1
|
Ahmady IM, Parambath JBM, Elsheikh EAE, Kim G, Han C, Pérez-García A, Mohamed AA. Bacterial synthesis of anisotropic gold nanoparticles. Appl Microbiol Biotechnol 2025; 109:62. [PMID: 40064650 PMCID: PMC11893633 DOI: 10.1007/s00253-025-13438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
Pseudomonas aeruginosa was used to synthesize anisotropic gold nanoparticles from the unusually reducible aryldiazonium gold (III) salt of the chemical formula [HOOC-4-C6H4N≡N]AuCl4 (abbreviated as DS-AuCl4). We investigated the effect of bacterial cell density, temperature, and pH on the AuNP synthesis. The bacterial cell density of 6.0 × 108 CFU/mL successfully reduced 0.5 mM DS-AuCl4 salt to AuNPs after incubation at 37 °C (24 h), 42 °C (24 h), and 25 °C (48 h). Transmission electron microscopy (TEM) images revealed the formation of spherical, triangle, star, hexagon, and truncated triangular morphologies for the AuNPs synthesized using P. aeruginosa bacteria. The average size of AuNPs synthesized at 25 °C (48 h), 37 °C (24 h), and 42 °C (24 h) was 39.0 ± 9.1 nm, 26.0 ± 8.1 nm, and 36.7 ± 7.7 nm, respectively. The average size of AuNPs synthesized at pH 3.7, 7.0, and 12.7 was 36.7 ± 7.7 nm, 14.7 ± 3.8 nm, and 7.3 ± 2.5 nm, respectively, with the average size decreasing at a pH of 12.7. The reduction of the DS-AuCl4 salt was confirmed using X-ray photoelectron spectroscopy (XPS). The significant peaks for C1s, Au4f doublet, N1s, and O1s are centered at 285, 84-88, 400, and 532 eV. The ability of inactivated bacteria (autoclave-dead and mechanically lysed bacteria), peptidoglycan, and lipopolysaccharides to reduce the DS-AuCl4 salt to AuNPs was also investigated. Anisotropic AuNPs were synthesized using inactivated bacteria and peptidoglycan but not using lipopolysaccharides. The AuNPs demonstrated biocompatibility with human RBCs and were safe, with no antibacterial activities against Escherichia coli and Staphylococcus aureus. This is the first report demonstrating the synthesis of AuNPs using aryldiazonium gold(III) salts with P. aeruginosa. These AuNPs are promising candidates for exploring potential applications in nanomedicine and drug delivery. KEY POINTS: • Anisotropic AuNPs were synthesized using P. aeruginosa bacteria. • Dead and lysed bacterial residues synthesized anisotropic AuNPs. • AuNPs are hemocompatible.
Collapse
Affiliation(s)
- Islam M Ahmady
- Department of Applied Biology, College of Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Departamento de Microbiología, Universidad de Málaga, and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), 29071, Málaga, Spain
| | - Javad B M Parambath
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Elsiddig A E Elsheikh
- Department of Applied Biology, College of Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Gwangmin Kim
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-Ro, Michuhol-Gu, Incheon, 22212, Korea
| | - Changseok Han
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-Ro, Michuhol-Gu, Incheon, 22212, Korea
- Department of Environmental Engineering, INHA University, 100 Inha-Ro, Michuhol-Gu, Incheon, 22212, Korea
| | - Alejandro Pérez-García
- Departamento de Microbiología, Universidad de Málaga, and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), 29071, Málaga, Spain.
