1
|
Yang Q, Yang Y, Zhang Y, Zhang L, Sun S, Dong K, Luo Y, Wu J, Kang X, Liu Q, Hamdy MS, Sun X. Highly efficient activation of peroxymonosulfate by biomass juncus derived carbon decorated with cobalt nanoparticles for the degradation of ofloxacin. CHEMOSPHERE 2023; 311:137020. [PMID: 36330974 DOI: 10.1016/j.chemosphere.2022.137020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The cobalt nanoparticles decorated biomass Juncus derived carbon (Co@JDC) was prepared by facile calcination strategy and applied to activate peroxymonosulfate (PMS) for eliminating ofloxacin (OFX) in the water environment. The results of catalytic experiments show that 97% of OFX degradation efficiency and 70.4% of chemical oxygen demand removal rate are obtained within 24 min at 0.1 g L-1 Co@JDC, 0.2 g L-1 PMS, 20 mg L-1 OFX (100 mL), and pH = 7, which indicates that Co@JDC/PMS system exhibits excellent performance. Meanwhile, the experimental results of affect factor show that Co@JDC/PMS system can operate in a wider pH range (3-9) and Cl-1, NO3-1, and SO42- have an ignorable effect on OFX degradation. The radical identification experiments confirm that SO4˙-, ·OH, O2˙-, and 1O2 are involved in the process of PMS activation, especially SO4˙- and 1O2 are the main contributors. Furthermore, a possible PMS activation mechanism by Co@JDC was proposed and the degradation pathways of OFX were deduced. Finally, the stable catalytic activity, negligible leaching of Co2+, and the outstanding degradation efficiency for other antibiotics prove that Co@JDC possesses good stability and universality.
Collapse
Affiliation(s)
- Qin Yang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Yingchun Yang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China.
| | - Yujie Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Kai Dong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Junyou Wu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Xiaowen Kang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Mohamed S Hamdy
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
2
|
Xie Y, Yu Y, Xie H, Huang F, Hughes TC. 3D-printed heterogeneous Cu 2O monoliths: Reusable supports for Antibiotic Treatmentantibiotic treatment of wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129170. [PMID: 35739707 DOI: 10.1016/j.jhazmat.2022.129170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
In this study, surfactant stabilized dispersions of the Cu2O microparticles in a commercially available photocurable resin were 3D printed into both porous and non-porous monoliths, and the heterogeneous Cu2O catalytic monolith with improved mass transfer characteristics was applied for antibiotic wastewater treatment. The physicochemical properties of catalytic monoliths were characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and thermogravimetric. Ten intermediates were analyzed and identified by GC-MS, and the corresponding degradation pathways were proposed. Both numerical simulation and degradation experiments were used to explore the mass transfer mechanism and catalytic performance of the monoliths. The results showed that the 3D-printed monolith with a well-defined porous network exhibited a high ofloxacin degradation efficiency (100%) based on the sulfate radical-based advanced oxidation processes. In addition, the catalytic monolith showed sustained high activity over 7 reusable cycles demonstrating its feasibility in removal of antibiotics from wastewater.
Collapse
Affiliation(s)
- Yuxing Xie
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; Manufacturing, CSIRO, Clayton, Victoria 3169, Australia.
| | - Haodong Xie
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fei Huang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | | |
Collapse
|
3
|
Lv XY, Jin GP, Yuan DK, Ding YF, Long PX. Improving generation of H 2O 2 and •OH at copper hexacyanocobaltate/graphene/ITO composite electrode for degradation of levofloxacin in photo-electro-Fenton process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17636-17647. [PMID: 33400121 DOI: 10.1007/s11356-020-11883-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
In this work, copper hexacyanocobaltate was electro-deposited at amino-graphene-coated indium-tin-oxide glass to form multifunctional heterogeneous catalyst (CuCoG/ITO), which was confirmed by field emission scanning microscope, infrared spectra, X-ray diffraction, and electro-chemistry techniques. A novel heterogeneous photo-electro-Fenton-like system was established using CuCoG/ITO as an air-diffusion electrode, in which hydrogen peroxide (H2O2) and hydroxyl radical (•OH) could be simultaneously generated by air O2 reduction. The productive rate of •OH could reached to 70.5 μmol h-1 at - 0.8 V with 300 W visible light irradiation at pH 7.0, 0.1 M PBS. Levofloxacin could be quickly degraded at CuCoG/ITO during heterogeneous photo-electro-Fenton process in neutral media with a first-order kinetic constant of 0.49 h-1.
