1
|
Zhou W, Yang J, Qi L, Wang G, Guan C, Li Q. The role of Ni- and Cd-resistant rhizobacteria in promoting the growth of rice seedlings and alleviating the combined phytotoxicity of Ni and Cd. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117138. [PMID: 39353377 DOI: 10.1016/j.ecoenv.2024.117138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
The problem of potentially toxic metal pollution is increasingly acute with the development of human society. In this study, we investigated the remediation of nickel (Ni) and cadmium (Cd) co-contamination through inoculating rice with three new-isolated Ni- and Cd-resistant plant growth-promoting rhizobacteria (PGPR) Y3, Y4, and Y5. These three strains possessed growth-promoting properties, including 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, the ability of indoleacetic acid (IAA) production, phosphate solubilization, siderophores production, and exopolysaccharide (EPS) development. According to 16S rDNA sequence homology, strains Y3, Y4, and Y5 were identified as Pseudomonas sp., Chryseobacterium sp., and Enterobacter sp., respectively. Based on the results of rice germination experiments conducted under combined toxicity, we set the contamination concentrations for Ni2+ at 20 μg mL-1 and Cd2+ at 40 μg mL-1. Then we conducted potting experiments at these concentration levels to study the effects of strains Y3, Y4, and Y5 on rice growth under synergistic Ni and Cd stress. The results indicated that the inoculated strains Y3, Y4, and Y5 were effective in promoting the growth of rice seedlings under the combined stress of Ni and Cd, and conferring tolerance to Ni and Cd by increasing the antioxidant enzyme activities of the seedlings. Among them, strain Y3 exhibited stronger ACC deaminase activity, IAA production capacity, and EPS production capacity, showing the most pronounced growth-promoting effect on rice. It was demonstrated that after inoculation with strain Y3, the germination rate of rice seeds increased by 43 %, the fresh weight of stems improved by 35 %, and the chlorophyll content enhanced by 70 % and other growth-promoting phenomena. Additionally, under Ni and Cd stress, strain Y5 performed better than strain Y4 in terms of IAA production capacity and its influence on rice root growth, suggesting that IAA production might play a specifically essential role in root growth under Ni and Cd stress.
Collapse
Affiliation(s)
- Wenqing Zhou
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jingjing Yang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Lihua Qi
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Qian Li
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
2
|
He S, Li L, Lv M, Wang R, Wang L, Yu S, Gao Z, Li X. PGPR: Key to Enhancing Crop Productivity and Achieving Sustainable Agriculture. Curr Microbiol 2024; 81:377. [PMID: 39325205 DOI: 10.1007/s00284-024-03893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Due to the burgeoning global population and the advancement of economies, coupled with human activities leading to the degradation of soil ecosystems and the depletion of non-renewable resources, concerns have arisen regarding food security and human survival. In order to address these adverse impacts, the spotlight has been cast upon plant growth-promoting rhizobacteria (PGPR), driven by a strong environmental consciousness. PGPR possesses the capability to foster plant growth and amplify crop yield through both direct and indirect mechanisms. By expediting plant growth, augmenting nutrient assimilation, heightening crop yield and caliber, and fortifying stress resilience, the application of PGPR can mitigate reliance on chemical fertilizers and pesticides while diminishing ecological perils. This exposition delves into the function of PGPR in modulating plant hormones, fostering nutrient solubilization, and fortifying plant resistance against biotic and abiotic stressors. This review offers valuable insights into the intricate interplay between PGPR and plants, elucidating uncertainties ripe for further investigation. Profound comprehension and judicious utilization of PGPR are indispensable for attaining sustainable agricultural progression, making substantial contributions to resolving the conundrums of global food security and environmental conservation.