| | - Ahmed A Mohamed
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
2
|
Sin A, Machala L, Kim M, Baďura Z, Petr M, Polaskova M, Novak P, Nadagouda MN, Dionysiou DD, Han C. Development of tungsten-modified iron oxides to decompose an over-the-counter painkiller, Acetaminophen by activating peroxymonosulfate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175472. [PMID: 39142414 PMCID: PMC11826425 DOI: 10.1016/j.scitotenv.2024.175472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Acetaminophen (APAP) is a well-known type of over-the-counter painkillers and is frequently found in surface waterbodies, causing hepatotoxicity and skin irritation. Due to its persistence and chronic effects on the environment, innovative solutions must be provided to decompose APAP, effectively. Innovative catalysts of tungsten-modified iron oxides (TF) were successfully developed via a combustion method and thoroughly characterized using SEM, TEM, XRD, XPS, a porosimetry analysis, Mössbauer spectroscopy, VSM magnetometry, and EPR. With the synthesis method, tungsten was successfully incorporated into iron oxides to form ferrites and other magnetic iron oxides with a high porosity of 19.7 % and a large surface area of 29.5 m2/g. Also, their catalytic activities for APAP degradation by activating peroxymonosulfate (PMS) were evaluated under various conditions. Under optimal conditions, TF 2.0 showed the highest APAP degradation of 95 % removal with a catalyst loading of 2.0 g/L, initial APAP concentration of 5 mg/L, PMS of 6.5 mM, and pH 2.15 at room temperature. No inhibition by solution pHs, alkalinity, and humic acid was observed for APAP degradation in this study. The catalysts also showed chemical and mechanical stability, achieving 100 % degradation of 1 mg/L APAP during reusability tests with three consecutive experiments. These results show that TFs can effectively degrade persistent contaminants of emerging concern in water, offering an impactful contribution to wastewater treatment to protect human health and the ecosystem.
Collapse
Affiliation(s)
- Aebin Sin
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| | - Libor Machala
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17.listopadu 1192/12, Olomouc 779 00, Czech Republic.
| | - Minhee Kim
- Ministry of Environment, 229 Misagangbyeonhangang-ro, Hanam-si, Gyeonggi-do 12902, Republic of Korea.
| | - Zdeněk Baďura
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc 783 71, Czech Republic; Nanotechnology Centre, CEET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic.
| | - Martin Petr
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc 783 71, Czech Republic.
| | - Michaela Polaskova
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc 783 71, Czech Republic
| | - Petr Novak
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17.listopadu 1192/12, Olomouc 779 00, Czech Republic.
| | - Mallikarjuna N Nadagouda
- Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Changseok Han
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Environmental Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| |
Collapse
|
3
|
Rasool Z, Athar MS, Muneer M. Construction of flake ball-shaped Bi 2WO 6 embedded on phenyl functionalized g-C 3N 4 nanosheet for efficient degradation insight of colorless pollutants and its biological application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31259-31272. [PMID: 38630405 DOI: 10.1007/s11356-024-33294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/08/2024] [Indexed: 10/27/2024]
Abstract
A facile solvent-free solid-state method was adapted to synthesize the spherical-shaped Bi2WO6 engraved on phenyl-doped g-C3N4 nanosheet, i.e., Bi2WO6/Ph-gC3N4 (or BPCN) composites with varying weights of Bi2WO6. Several spectral analyses were used to characterize all the synthesized nanomaterials. The synthesized photocatalyst showed good absorption under visible light as confirmed by UV-visible DRS analysis. Morphological analyses like SEM and TEM determine the successful fabrication of binary heterocomposite. Further, the elements available in the fabricated binary nanocomposite were confirmed by XPS. The photocatalyst was used for the aerobic photocatalytic degradation of a few colorless pollutants like bisphenol A (BPA, 30 mg L-1), a microplastic constituent, and tetracycline (TC, 40 mg L-1), an antibiotic derivative to achieve the impressive results. The less intense PL signal obtained for the 20BPCN heterocomposite reveals the remarkable enhancement in e--h+ pair separation and recombination rate. The quenching study, alkaline terephthalic acid photoluminescence test (TA-PL), and NBT phototransformation study explain the formation of reactive species involved in the decomposition process. An oral cancer cell line (A-254) was tested for the anticancer activity analysis of the 20BPCN photocatalyst. Based on the obtained results, a Z-scheme electron transfer mechanism has been proposed for the photodegradation of model compounds.