Collapse
Affiliation(s)
- Xiao-Yuan Lv
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guan-Ping Jin
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Ding-Kun Yuan
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yan-Feng Ding
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Peng-Xing Long
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
4
|
Zhu G, Zhu J, Liu Q, Fu X, Chen Z, Li K, Cao F, Qin Q, Jiao M. HPO 42- enhanced catalytic activity of N, S, B, and O-codoped carbon nanosphere-armored Co 9S 8 nanoparticles for organic pollutants degradation via peroxymonosulfate activation: critical roles of superoxide radical, singlet oxygen and electron transfer. Phys Chem Chem Phys 2021; 23:5283-5297. [PMID: 33630982 DOI: 10.1039/d0cp04773b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, we report a facile synthesis of a novel N, S, B, and O-codoped carbon nanosphere-armored Co9S8 nanoparticle composite (Co9S8@NSBOC) and its superior activation performance toward peroxymonosulfate (PMS) for methylene blue (MB) and ofloxacin degradation. The effects of various experimental parameters and the general applicability of the catalyst were investigated. Particularly, Co9S8@NSBOC exhibited high catalytic activity in a wide pH range of 3-12 and HPO42- exhibited a synergic catalytic effect with Co9S8@NSBOC in the degradation system. Radical quenching tests, EPR measurements and electrochemical analysis demonstrated that the degradation mechanism of pollutants in the Co9S8@NSBOC/PMS system included both radical and non-radical pathways, in which ˙O2-, 1O2 and electron transfer played dominant roles. Co2+, S2-, carbon defects, C[double bond, length as m-dash]O/C-O-C, pyridinic-N, graphitic-N, BC2O and C-S-C species on Co9S8@NSBOC, all contributed to PMS activation. The degradation pathways of MB and ofloxacin were proposed based on HPLC-MS/MS analysis of their degradation intermediates. This work not only presents a facile and practical synthetic method of cobalt sulfide-coupled multi-heteroatom-doped carbocatalysts, but also provides useful insights into their active sites and activation mechanisms toward PMS activation.
Collapse
Affiliation(s)
- Genxing Zhu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China.
| | - Jialu Zhu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China.
| | - Qi Liu
- College of Science, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China
| | - Xinlong Fu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China.
| | - Ziyi Chen
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China.
| | - Kai Li
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, P. R. China
| | - Fengyi Cao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China.
| | - Qi Qin
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China.
| | - Mingli Jiao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China.
| |
Collapse
|
5
|
Fan Y, Zhou Y, Feng Y, Wang P, Li X, Shih K. Fabrication of reactive flat-sheet ceramic membranes for oxidative degradation of ofloxacin by peroxymonosulfate. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118302] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Sharma K, Kaushik G, Thotakura N, Raza K, Sharma N, Nimesh S. Enhancement effects of process optimization technique while elucidating the degradation pathways of drugs present in pharmaceutical industry wastewater using Micrococcus yunnanensis. CHEMOSPHERE 2020; 238:124689. [PMID: 31524624 DOI: 10.1016/j.chemosphere.2019.124689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceutical effluents released from industries are accountable to deteriorate the aquatic and soil environment through indirect toxic effects. Microbes are adequately been used to biodegrade pharmaceutical industry wastewater and present study was envisaged to determine biodegradation of pharmaceutical effluent by Micrococcus yunnanensis. The strain showed 42.82% COD (Chemical oxygen demand) reduction before optimization. After applying Taguchi's L8 array as an optimization technique, the biodegradation rate was enhanced by 82.95% at optimum conditions (dextrose- 0.15%, peptone 0.1%, inoculum size 4% (wv-1), rpm 200, pH 8 at 25 °C) within 6 h. The confirmation of pharmaceuticals degradation was done by 1H NMR (Nuclear magnetic resonance) studies followed by elucidation of transformation pathways of probable drugs in the effluent through Q-Tof-MS (Quadrupole Time of Flight- Mass Spectrometry). The cytotoxicity evaluation of treated and untreated wastewater was analyzed on Human Embryonic Kidney (HEK 293) cells using Alamar Blue assay, which showed significant variance.
