilitating degradation of remaining accessible contaminant fractions.
Collapse
Affiliation(s)
- Gabriel Sigmund
- University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstrasse 14, UZA2, 1090 Vienna, Austria
| | - Caroline Poyntner
- VIBT EQ Extremophile Center, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Guadalupe Piñar
- VIBT EQ Extremophile Center, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Melanie Kah
- University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstrasse 14, UZA2, 1090 Vienna, Austria
| | - Thilo Hofmann
- University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstrasse 14, UZA2, 1090 Vienna, Austria.
| |
Collapse
|
15
|
Efficient biosorption of Pb(II) from aqueous solutions by a PAH-degrading strain Herbaspirillum chlorophenolicum FA1. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Ye S, Zeng G, Wu H, Zhang C, Dai J, Liang J, Yu J, Ren X, Yi H, Cheng M, Zhang C. Biological technologies for the remediation of co-contaminated soil. Crit Rev Biotechnol 2017; 37:1062-1076. [DOI: 10.1080/07388551.2017.1304357] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shujing Ye
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Haipeng Wu
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
- Changjiang River Scientific Research Institute, Wuhan, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Juan Dai
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
- Changjiang River Scientific Research Institute, Wuhan, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Xiaoya Ren
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| |
Collapse
|
17
|
Masner P, Javůrková B, Bláha L. Rapid in situ toxicity testing with luminescent bacteria Photorhabdus luminescens and Vibrio fischeri adapted to a small portable luminometer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3748-3758. [PMID: 27888485 DOI: 10.1007/s11356-016-8096-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 11/11/2016] [Indexed: 06/06/2023]
Abstract
The present study demonstrates development of a rapid testing protocol based on a small portable luminometer using flash kinetic assessment of bacterial bioluminescence. The laboratory comparisons based on six model organic toxicants and two metals showed significant correlations between responses of freshwater bacteria Photorhabdus luminescens and standard marine bacterial species Vibrio fisheri. While P. luminescens was less sensitive in standard arrangements, the responses of both organisms were comparable in the newly introduced portable luminometer setup. The applicability and reproducibility of the portable luminometer protocol was further demonstrated in the assessment of 43 European wastewater effluents that were simultaneously tested for toxicity and analysed for 150 organic and 20 inorganic contaminants grouped into 13 major chemical classes. Clear association between the toxic responses in both compared bacterial species and the elevated levels of inorganic compounds (toxic metals), chlorophenols and benzotriazole anticorrosives was observed. The new protocol with a portable luminometer provides a fast (30 s) response and may be used as a tool for rapid in situ toxicity evaluation of freshwater environmental samples such as effluents.
Collapse
Affiliation(s)
- Petr Masner
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Barbora Javůrková
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Luděk Bláha
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
18
|
Kuppusamy S, Thavamani P, Megharaj M, Lee YB, Naidu R. Polyaromatic hydrocarbon (PAH) degradation potential of a new acid tolerant, diazotrophic P-solubilizing and heavy metal resistant bacterium Cupriavidus sp. MTS-7 isolated from long-term mixed contaminated soil. CHEMOSPHERE 2016; 162:31-39. [PMID: 27475295 DOI: 10.1016/j.chemosphere.2016.07.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 07/09/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
An isolate of Cupriavidus (strain MTS-7) was identified from a long-term PAHs and heavy metals mixed contaminated soil with the potential to biodegrade both LMW and HMW PAHs with added unique traits of acid and alkali tolerance, heavy metal tolerance, self-nutrient assimilation by N fixation and P solubilization. This strain completely degraded the model 3 (150 mg L(-1) Phe), 4 (150 mg L(-1) Pyr) and 5 (50 mg L(-1) BaP) ring PAHs in 4, 20 and 30 days, respectively. It could mineralize 90-100% of PAHs (200 mg L(-1) of Phe and Pyr) within 15 days across pH ranging from 5 to 8 and even in the presence of toxic metal contaminations. During biodegradation, the minimum inhibitory concentrations were 5 (Cu(2+)) and 3 (Cd(2+), Pb(2+), Zn(2+)) mg L(-1) of the potentially bioavailable metal ions and over 17 mg L(-1) metal levels was lethal for the microbe. Further, it could fix 217-274 μg mL(-1) of N and solubilize 79-135 μg mL(-1) of P while PAHs degradation. MTS-7 as a superior candidate could be thus used in the enhanced bioaugmentation and/or phytoremediation of long-term mixed contaminated sites.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701, South Korea; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia.