Collapse
Affiliation(s)
- Ziyaur Rasool
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | | | - Mohammad Muneer
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Wu LP, Wang WG, Mo D, Duan JL, Li XJ. Effect of Au position on the photoelectrochemical and photocatalytic activity of TiO 2 nanotubes under UV irradiation. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2166067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Liang-Peng Wu
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, P.R. China
- Chinese Academy of Sciences, Guangzhou Institute of Energy Conversion, Guangzhou, P.R. China
| | - Wen-Guang Wang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, P.R. China
| | - Dan Mo
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, P.R. China
| | - Jing-Lai Duan
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, P.R. China
| | - Xin-Jun Li
- Chinese Academy of Sciences, Guangzhou Institute of Energy Conversion, Guangzhou, P.R. China
| |
Collapse
|
5
|
Parambath JBM, Ahmady IM, Panicker S, Sin A, Han C, Mohamed AA. Correlation notice on the electrochemical dealloying and antibacterial properties of gold-silver alloy nanoparticles. Biometals 2022; 35:1307-1323. [PMID: 36149568 DOI: 10.1007/s10534-022-00446-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022]
Abstract
Galvanic replacement reaction was used in the synthesis of bimetallic gold-silver alloy nanoparticles (Au-Ag NPs), where pre-synthesized Ag nanoparticles-polyvinylpyrrolidone (AgNPs-PVP) were used to reduce the aryldiazonium tetrachloroaurate(III) salt in water. TEM images and EDS elemental analysis showed the formation of spherical Au-Ag NPs with sizes of 12.8 ± 4.9 nm and 25.6 ± 14.4 nm for corresponding Au-Ag ratios and termed as Au0.91Ag0.09 and Au0.79Ag0.21, respectively, with different concentrations of the gold precursor. The hydrodynamic sizes measured using dynamic light scattering are 46.4 nm and 74.8 nm with corresponding zeta potentials of - 44.56 and - 25.09 mV in water, for Au0.91Ag0.09 and Au0.79Ag0.21 respectively. Oxidative leachability of Ag ion studies from the starting AgNPs-PVP in 1 M NaCl showed a significant decrease in the plasmon peak after 8 h, indicating the complete dissolution of Ag ions, however, there is enhanced oxidation resistivity of Ag from Au-Ag NPs even after 24 h. Electrochemical studies on glassy carbon electrodes displayed a low oxidation peak in aqueous solutions of 20 mM KCl at 0.16 V and KNO3 at 0.33 V vs. saturated calomel electrode (SCE). We studied the antibacterial activity of Au-Ag alloy nanoparticles against gram-positive Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, and gram-negative Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa. Our findings demonstrated superior antibacterial activity of Au-Ag NPs compared with AgNPs-PVP. Moreover, the nanoparticles inhibited the S. epidermidis biofilm formation.
Collapse
Affiliation(s)
- Javad B M Parambath
- Department of Chemistry, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Islam M Ahmady
- Department of Applied Biology, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Seema Panicker
- Department of Chemistry, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Aebin Sin
- Program in Environmental & Polymer Engineering, Graduate School, INHA University, Incheon, 22212, Republic of Korea
| | - Changseok Han
- Program in Environmental & Polymer Engineering, Graduate School, INHA University, Incheon, 22212, Republic of Korea
- Department of Environmental Engineering, INHA University, Incheon, 22212, Republic of Korea
| | - Ahmed A Mohamed
- Department of Chemistry, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
6
|
Constructing a novel mesoporous CsxWO3/C composite aerogel for efficient adsorption/photocatalytic degradation of Oxytetracycline. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Sobhy S, Elsenety MM, Mohamed MBI, Moustafa Y, Salama TM. Molecular dynamic simulations for interactions of oxytetracycline with copper(II)-exchanged NaY zeolite. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Applications of Heterogeneous Photocatalysis to the Degradation of Oxytetracycline in Water: A Review. Molecules 2022; 27:molecules27092743. [PMID: 35566092 PMCID: PMC9105636 DOI: 10.3390/molecules27092743] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
Photocatalytic processes are being studied extensively as potential advanced wastewater treatments for the removal of pharmaceuticals, pesticides and other recalcitrant micropollutants from the effluents of conventional wastewater treatment plants (WWTPs). Oxytetracycline (OTC) is a widespread antibiotic which is frequently detected in surface water bodies as a recalcitrant and persistent micropollutant. This review provides an update on advances in heterogeneous photocatalysis for the degradation of OTC in water under UV light, sunlight and visible-light irradiation. Photocatalysts based on pure semiconducting oxides are rarely used, due to the problem of rapid recombination of electron–hole pairs. To overcome this issue, a good strategy could be the coupling of two different semiconducting compounds with different conduction and valence bands. Several methods are described to enhance the performances of catalysts, such as doping of the oxide with metal and/or non-metal elements, surface functionalization, composites and nano-heterojunction. Furthermore, a discussion on non-oxidic photocatalysts is briefly provided, focusing on the application of graphene-based nanocomposites for the effective treatment of OTC.