Collapse
Affiliation(s)
- Kritika Sharma
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
| | - Garima Kaushik
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India.
| | - Nagarani Thotakura
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
| | - Nikita Sharma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
| | - Surendra Nimesh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Distt. Ajmer, Rajasthan, 305817, India
| |
Collapse
|
7
|
Accelerated photocatalytic degradation of quinolone antibiotics over Z-scheme MoO3/g-C3N4 heterostructure by peroxydisulfate under visible light irradiation: Mechanism; kinetic; and products. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Xue H, Gao S, Zheng N, Li M, Wen X, Wei X. Degradation of norfloxacin in aqueous solution with UV/peroxydisulfate. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:2387-2394. [PMID: 31411593 DOI: 10.2166/wst.2019.240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The frequent detection of antibiotics in water bodies gives rise to concerns about their removal technology. In this study, the degradation kinetics and mechanisms of norfloxacin (NOR), a typical fluoroquinolone pharmaceutical, by the UV/peroxydisulfate (PDS) was investigated. NOR could be degraded effectively using this process, and the degradation rate increased with the increasing dosage of PDS but decreased with the increasing concentration of NOR. In real water, the degradation of NOR was slower than that in ultrapure water, which indicated that laboratory results cannot be directly used to predict the natural fate of antibiotics. Further experiments suggested that the degradation of NOR was the most fast under neutral condition, the existence of HA or FA inhibited the degradation of NOR, and the presence of inorganic ions (NO3 -, Cl-, CO3 2- and HCO3 -) had no significant effect on degradation of NOR. Total organic carbon (TOC) removal rate (40%) indicated NOR was not completely mineralized, and six transformation products were identified, and possible degradation pathways of NOR had been proposed. It can be prospected that UV/PDS technology could be used for advanced treatment of wastewater containing fluoroquinolones.
Collapse
Affiliation(s)
- Honghai Xue
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China E-mail: ; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Siyu Gao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China E-mail:
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Xue Wen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Xindong Wei
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
9
|
Zhou Y, Gao Y, Pang SY, Jiang J, Yang Y, Ma J, Yang Y, Duan J, Guo Q. Oxidation of fluoroquinolone antibiotics by peroxymonosulfate without activation: Kinetics, products, and antibacterial deactivation. WATER RESEARCH 2018; 145:210-219. [PMID: 30142519 DOI: 10.1016/j.watres.2018.08.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/27/2018] [Accepted: 08/11/2018] [Indexed: 06/08/2023]
Abstract
While fluoroquinolone (FQ) antibiotics are susceptible to degradation by sulfate and/or hydroxyl radicals formed in peroxymonosulfate (PMS) based advanced oxidation processes, here we report that unactivated PMS itself exhibits a specific high reactivity toward FQs for the first time. Reaction kinetics of PMS with two model FQs, ciprofloxacin (CF) and enrofloxacin (EF), showed a strong pH dependency with apparent second-order rate constants of 0.10-13.05 M-1s-1 for CF and 0.51-33.17 M-1s-1 for EF at pH 5-10. This pH dependency was well described by species-specific parallel reactions. On the basis of reaction kinetics and structure-activity assessment, the tertiary and secondary aliphatic N4 amines on the FQs' piperazine ring were proposed to be the main reaction sites. High performance liquid chromatography/electrospray ionization tandem mass analysis showed the formation of hydroxylated, N-oxide, and dealkylated products. Bacterial growth inhibition bioassays using Escherichia coli showed that oxidation products of FQs by PMS retained negligible antibacterial potency in comparison to parent FQs. Kinetic modeling using the rate constants estimated from pure water well predicted the oxidation kinetics of low levels of CF and EF by PMS in surface water. The degradation efficiency of FQs by PMS in surface water was slightly lower than that by ozone, comparable to that by ferrate, and much higher than that by permanganate. These results suggest that PMS is a promising oxidant for the treatment of FQs in water.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yuan Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Su-Yan Pang
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China.
