1
|
Cheng S, Li S, Liang Z, Huang F, Wu X, Han Z, Huang X, Huang X, Ren Y. Effect of application of iron (Fe) and α-ketoglutaric acid on growth, photosynthesis, and Fe content in fragrant rice seedlings. PHOTOSYNTHETICA 2022; 60:293-303. [PMID: 39650768 PMCID: PMC11558503 DOI: 10.32615/ps.2022.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2024]
Abstract
At a three-leaf stage, two Fe treatments [0 mg kg-1 (Fe-) and 20 mg·kg-1 (Fe+) in the form of FeCl3] were used in the soil of the pot and then two concentrations of α-ketoglutaric acid [0 mg L-1 (A-) and 50 mg L-1 (A+)] were sprayed to the rice plants of Meixiangzhan and Yuxiangyouzhan cultivars. We showed that seedlings exhibited an increased length and fresh and dry mass of shoots and roots with treatments Fe+A- and Fe-A+, as well as the Fe content increased greatly. Both treatments increased the morphological characteristic values of roots and promoted photosynthesis. Interestingly, Fe+A+ notably affected the photosynthesis of fragrant rice seedlings; however, it exerted no significant differences on other parameters. Overall, Fe and α-ketoglutaric acid had the potential for improving the growth of fragrant rice seedlings. The interaction between Fe and α-ketoglutaric acid regulated photosynthesis in seedling leaves, which provided evidence for further improvement of rice cultivation.
Collapse
Affiliation(s)
- S.R. Cheng
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| | - S.S. Li
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - Z.W. Liang
- Research Office of Yulin Normal University, Yulin, China
| | - F.C. Huang
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - X.Q. Wu
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - Z.Y. Han
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - X.B. Huang
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - X.M. Huang
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - Y. Ren
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| |
Collapse
|
2
|
Cruz FVDS, Gomes MP, Bicalho EM, Garcia QS. Fertilization assures mineral nutrition but does not overcome the effects of Fe accumulation in plants grown in iron ore tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18047-18062. [PMID: 34686954 DOI: 10.1007/s11356-021-16989-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
The rupture of Fundão dam was the biggest environmental disaster of the worlds' mining industry, dumping tons of iron ore tailings into the environment. Studies have shown that the Fundão dam's tailings are poor in nutrients and have high Fe and Mn concentration. In this context, our objective was to evaluate the growth performance of two native tree species (Bowdichia virgilioides and Dictyoloma vandellianum) in two treatments: fertilized soil and fertilized tailings. We hypothesize that the high concentrations of iron and manganese in the tailings can impair the growth performance of plants by interfering with the absorption of nutrients made available through fertilization. Soil and tailings samples were collected in the municipality of Barra Longa (MG, Brazil), and then fertilized with mixed mineral fertilizer ("Osmocote Plus 15-9-12" at 7.5 g L-1). The experiment was conducted for 75 days in a greenhouse using 180 cm3 tubes. We evaluate chlorophyll content, maximal PSII quantum yield, root length, shoot length, root:shoot ratio, leaf area, specific leaf area and leaf area ratio, dry mass, macro- and micronutrients concentration in the tissues, and metal translocation factor. Although assuring the adequate levels of the main nutrients to plant growth (N, P, K, Ca, and Mg), the fertilization did not reverse the negative effect of tailing on these species. The high concentration of Fe in the tissues associated with less biomass production, lower plant height, smaller leaf area, bigger specific leaf area, and reduced chlorophyll content indicates a probable phytotoxic effect of iron present in the tailings for D. vandellianum. Our results base further field evaluations and longer experiments, which will facilitate the understanding of the performance of tree species submitted to tailings with fertilization. So far, this study suggests that B. virgilioides are more tolerant to excess Fe from the tailings of Fundão dam than D. vandellianum.