Collapse
|
9
|
Prakruthi K, Ujwal MP, Yashas SR, Mahesh B, Kumara Swamy N, Shivaraju HP. Recent advances in photocatalytic remediation of emerging organic pollutants using semiconducting metal oxides: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4930-4957. [PMID: 34797548 DOI: 10.1007/s11356-021-17361-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Many untreated and partly treated wastewater from the home and commercial resources is being discharged into the aquatic environment these days, which contains numerous unknown and complex natural and inorganic compounds. These compounds tend to persist, initiating severe environmental problems, which affect human health. Conventionally, physicochemical treatment methods were adopted to remove such complex organic chemicals, but they suffer from critical limitations. Over time, photocatalysis, an advanced oxidation process, has gained its position for its efficient and fair performance against emerging organic pollutant decontamination. Typically, photocatalysis is a green technology to decompose organics under UV/visible light at ambient conditions. Semiconducting nanometal oxides have emerged as pioneering photocatalysts because of large active surface sites, flexible oxidation states, various morphologies, and easy preparation. The current review presents an overview of emerging organic pollutants and their effects, advanced oxidation processes, photocatalytic mechanism, types of photocatalysts, photocatalyst support materials, and methods for improving photodegradation efficiency on the degradation of complex emerging organic pollutants. In addition, the recent reports of metal-oxide-driven photocatalytic remediation of emerging organic pollutants are presented in brief. This review is anticipated to reach a broader scientific community to understand the first principles of photocatalysis and review the recent advancements in this field.
Collapse
Affiliation(s)
- Komargoud Prakruthi
- Department of Environmental Engineering, JSS Science and Technology University, Mysuru , 570006, India
| | | | - Shivamurthy Ravindra Yashas
- Department of Environmental Science, Faculty of Natural Science, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Basavaraju Mahesh
- Department of Chemistry, JSS Academy of Technical Education, Dr. Vishnuvardhan Road, Bengaluru, 560060, India
| | - Ningappa Kumara Swamy
- Department of Chemistry, JSS Science and Technology University, Mysuru, 570006, India.
| | | |
Collapse
|
10
|
Jain M, Mudhoo A, Ramasamy DL, Najafi M, Usman M, Zhu R, Kumar G, Shobana S, Garg VK, Sillanpää M. Adsorption, degradation, and mineralization of emerging pollutants (pharmaceuticals and agrochemicals) by nanostructures: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34862-34905. [PMID: 32656757 DOI: 10.1007/s11356-020-09635-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/05/2020] [Indexed: 05/12/2023]
Abstract
This review discusses a fresh pool of research findings reported on the multiple roles played by metal-based, magnetic, graphene-type, chitosan-derived, and sonicated nanoparticles in the treatment of pharmaceutical- and agrochemical-contaminated waters. Some main points from this review are as follows: (i) there is an extensive number of nanoparticles with diverse physicochemical and morphological properties which have been synthesized and then assessed in their respective roles in the degradation and mineralization of many pharmaceuticals and agrochemicals, (ii) the exceptional removal efficiencies of graphene-based nanomaterials for different pharmaceuticals and agrochemicals molecules support arguably well a high potential of these nanomaterials for futuristic applications in remediating water pollution issues, (iii) the need for specific surface modifications and functionalization of parent nanostructures and the design of economically feasible production methods of such tunable nanomaterials tend to hinder their widespread applicability at this stage, (iv) supplementary research is also required to comprehensively elucidate the life cycle ecotoxicity characteristics and behaviors of each type of engineered nanostructures seeded for remediation of pharmaceuticals and agrochemicals in real contaminated media, and last but not the least, (v) real wastewaters are extremely complex in composition due to the mix of inorganic and organic species in different concentrations, and the presence of such mixed species have different radical scavenging effects on the sonocatalytic degradation and mineralization of pharmaceuticals and agrochemicals. Moreover, the formulation of viable full-scale implementation strategies and reactor configurations which can use multifunctional nanostructures for the effective remediation of pharmaceuticals and agrochemicals remains a major area of further research.