| | - Jin Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yi Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yue Yang
- College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Jiebin Duan
- College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Qin Guo
- College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| |
Collapse
|
10
|
Changotra R, Guin JP, Varshney L, Dhir A. Assessment of reaction intermediates of gamma radiation-induced degradation of ofloxacin in aqueous solution. CHEMOSPHERE 2018; 208:606-613. [PMID: 29890499 DOI: 10.1016/j.chemosphere.2018.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Gamma radiolytic degradation of an antibiotic, ofloxacin (OFX) was investigated under different experimental conditions. The parameters such as initial OFX concentration, solution pH, absorbed dose and the concentrations of inorganic (CO32-) and organic (t-BuOH) additives were optimized to achieve the efficient degradation of OFX. The degradation dose constant values of OFX were calculated as 2.364, 1.159, 0.776 and 0.618 kGy-1 for the initial OFX concentrations of 0.05, 0.1, 0.15 and 0.2 mM with their corresponding (G (-OFX)) values of 0.481, 0.684, 1.755 and 1.971, respectively. Degradation rate of OFX was significantly increased with increase in the absorbed dose and decrease in the initial OFX concentration under acidic condition when compared to neutral or alkaline condition. Reaction of OFX in the presence of CO32- and t-BuOH showed that the degradation was primarily caused by the reaction of OFX with radiolytically generated reactive hydroxyl radicals. Mineralization extent of OFX was determined in terms of percentage reduction in total organic carbon (TOC) and results revealed that the addition of H2O2 enhanced the mineralization of OFX from 29% to 36.1% with H2O2 dose of 0.5 mM at an absorbed dose of 3.0 kGy. Based on the LC-QTOF-MS analysis, gamma radiolytic degradation intermediates/products of OFX were identified and the possible degradation pathways of OFX were proposed. Cytotoxicity study of the irradiated OFX solutions showed that gamma radiation has potential to detoxify OFX.
Collapse
Affiliation(s)
- Rahil Changotra
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Jhimli Paul Guin
- Radiation Technology Development Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Lalit Varshney
- Radiation Technology Development Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Amit Dhir
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala 147004, India.
| |
Collapse
|
11
|
Pi Y, Ma L, Zhao P, Cao Y, Gao H, Wang C, Li Q, Dong S, Sun J. Facile green synthetic graphene-based Co-Fe Prussian blue analogues as an activator of peroxymonosulfate for the degradation of levofloxacin hydrochloride. J Colloid Interface Sci 2018; 526:18-27. [PMID: 29709668 DOI: 10.1016/j.jcis.2018.04.070] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/09/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
Abstract
A kind of Co-Fe Prussian blue analogues (Co-Fe PBAs), cobalt hexacyanoferrate Co3[Fe(CN)6]2, and graphene oxide (GO) were combined to synthesize magnetically separable Co-Fe PBAs@rGO nanocomposites through a simple two-step hydrothermal method. The crystalline structure, morphology and textural properties of the Co-Fe PBAs@rGO nanocomposites were characterized. The catalytic performance of the nanocomposites was evaluated by PMS activation, with Levofloxacin Hydrochloride (LVF) as the target contaminant. Synergistic interactions between the Co-Fe PBAs and rGO prevented the aggregation of the Co-Fe PBAs nanoparticles, which resulted in enhanced degradation efficiencies. The influence of several critical parameters was investigated, including the reaction temperature, PMS and Co-Fe PBAs@rGO catalyst concentrations, solution pH and salt content. LVF degradation was favored at higher catalyst and PMS concentrations, high temperatures, and in neutral or weak acidic solutions. Sulphate radicals were the dominant active species in the Co-Fe PBAs@rGO/PMS system. In addition, the Co-Fe PBAs@rGO exhibited no significant decrease in LVF degradation efficiency following five catalytic cycles. Thus, the as-prepared Co-Fe PBAs@rGO nanocomposite catalyst might be applied to the removal of hard-to-degrade organics owing to its high catalytic ability to activate PMS, as well as its good reusability and recyclability.