Collapse
Affiliation(s)
- Fernanda Vieira da Silva Cruz
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Caixa Postal 486, Postal Code 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Universidade Federal do Paraná, Avenida Coronel Francisco H. Santos, 100, Centro Politécnico Jardim das Américas, Caixa Postal 19031, Postal Code 81531-980, Curitiba, Paraná, Brazil
| | - Elisa Monteze Bicalho
- Laboratório de Crescimento e Desenvolvimento de Plantas, Fisiologia Vegetal, Universidade Federal de Lavras, Campus Universitário, Caixa Postal 3037, Postal Code 37200-900, Lavras, Minas Gerais, Brazil
| | - Queila Souza Garcia
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Caixa Postal 486, Postal Code 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Delias DS, Da-Silva CJ, Martins AC, de Oliveira DSC, do Amarante L. Iron toxicity increases oxidative stress and impairs mineral accumulation and leaf gas exchange in soybean plants during hypoxia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22427-22438. [PMID: 34791629 DOI: 10.1007/s11356-021-17397-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Iron toxicity is a major challenge faced by plants in hypoxic soils; however, the consequences of such combined stress for soybean (Glycine max) remain to be determined. Here we assessed the physiological responses of soybean plants exposed to hypoxia and a high concentration of iron. Soil-grown plants cultivated in a greenhouse until the vegetative stage were transferred to a hydroponic system containing nutrient solution and subjected to two oxygen conditions (normoxia (6.2 mg L-1) and hypoxia (0.33 mg L-1)) and two iron concentrations (Fe-EDTA) (0.09 and 1.8 mM) for 72 h. During hypoxia, high concentrations of iron in the nutrient solution resulted in increased iron accumulation in roots and leaves. Under this condition, the concentrations of zinc, nitrogen, potassium, and calcium decreased in the roots, while the concentration of nitrogen and magnesium decreased in the leaves. Additionally, during hypoxia, the higher concentration of iron led to an increase in the activity of the antioxidant enzymes in roots and leaves, while decreased the levels of the photosynthetic pigments, leaf gas exchange, and plant growth. In conclusion, high iron concentration in the root medium results in a considerably more severe damage condition to soybean plants under hypoxia compared to plants grown under low iron availability.
Collapse
Affiliation(s)
- Dominique S Delias
- Departamento de Botânica, Universidade Federal de Pelotas, Capão do Leão, 96160-000, Brazil
| | | | - Angelita C Martins
- Departamento de Botânica, Universidade Federal de Pelotas, Capão do Leão, 96160-000, Brazil
| | - Denise S C de Oliveira
- Departamento de Botânica, Universidade Federal de Pelotas, Capão do Leão, 96160-000, Brazil
| | - Luciano do Amarante
- Departamento de Botânica, Universidade Federal de Pelotas, Capão do Leão, 96160-000, Brazil
| |
Collapse
|
4
|
Native Amazonian Canga Grasses Show Distinct Nitrogen Growth Responses in Iron Mining Substrates. PLANTS 2021; 10:plants10050849. [PMID: 33922282 PMCID: PMC8146357 DOI: 10.3390/plants10050849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
Native species may have adaptive traits that are advantageous for overcoming the adverse environmental conditions faced during the early stages of mine land rehabilitation. Here, we examined the nitrogen (N) growth responses of two native perennial grasses (Axonopus longispicus and Paspalum cinerascens) from canga in nutrient-poor iron mining substrates. We carried out vegetative propagation and recovered substantial healthy tillers from field-collected tussocks of both species. These tillers were cultivated in mining substrates at increasing N levels. The tillering rates of both species increased with the N application. Nonetheless, only in P. cinerascens did the N application result in significant biomass increase. Such growth gain was a result of changes in leaf pigment, stomatal morphology, gas exchanges, and nutrients absorption that occurred mainly under the low N additions. Reaching optimum growth at 80 mg N dm−3, these plants showed no differences from those in the field. Our study demonstrates that an input of N as fertilizer can differentially improve the growth of native grasses and that P. cinerascens plants are able to deposit high quantities of carbon and protect soil over the seasons, thus, making them promising candidates for restoring nutrient cycling, accelerating the return of other species and ecosystem services.