Collapse
Affiliation(s)
- Monika Jain
- Department of Natural Resource Management, College of Forestry, Banda University of Agriculture & Technology, Banda, Uttar Pradesh, 210001, India
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837, Mauritius.
| | - Deepika Lakshmi Ramasamy
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Mahsa Najafi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud, 123, Muscat, Oman
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036, Stavanger, Norway
| | - Sutha Shobana
- Department of Chemistry & Research Centre, Mohamed Sathak Engineering College, Ramanathapuram, Tamil Nadu, India
| | - Vinod Kumar Garg
- Centre for Environmental Sciences and Technology, Central University of Punjab, Bathinda, 151001, India
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam.
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, QLD, 4350, Australia.
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
11
|
Unravelling the Mechanisms that Drive the Performance of Photocatalytic Hydrogen Production. Catalysts 2020. [DOI: 10.3390/catal10080901] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The increasing interest and applications of photocatalysis, namely hydrogen production, artificial photosynthesis, and water remediation and disinfection, still face several drawbacks that prevent this technology from being fully implemented at the industrial level. The need to improve the performance of photocatalytic processes and extend their potential working under visible light has boosted the synthesis of new and more efficient semiconductor materials. Thus far, semiconductor–semiconductor heterojunction is the most remarkable alternative. Not only are the characteristics of the new materials relevant to the process performance, but also a deep understanding of the charge transfer mechanisms and the relationship with the process variables and nature of the semiconductors. However, there are several different charge transfer mechanisms responsible for the activity of the composites regardless the synthesis materials. In fact, different mechanisms can be carried out for the same junction. Focusing primarily on the photocatalytic generation of hydrogen, the objective of this review is to unravel the charge transfer mechanisms after the in-depth analyses of already reported literature and establish the guidelines for future research.
Collapse
|
12
|
Patterson K, Howlett K, Patterson K, Wang B, Jiang L. Photodegradation of ibuprofen and four other pharmaceutical pollutants on natural pigments sensitized TiO 2 nanoparticles. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1152-1161. [PMID: 32064712 DOI: 10.1002/wer.1310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) in water system have drawn increasing concerns in recent years. TiO2 -based photodegradation has shown great potential as a low-cost and sustainable technology in water treatment, however, can only use the UV light range of solar radiation which makes the system less efficient. Dyes have been studied to improve the TiO2 system light-harvesting range, but studies on environmental friendly natural dyes are rare. In this study, a screening method using UV-Vis spectra analysis was carried out on a group of 22 different tropical natural plants for the potential applications on dye-sensitized TiO2 in PPCP treatment. As a result, Begonia "Martin's Mystery" significantly increased TiO2 photodegradation efficiency toward ibuprofen treatments which is first time reported in literature as our best knowledge. Moreover, the promising discovery of Begonia application in ibuprofen treatment has been successfully applied to warfarin and famotidine treatment. Similar results were expanded to many other Begonia species which indicate that Begonia extracts could be excellent sensitizers for TiO2 -based photodegradation of PPCPs. Our discovery suggested that the screening process may potentially open a brand-new way for future TiO2 photodegradation studies before the complex and time-consuming detailed mechanism studies. PRACTITIONER POINTS.: Natural dyes were screened as sensitizers for TiO2 photodegradation of ibuprofen. Ibuprofen photodegradation efficiency was increased twice using Begonia "Martin's Mystery." The Begonia applications were extended to warfarin, trimethoprim, and famotidine. Promising results were also observed using five other Begonia species.