Collapse
Affiliation(s)
- Shidong He
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lingli Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Minghao Lv
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Rongxin Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lujun Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shaowei Yu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zheng Gao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiang Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
3
|
Shi B, Yang R, Tian W, Lu M, Wang X. Factors influencing cadmium accumulation in plants after inoculation with rhizobacteria: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170277. [PMID: 38266722 DOI: 10.1016/j.scitotenv.2024.170277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Rhizobacteria have the potential to enhance phytoremediation by generating substances that stimulate plant development and influence the effectiveness of cadmium (Cd) remediation by adjusting Cd availability via metal solubilization. Furthermore, rhizobacterial inoculation affects plants' metal tolerance and uptake by controlling the expression of several metal transporters, channels, and metal chelator genes. A meta-analysis was conducted to quantitatively assess the effects of rhizobacteria on Cd accumulation in plants using 207 individual observations from 47 articles. This meta-analysis showed an average Cd concentration increase of 8.09 % in plant cells under rhizobacteria treatment. The effects of different plant-microbial interactions on the bioaccumulation of Cd in plants varied. Selecting the proper rhizobacteria-plant association is essential to affect Cd buildup in plant roots and shoots. A more extended planting period (>30 days) and a suitable soil pH (<6, 7-8) would aid in the phytoextraction of Cd from the soil. This study comprehensively and quantitatively investigated the effects of plants, rhizobacteria, soil pH, planting period, experimental sites, and plant organs on plant Cd accumulation. According to the analysis of explanatory factors, plant species, planting period, soil pH, and rhizobacteria species have a more decisive influence on Cd accumulation than other factors. The results provide information for future research on the successful remediation of soils contaminated with Cd. More investigations are required to elucidate the intricate interactions between plant roots and microorganisms.
Collapse
Affiliation(s)
- Ben Shi
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China.
| | - Ruixian Yang
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Wenjie Tian
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Mingmei Lu
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Xiaoqing Wang
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| |
Collapse
|
4
|
Seang-On L, Meeinkuirt W, Koedrith P. Alleviation of Cadmium Toxicity in Thai Rice Cultivar (PSL2) Using Biofertilizer Containing Indigenous Cadmium-Resistant Microbial Consortia. PLANTS (BASEL, SWITZERLAND) 2023; 12:3651. [PMID: 37896114 PMCID: PMC10610292 DOI: 10.3390/plants12203651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Biofertilizer as an amendment has growing awareness. Little attention has been paid to bioremediation potential of indigenous heavy-metal-resistant microbes, especially when isolated from long-term polluted soil, as a bioinoculant in biofertilizers. Biofertilizers are a type of versatile nutrient provider and soil conditioner that is cost-competitive and highly efficient with nondisruptive detoxifying capability. Herein, we investigated the effect of biofertilizers containing indigenous cadmium (Cd)-resistant microbial consortia on rice growth and physiological response. The Thai rice cultivar PSL2 (Oryza sativa L.) was grown in Cd-enriched soils amended with 3% biofertilizer. The composition of the biofertilizers' bacterial community at different taxonomic levels was explored using 16S rRNA gene Illumina MiSeq sequencing. Upon Cd stress, the test biofertilizer had maximum mitigating effects as shown by modulating photosynthetic pigment, MDA and proline content and enzymatic antioxidants, thereby allowing increased shoot and root biomass (46% and 53%, respectively) and reduced grain Cd content, as compared to the control. These phenomena might be attributed to increased soil pH and organic matter, as well as enriched beneficial detoxifiers, i.e., Bacteroidetes, Firmicutes and Proteobacteria, in the biofertilizers. The test biofertilizer was effective in alleviating Cd stress by improving soil biophysicochemical traits to limit Cd bioavailability, along with adjusting physiological traits such as antioxidative defense. This study first demonstrated that incorporating biofertilizer derived from indigenous Cd-resistant microbes could restrict Cd contents and consequently enhance plant growth and tolerance in polluted soil.