Collapse
|
5
|
Rios CO, Siqueira-Silva AI, Pereira EG. How does drought affect native grasses' photosynthesis on the revegetation of iron ore tailings? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14797-14811. [PMID: 33219507 DOI: 10.1007/s11356-020-11599-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The revegetation of areas degraded by iron ore mining is a difficult challenge mainly due to water availability and impoverished metal-rich substrates. We sought to understand the photosynthetic responses to drought of native tropical grasses Paspalum densum (Poir.) and Setaria parviflora (Poir.) grown in iron ore tailing. The grass P. densum presented better photosynthetic adjustments when grown in the iron ore tailing and S. paviflora in response to water stress. Both species accumulated iron above the phytotoxic threshold when grown in an iron ore tailing. The net photosynthesis, stomatal conductance, transpiration, and water use efficiency decreased followed by a reduction in leaf relative water content in response to water stress for both species. The photochemical efficiency of photosystem II only decreased at the point of maximum drought. At this point, the water-stressed grass grown in the iron ore tailing presented higher H2O2 concentrations, particularly S. parviflora. After rehydration, full recovery of photosynthetic variables was achieved with decreased malondialdehyde concentrations, increased catalase activity, and, consequently, decreased H2O2 concentrations in leaves for both species. The fast recovery of the native grasses P. densum and S. parviflora to drought in the iron ore tailing substrate is indicative of their resistance and potential use in the revegetation of impoverished mined areas with high iron content and seasonal water deficit.
Collapse
Affiliation(s)
- Camilla Oliveira Rios
- Graduate Program in Management and Conservation of Natural and Agricultural Ecosystems, Federal University of Viçosa (UFV), Florestal, Minas Gerais, Brazil
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | - Eduardo Gusmão Pereira
- Institute of Biological and Health Sciences, Federal University of Viçosa (UFV), Florestal, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Oliveira de Araujo T, Isaure MP, Alchoubassi G, Bierla K, Szpunar J, Trcera N, Chay S, Alcon C, Campos da Silva L, Curie C, Mari S. Paspalum urvillei and Setaria parviflora, two grasses naturally adapted to extreme iron-rich environments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:144-156. [PMID: 32220787 DOI: 10.1016/j.plaphy.2020.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/17/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Paspalum urvillei and Setaria parviflora are two plant species naturally adapted to iron-rich environments such as around iron mines wastes. The aim of our work was to characterize how these two species cope with these extreme conditions by comparing them with related model species, Oryza sativa and Setaria viridis, that appeared to be much less tolerant to Fe excess. Both Paspalum urvillei and Setaria parviflora were able to limit the amount of Fe accumulated within roots and shoots, compared to the less tolerant species. Perls/DAB staining of Fe in root cross sections indicated that Paspalum urvillei and Setaria parviflora responded through the build-up of the iron plaque (IP), suggesting a role of this structure in the limitation of Fe uptake. Synchrotron μXRF analyses showed the presence of phosphorus, calcium, silicon and sulfur on IP of Paspalum urvillei roots and μXANES analyses identified Fe oxyhydroxide (ferrihydrite) as the main Fe form. Once within roots, high concentrations of Fe were localized in the cell walls and vacuoles of Paspalum urvillei, Setaria parviflora and O. sativa whereas Setaria viridis accumulated Fe in ferritins. The Fe forms translocated to the shoots of Setaria parviflora were identified as tri-iron complexes with citrate and malate. In leaves, all species accumulated Fe in the vacuoles of bundle sheath cells and as ferritin complexes in plastids. Taken together, our results strongly suggest that Paspalum urvillei and Setaria parviflora set up mechanisms of Fe exclusion in roots and shoots to limit the toxicity induced by Fe excess.