Collapse
Affiliation(s)
- Kristen Patterson
- Division of Natural Sciences, New College of Florida, Sarasota, FL, USA
| | - Kevin Howlett
- Division of Natural Sciences, New College of Florida, Sarasota, FL, USA
| | - Kelsey Patterson
- Division of Natural Sciences, New College of Florida, Sarasota, FL, USA
| | - Bo Wang
- Department of Chemistry, North Carolina A&T State University, Greensboro, NC, USA
| | - Lin Jiang
- Division of Natural Sciences, New College of Florida, Sarasota, FL, USA
| |
Collapse
|
13
|
|
14
|
Saran S, Manjari G, Devipriya SP. A Facile and Convenient Route for Synthesis of Silver Biopolymer Gel Bead Nanocomposites by Different Approach Towards Immobilization and Its Catalytic Applications. Catal Letters 2018. [DOI: 10.1007/s10562-018-2350-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Dong X, Sun Z, Zhang X, Li X, Zheng S. Synthesis and Enhanced Solar Light Photocatalytic Activity of a C/N Co-Doped TiO2/Diatomite Composite with Exposed (001) Facets. Aust J Chem 2018. [DOI: 10.1071/ch17544] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A C/N co-doped TiO2/diatomite composite with exposed (001) facet was prepared through a facile sol–gel method using tetrabutyl titanate as a titanium precursor and hexamethylenetetramine as C/N dopant. The as-prepared photocatalyst composites were characterised by X-ray diffraction (XRD), nitrogen adsorption–desorption isotherms, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (DRS), photoluminescence spectroscopy (PL), as well as X-ray photoelectron spectroscopy (XPS). The TiO2 nanoparticles were immobilised and uniformly distributed on the surface of diatomite with a smaller grain size compared with pure TiO2. In addition, compared with pure TiO2 and the undoped TiO2/diatomite composite, the photocatalytic activity of the C/N co-doped TiO2/diatomite composite under solar light illumination was obviously enhanced. Results indicate that the introduction of a C/N dopant can effectively promote the growth of the highly active anatase (001) facet of TiO2. On the other hand, the N impurity was doped into the interstitial spaces of the TiO2 lattice, which accelerated the charge transfer and hindered the recombination of photogenerated electron–hole pairs. The results show that the as-prepared composite exhibited promising applications in dye wastewater degradation owing to its outstanding reusability and cost-effectiveness.
Collapse
|
16
|
Islam MA, Church J, Han C, Chung HS, Ji E, Kim JH, Choudhary N, Lee GH, Lee WH, Jung Y. Noble metal-coated MoS 2 nanofilms with vertically-aligned 2D layers for visible light-driven photocatalytic degradation of emerging water contaminants. Sci Rep 2017; 7:14944. [PMID: 29097721 PMCID: PMC5668436 DOI: 10.1038/s41598-017-14816-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/16/2017] [Indexed: 12/02/2022] Open
Abstract
Two-dimensional molybdenum disulfide (2D MoS2) presents extraordinary optical, electrical, and chemical properties which are highly tunable by engineering the orientation of constituent 2D layers. 2D MoS2 films with vertically-aligned layers exhibit numerous 2D edge sites which are predicted to offer superior chemical reactivity owing to their enriched dangling bonds. This enhanced chemical reactivity coupled with their tunable band gap energy can render the vertical 2D MoS2 unique opportunities for environmental applications that go beyond the conventional applications of horizontal 2D MoS2 in electronics/opto-electronics. Herein, we report that MoS2 films with vertically-aligned 2D layers exhibit excellent visible light responsive photocatalytic activities for efficiently degrading organic compounds in contaminated water such as harmful algal blooms. We demonstrate the visible light-driven rapid degradation of microcystin-LR, one of the most toxic compounds produced by the algal blooms, and reveal that the degradation efficiency can be significantly improved by incorporating noble metals. This study suggests a high promise of these emerging 2D materials for water treatment, significantly broadening their versatility for a wide range of energy and environmental applications.
Collapse
Affiliation(s)
- Md Ashraful Islam
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, 32826, USA
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida, 32816, USA
| | - Jared Church
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, Florida, 32816, USA
| | - Changseok Han
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio, 45221-0012, USA
| | - Hee-Suk Chung
- Analytical Research Division, Korea Basic Science Institute, Jeonju, 54907, Jeollabuk-do, South Korea
| | - Eunji Ji
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea
| | - Jong Hun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea
| | - Nitin Choudhary
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, 32826, USA
| | - Gwan-Hyoung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, Florida, 32816, USA.
| | - Yeonwoong Jung
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, 32826, USA.