| | - Palanisami Thavamani
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yong Bok Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
19
|
Cobas M, Danko AS, Pazos M, Sanromán MA. Removal of metal and organic pollutants from wastewater by a sequential selective technique. BIORESOURCE TECHNOLOGY 2016; 213:2-10. [PMID: 26897470 DOI: 10.1016/j.biortech.2016.02.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
In this study the application of a sequential selective system that combined biosorption with biodegradation was evaluated as a feasible process for the removal of Cr(VI) and m-cresol from effluents. Cr(VI) biosorption on pretreated chestnut shells showed 100% metal removal and modelling efforts demonstrated that the pseudo-second order kinetic model and Langmuir isotherm fit well the process behaviour. Thus, the treated stream was an appropriate environment for the biodegradation of m-cresol using a laccase-producer fungus, Phlebia radiata. Two bioreactor configurations, rotating drum and modified-airlift, were studied using the fungus grown on chestnut shells, which act as support-substrate as well as oxidative enzyme inductor increasing the laccase activity up to 1000UL(-1). The best bioreactor, rotating drum, reached 100% removal in 7days. Finally, the best configuration for the sequential selective system was modelled operating in continuous mode by the breakthrough curves generated using FASTv2.0 and the design bioreactor flow model.
Collapse
Affiliation(s)
- M Cobas
- Department of Chemical Engineering, University of Vigo, Vigo 36310, Spain
| | - A S Danko
- CERENA (Centre for National Resources and the Environment), Department of Mining Engineering, University of Porto, Rua Dr. Roberto Frias, s/n 4200-465, Porto, Portugal
| | - M Pazos
- Department of Chemical Engineering, University of Vigo, Vigo 36310, Spain
| | - M A Sanromán
- Department of Chemical Engineering, University of Vigo, Vigo 36310, Spain.
| |
Collapse
|
20
|
Kuppusamy S, Thavamani P, Megharaj M, Lee YB, Naidu R. Kinetics of PAH degradation by a new acid-metal-tolerant Trabulsiella isolated from the MGP site soil and identification of its potential to fix nitrogen and solubilize phosphorous. JOURNAL OF HAZARDOUS MATERIALS 2016; 307:99-107. [PMID: 26775109 DOI: 10.1016/j.jhazmat.2015.12.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/15/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
Development of an efficient bioinoculum is considered as an appropriate remedial approach to treat the PAHs-metal mixed contaminated sites. Therefore, we aimed to isolate a degrader able to exert an outstanding PAH catabolic potential with added traits of pH-metal-resistance, N-fix or P-solubilization from a manufactured gas plant site soil. The identified strain (MTS-6) was a first low and high molecular weight (LMW and HMW) PAHs degrading Trabulsiella sp. tolerant to pH 5. MTS-6 completely degraded the model 3 [150mgL(-1) phenanthrene (Phe)], 4 [150mgL(-1) pyrene (Pyr)] and 5 [50mgL(-1) benzo[a]pyrene (BaP)] ring PAHs in 6, 25 and 90 days, respectively. Presence of co-substrate (100mgL(-1) Phe) increased the biodegradation rate constant (k) and decreased the half-life time (t1/2) of HMW PAHs (100mgL(-1) Pyr or 50mgL(-1) BaP). The strain fixed 47μgmL(-1)N and solubilized 58μgmL(-1)P during PAH metabolism and exhibited an EC50 value of 3-4mgL(-1) for Cu, Cd, Pb and Zn. Over 6mgL(-1) metal levels was lethal for the microbe. The identified bacterium (MTS-6) with exceptional multi-functional traits opens the way for its exploitation in the bioremediation of manufactured gas plant sites in a sustainable way by employing bioaugmentation strategy.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, South Korea; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA 5106, Australia.
| | - Palanisami Thavamani
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA 5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA 5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yong Bok Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, South Korea
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA 5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|