Collapse
Affiliation(s)
- Talita Oliveira de Araujo
- Universidade Federal de Viçosa, Laboratório de Anatomia Vegetal, Viçosa, 36570-900, Brazil; BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Marie-Pierre Isaure
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Hélioparc, 64053 Pau, France
| | - Ghaya Alchoubassi
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Hélioparc, 64053 Pau, France
| | - Katarzyna Bierla
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Hélioparc, 64053 Pau, France
| | - Joanna Szpunar
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Hélioparc, 64053 Pau, France
| | - Nicolas Trcera
- Synchrotron SOLEIL, l'Orme des Merisiers Saint Aubin BP48, 91192, Gif-sur-Yvette Cedex, France
| | - Sandrine Chay
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Carine Alcon
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | - Catherine Curie
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Stephane Mari
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
7
|
Siqueira-Silva AI, Rios CO, Pereira EG. Iron toxicity resistance strategies in tropical grasses: The role of apoplastic radicular barriers. J Environ Sci (China) 2019; 78:257-266. [PMID: 30665644 DOI: 10.1016/j.jes.2018.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
The revegetation of mined areas poses a great challenge to the iron ore mining industry. The initial recovery process in degraded areas might rely on the use of Fe-resistant grasses. Tropical grasses, such as Paspalum densum and Echinochloa crus-galli, show different resistance strategies to iron toxicity; however, these mechanisms are poorly understood. The Fe-resistance mechanisms and direct iron toxicity as a function of root apex removal were investigated. To achieve this purpose, both grass species were grown for up to 480 hr in a nutrient solution containing 0.019 or 7 mmol/L Fe-EDTA after the root apices had been removed or maintained. Cultivation in the presence of excess iron-induced leaf bronzing and the formation of iron plaque on the root surfaces of both grass species, but was more significant on those plants whose root apex had been removed. Iron accumulation was higher in the roots, but reached phytotoxic levels in the aerial parts as well. It did not hinder the biosynthesis of chloroplastidic pigments. No significant changes in gas exchange and chlorophyll a fluorescence occurred in either grass when their roots were kept intact; the contrary was true for plants with excised root apices. In both studied grasses, the root apoplastic barriers had an important function in the restriction of iron translocation from the root to the aerial plant parts, especially in E. crus-galli. Root apex removal negatively influenced the iron toxicity resistance mechanisms (tolerance in P. densum and avoidance in E. crus-galli).
Collapse
Affiliation(s)
- Advanio Inácio Siqueira-Silva
- Institute of Biological and Health Sciences, Federal University of Viçosa (UFV), Campus Florestal, Florestal, Minas Gerais, Brazil; Federal University of Western Pará (UFOPA), University Campus of Juruti, Juruti, Pará, Brazil.
| | - Camilla Oliveira Rios
- Postgradute Program in Management and Conservation of Natural and Agrarian Ecosystems, UFV Campus Florestal, Florestal, Minas Gerais, Brazil
| | - Eduardo Gusmão Pereira
- Institute of Biological and Health Sciences, Federal University of Viçosa (UFV), Campus Florestal, Florestal, Minas Gerais, Brazil
| |
Collapse
|
8
|
de Araújo TO, de Freitas-Silva L, Santana BVN, Kuki KN, Pereira EG, Azevedo AA, da Silva LC. Morphoanatomical responses induced by excess iron in roots of two tolerant grass species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2187-2195. [PMID: 25172466 DOI: 10.1007/s11356-014-3488-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/20/2014] [Indexed: 06/03/2023]
Abstract
We aimed to verify whether morphoanatomic alterations occur in response to excess iron, in roots of Setaria parviflora and Paspallum urvillei (Poaceae), and to localize the presence of the sites of iron accumulation. Plants were subjected to 0.009, 1, 2, 4, and 7 mM Fe-EDTA in nutrient solution. Both species presented iron contents in the roots above the critical toxicity level. The presence of iron plaque on roots of the two species was confirmed, and it may have reduced iron absorption by the plants. Roots from the two species showed typical visual symptoms of stress by excess iron: change in color and mucilaginous and flaccid appearance. Anatomical damage was observed in both species: aerenchyma disruption, alterations in endodermal cells, and irregular shape of both vessel and sieve tube elements. The metal was histolocalized in the cortex and in protoxylem and metaxylem cell walls in both species, which suggests a detoxification strategy for the excess iron. Phenolic compounds were not histolocalized in roots. Microscopic analyses were therefore effective in evaluating the real damage caused by excess iron.
Collapse
|