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida, 32816, USA.
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32826, USA.
| |
Collapse
|
17
|
Han C, Machala L, Medrik I, Prucek R, Kralchevska RP, Dionysiou DD. Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19435-19443. [PMID: 28677041 DOI: 10.1007/s11356-017-9566-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
In this study, a simple and low-cost method to synthesize iron(III) oxide nanopowders in large quantity was successfully developed for the photocatalytic degradation of microcystin-LR (MC-LR). Two visible light-active iron(III) oxide samples (MG-9 calcined at 200 °C for 5 h and MG-11 calcined at 180 °C for 16 h) with a particle size of 5-20 nm were prepared via thermal decomposition of ferrous oxalate dihydrate in air without any other modifications such as doping. The synthesized samples were characterized by X-ray powder diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller (BET) specific surface area analysis, and UV-visible diffuse reflectance spectroscopy. The samples exhibited similar phase composition (a mixture of α-Fe2O3 and γ-Fe2O3), particle size distribution (5-20 nm), particle morphology, and degree of agglomeration, but different specific surface areas (234 m2 g-1 for MG-9 and 207 m2 g-1 for MG-11). The results confirmed higher photocatalytic activity of the catalyst with higher specific surface area. The highest photocatalytic activity of the sample to decompose MC-LR was observed at solution pH of 3.0 and catalyst loading of 0.5 g L-1 due to large amount of MC-LR adsorption, but a little iron dissolution of 0.0065 wt% was observed. However, no iron leaching was observed at pH 5.8 even though the overall MC-LR removal was slightly lower than at pH 3.0. Thus, the pH 5.8 could be an appropriate operating condition for the catalyst to avoid problems of iron contamination by the catalyst. Moreover, magnetic behavior of γ-Fe2O3 gives a possibility for an easy separation of the catalyst particles after their use.
Collapse
Affiliation(s)
- Changseok Han
- Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Libor Machala
- Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Ivo Medrik
- Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Robert Prucek
- Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Radina P Kralchevska
- Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, USA.
| |
Collapse
|
18
|
Dominguez S, Huebra M, Han C, Campo P, Nadagouda MN, Rivero MJ, Ortiz I, Dionysiou DD. Magnetically recoverable TiO 2-WO 3 photocatalyst to oxidize bisphenol A from model wastewater under simulated solar light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12589-12598. [PMID: 27677989 DOI: 10.1007/s11356-016-7564-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
A novel magnetically recoverable, visible light active TiO2-WO3 composite (Fe3O4@SiO2@TiO2-WO3) was prepared to enable the photocatalyst recovery after the degradation of bisphenol A (BPA) under simulated solar light. For comparison, the photocatalytic activity of other materials such as non-magnetic TiO2-WO3, Fe3O4@SiO2@TiO2, TiO2, and the commercial TiO2 P25 was also evaluated under the studied experimental conditions. The structure and morphology of the synthesized materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and electron dispersion spectroscopy (EDS). Moreover, Brunauer-Emmett-Teller (BET) surface area and magnetic properties of the samples were determined. The Fe3O4@SiO2@TiO2-WO3 and TiO2-WO3 led to a BPA degradation of 17.50 and 27.92 %, respectively, after 2 h of the simulated solar light irradiation. Even though their activity was lower than that of P25, which degraded completely BPA after 1 h, our catalysts were magnetically separable for their further reuse in the treatment. Furthermore, the influence of the water matrix in the photocatalytic activity of the samples was studied in municipal wastewater. Finally, the identification of reaction intermediates was performed and a possible BPA degradation pathway was proposed to provide a better understanding of the degradation process. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- S Dominguez
- Department of Chemical and Biomolecular Engineering, University of Cantabria, 39005, Santander, Spain
| | - M Huebra
- Dpto Química Analítica, Universidad País Vasco, 48080, Bilbao, Spain
| | - C Han
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - P Campo
- Cranfield Water Science Institute, Cranfield University, Cranfield, Beds, MK43 0AL, UK
| | - M N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | - M J Rivero
- Department of Chemical and Biomolecular Engineering, University of Cantabria, 39005, Santander, Spain
| | - I Ortiz
- Department of Chemical and Biomolecular Engineering, University of Cantabria, 39005, Santander, Spain.