Collapse
Affiliation(s)
- Yunqing Pi
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Lingjia Ma
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Peng Zhao
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yangdan Cao
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Huiqin Gao
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Chunfeng Wang
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Qilu Li
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Shuying Dong
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jianhui Sun
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| |
Collapse
|
12
|
Feng M, Wang Z, Dionysiou DD, Sharma VK. Metal-mediated oxidation of fluoroquinolone antibiotics in water: A review on kinetics, transformation products, and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:1136-1154. [PMID: 28919428 DOI: 10.1016/j.jhazmat.2017.08.067] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 05/29/2023]
Abstract
Fluoroquinolones (FQs) are among the most potent antimicrobial agents, which have seen their increasing use as human and veterinary medicines to control bacterial infections. FQs have been extensively found in surface water and municipal wastewaters, which has raised great concerns due to their negative impacts to humans and ecological health. It is of utmost importance that FQs are treated before their release into the environment. This paper reviews oxidative removal of FQs using reactive oxygen (O3 and OH), sulfate radicals (SO4-), and high-valent transition metal (MnVII and FeVI) species. The role of metals in enhancing the performance of reactive oxygen and sulfur species is presented. The catalysts can significantly enhance the production of OH and/or SO4- radicals. At neutral pH, the second-order rate constants (k, M-1s-1) of the reactions between FQs and oxidants follow the order as k(OH)>k(O3)>k(FeVI)>k(MnVII). Moieties involved to transform target FQs to oxidized products and participation of the catalysts in the reaction pathways are discussed. Generally, the piperazinyl ring of FQs was found as the preferential attack site by each oxidant. Meanwhile, evaluation of aquatic ecotoxicity of the transformation products of FQs by these treatments is summarized.
Collapse
Affiliation(s)
- Mingbao Feng
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DCEE), University of Cincinnati, Cincinnati, OH 45221, USA
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
13
|
|
14
|
Ye JS, Liu J, Ou HS, Wang LL. Degradation of ciprofloxacin by 280 nm ultraviolet-activated persulfate: Degradation pathway and intermediate impact on proteome of Escherichia coli. CHEMOSPHERE 2016; 165:311-319. [PMID: 27664520 DOI: 10.1016/j.chemosphere.2016.09.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
In this study, the degradation of ciprofloxacin (CIP) was explored using ultraviolet activated persulfate (UV/PS) with 280 nm ultraviolet light-emitting diodes (UV-LEDs), and the toxicological assessment of degrading intermediates was performed using iTRAQ labeling quantitative proteomic technology. The quantitative mass spectrum results showed that 280 nm UV/PS treatment had a high transformation efficiency of CIP ([CIP] = 3 μM, [S2O82-] = 210 μM, apparent rate constants 0.2413 min-1). The high resolution mass spectrum analyses demonstrated that the primary intermediates included C15H16FN3O3 (m/z 306.1248) and C17H18FN3O4 (m/z 348.1354). The former one was formed by the cleavage of piperazine ring, while the later one was generated by the addition of a hydroxyl on the quinolone backbone. The toxicological assessment demonstrated that 56 and 110 proteins had significant up regulations and down regulations, respectively, in the Escherichia coli exposed to degraded CIP compared to untreated CIP. The majority of up-regulated proteins, such as GapA, SodC, were associated with primary metabolic process rather than responses to stress and toxic substance, inferring that the moderate UV/PS treatment can reduce the antibacterial activity of CIP by incomplete mineralization. Consequently, these results provided a novel insight into the application of UV-LED/PS treatment as a promising removal methodology for quinolones.