| | - D D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| |
Collapse
|
19
|
Sahle-Demessie E, Han C, Zhao A, Hahn B, Grecsek H. Interaction of engineered nanomaterials with hydrophobic organic pollutants. NANOTECHNOLOGY 2016; 27:284003. [PMID: 27265536 DOI: 10.1088/0957-4484/27/28/284003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As nanomaterials become an increasing part of everyday consumer products, it is imperative to monitor their potential release during production, use and disposal, and to assess their impact on the health of humans and the ecosystem. This necessitates research to better understand how the properties of engineered nanomaterials (ENMs) lead to their accumulation and redistribution in the environment, and to assess whether they could become novel pollutants or if they can affect the mobility and bioavailability of other toxins. This study focuses on understanding the influence of nanostructured-TiO2 and the interaction of multi-walled carbon nanotubes with organic pollutants in water. We studied the adsorption and water phase dispersion of model pollutants with relatively small water solubility (i.e., two- and three-ring polyaromatic hydrocarbons and insecticides) with respect to ENMs. The sorption of pollutants was measured based on water phase analysis, and by separating suspended particles from the water phase and analyzing dried samples using integrated thermal-chromatographic-mass spectroscopic (TGA/GC/MS) techniques. Solid phase analysis using a combination of TGA/GC/MS is a novel technique that can provide real-time quantitative analysis and which helps to understand the interaction of hydrophobic organic pollutants and ENMs. The adsorption of these contaminants to nanomaterials increased the concentration of the contaminants in the aqueous phase as compared to the 'real' partitioning due to the octanol-water partitioning. The study showed that ENMs can significantly influence the adsorption and dispersion of hydrophobic/low water soluble contaminants. The type of ENM, the exposure to light, and the water pH have a significant influence on the partitioning of pollutants.
Collapse
Affiliation(s)
- E Sahle-Demessie
- US Environmental Protection Agency, Office of Research and Development, National Risk Management Laboratory, Cincinnati, OH 45268, USA
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Surface Treatments of Titanium with Antibacterial Agents for Implant Applications. MODERN ASPECTS OF ELECTROCHEMISTRY 2016. [DOI: 10.1007/978-3-319-31849-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Dong H, Zeng G, Tang L, Fan C, Zhang C, He X, He Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. WATER RESEARCH 2015; 79:128-46. [PMID: 25980914 DOI: 10.1016/j.watres.2015.04.038] [Citation(s) in RCA: 501] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 05/23/2023]
Abstract
The pollutants classified as "persistent organic pollutants (POPs)", are being subject to high concern among the scientific community due to their persistence in the environment. TiO2-based photocatalytic process has shown a great potential as a low-cost, environmentally friendly and sustainable treatment technology to remove POPs in sewage to overcome the shortcomings of the conventional technologies. However, this technology suffers from some main technical barriers that impede its commercialization, i.e., the inefficient exploitation of visible light, low adsorption capacity for hydrophobic contaminants, uniform distribution in aqueous suspension and post-recovery of the TiO2 particles after water treatment. To improve the photocatalytic efficiency of TiO2, many studies have been carried out with the aim of eliminating the limitations mentioned above. This review summarizes the recently developed countermeasures for improving the performance of TiO2-based photocatalytic degradation of organic pollutants with respect to the visible-light photocatalytic activity, adsorption capacity, stability and separability. The performance of various TiO2-based photocatalytic processes for POPs degradation and the underlying mechanisms were summarized and discussed. The future research needs for TiO2-based technology are suggested accordingly. This review will significantly improve our understanding of the process of photocatalytic degradation of POPs by TiO2-based particles and provide useful information to scientists and engineers who work in this field.
Collapse
Affiliation(s)
- Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Xiaoxiao He
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Yan He
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|