Collapse
Affiliation(s)
- Jin-Shao Ye
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek 94598, CA, USA
| | - Juan Liu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Hua-Se Ou
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Lin-Lin Wang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek 94598, CA, USA
| |
Collapse
|
15
|
Gong Y, Li J, Zhang Y, Zhang M, Tian X, Wang A. Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode. JOURNAL OF HAZARDOUS MATERIALS 2016; 304:320-328. [PMID: 26561756 DOI: 10.1016/j.jhazmat.2015.10.064] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Solutions of 500 mL 200 mg L(-1) fluoroquinolone antibiotic levofloxacin (LEVO) have been degraded by anodic oxidation (AO), AO with electrogenerated H2O2 (AO-H2O2) and electro-Fenton (EF) processes using an activated carbon fiber (ACF) felt cathode from the point view of not only LEVO disappearance and mineralization, but also biodegradability enhancement. The LEVO decay by EF process followed a pseudo-first-order reaction with an apparent rate constant of 2.37×10(-2)min(-1), which is much higher than that of AO or AO-H2O2 processes. The LEVO mineralization also evidences the order EF>AO-H2O2>AO. The biodegradability (BOD5/COD) increased from 0 initially to 0.24, 0.09, and 0.03 for EF, AO-H2O2 and AO processes after 360 min treatment, respectively. Effects of several parameters such as current density, initial pH and Fe(2+) concentration on the EF degradation have also been examined. Three carboxylic acids including oxalic, formic and acetic acid were detected, as well as the released inorganic ions NH4(+), NO3(-) and F(-). At last, an ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry was used to identify about eight aromatic intermediates formed in 60 min of EF treatment, and a plausible mineralization pathway for LEVO by EF treatment was proposed.
Collapse
Affiliation(s)
- Yuexiang Gong
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Yanyu Zhang
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Meng Zhang
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Xiujun Tian
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China
| | - Aimin Wang
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing 100044, China.
| |
Collapse
|
16
|
Wacławek S, Grübel K, Černík M. Simple spectrophotometric determination of monopersulfate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 149:928-933. [PMID: 26004103 DOI: 10.1016/j.saa.2015.05.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 05/03/2015] [Accepted: 05/09/2015] [Indexed: 06/04/2023]
Abstract
A simple, sensitive and accurate spectrophotometric method has been developed and validated for the determination of monopersulfate (MPS) which is an active part of potassium monopersulfate triple salt that has the commercial name - Oxone. This work proposes a spectrophotometric determination of monopersulfate based on modification of the iodometric titration method. The analysis of absorption spectra was made for the concentration range from 1.35 to 13.01 ppm of MPS (with a detection and quantification limit of 0.41 and 1.35 ppm, respectively) and different pH values. The influence of several anions on the measurement was also investigated. Furthermore, the absorbance of iron and cobalt (often used as free radical initiators) proved to have no effect on the measurement of MPS concentrations. On the basis of the conducted studies, we propose 395 nm as an optimal wavelength for the determination of MPS concentrations.
Collapse
Affiliation(s)
- S Wacławek
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic
| | - K Grübel
- University of Bielsko-Biala, Institute of Environmental Protection and Engineering, Department of Environmental Microbiology and Biotechnology, Willowa 2, 43-309 Bielsko-Biała, Poland.
| | - M Černík
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic
| |
Collapse
|
17
|
Heterogeneous activation of Oxone by substituted magnetites Fe3−xMxO4 (Cr, Mn, Co, Ni) for degradation of Acid Orange II at neutral pH. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2014.11.024] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|