Collapse
Affiliation(s)
- Ladda Seang-On
- Faculty of Environment and Resource Studies, Mahidol University, 999 Phuttamonthon District, Nakhon Pathom 73170, Thailand
| | - Weeradej Meeinkuirt
- Water and Soil Environmental Research Unit, Nakhonsawan Campus, Mahidol University, Nakhonsawan 60130, Thailand
| | - Preeyaporn Koedrith
- Faculty of Environment and Resource Studies, Mahidol University, 999 Phuttamonthon District, Nakhon Pathom 73170, Thailand
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Biomedical Campus, Dongguk University, 32, Dongguk-ro, Ilsandong-gu, Goyang-si 410-820, Republic of Korea
| |
Collapse
|
5
|
Paulo AM, Caetano NS, Marques APGC. The Potential of Bioaugmentation-Assisted Phytoremediation Derived Maize Biomass for the Production of Biomethane via Anaerobic Digestion. PLANTS (BASEL, SWITZERLAND) 2023; 12:3623. [PMID: 37896085 PMCID: PMC10610220 DOI: 10.3390/plants12203623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Anthropogenic behaviors are causing the severe build-up of heavy metal (HM) pollutants in the environment, particularly in soils. Amongst a diversity of remediation technologies, phytoremediation is an environmentally friendly technology that, when coupling tolerant plants to selected rhizospheric microorganisms, can greatly stimulate HM decontamination of soils. Maize (Zea mays) is a plant with the reported capacity for HM exclusion from contaminated soil but also has energetic importance. In this study, Zea mays was coupled with Rhizophagus irregularis, an arbuscular mycorrhizal fungus (AMF), and Cupriavidus sp. strain 1C2, a plant growth-promoting rhizobacteria (PGPR), as a remediation approach to remove Cd and Zn from an industrial contaminated soil (1.2 mg Cd kg-1 and 599 mg Zn kg-1) and generate plant biomass, by contrast to the conservative development of the plant in an agricultural (with no metal pollution) soil. Biomass production and metal accumulation by Z. mays were monitored, and an increase in plant yield of ca. 9% was observed after development in the contaminated soil compared to the soil without metal contamination, while the plants removed ca. 0.77% and 0.13% of the Cd and Zn initially present in the soil. The resulting biomass (roots, stems, and cobs) was used for biogas generation in several biomethane (BMP) assays to evaluate the potential end purpose of the phytoremediation-resulting biomass. It was perceptible that the HMs existent in the industrial soil did not hinder the anaerobic biodegradation of the biomass, being registered biomethane production yields of ca. 183 and 178 mL of CH4 g-1 VS of the complete plant grown in non-contaminated and contaminated soils, respectively. The generation of biomethane from HM-polluted soils' phytoremediation-derived maize biomass represents thus a promising possibility to be a counterpart to biogas production in an increasingly challenging status of renewable energy necessities.
Collapse
Affiliation(s)
- Ana M. Paulo
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal;
| | - Nídia S. Caetano
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- CIETI/ISEP—Centro de Inovação em Engenharia e Tecnologia Industrial/Instituto Superior de Engenharia, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Ana P. G. C. Marques
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal;
| |
Collapse
|
6
|
Chandwani S, Kayasth R, Naik H, Amaresan N. Current status and future prospect of managing lead (Pb) stress through microbes for sustainable agriculture. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:479. [PMID: 36930330 DOI: 10.1007/s10661-023-11061-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Soil is an important residence under various biotic and abiotic conditions. Contamination of soil by various means has hazardous effects on both plants and humans. Soil contamination by heavy metals occurs due to various man-made activities, including improper industrial and agricultural practices. Among the heavy metals, after arsenic, lead (Pb) was found to be the second most toxic metal and potent pollutants that accumulate in sediments and soils. Pb is not considered an essential element for promoting plant growth but is readily absorbed and accumulated in different plant parts. Many parameters such as pH, root exudation, soil particle size, cation exchange capacity, and other physicochemical parameters are involved in Pb uptake in plants. Excess amounts of Pb pose a threat to plant growth and cause toxicity such as chlorosis, blackening of the root system, and stunted growth. Pb toxicity may inhibit photosynthesis, disturb water balance and mineral nutrition, and alter the hormonal status, structure, and membrane permeability of plants. Therefore, this review addresses the effects of Pb toxicity and its impact on plant growth, including the morphological, physiological, and biological effects of Pb toxicity, the mechanisms behind different strategies promoting plant growth, and in combating Pb-induced stress. The bioremediation strategy for Pb removal from Pb-contaminated soil also plays an important role in combating Pb toxicity using bacterial community. Pb-contaminated soil may be remediated using different technologies such as rhizofiltration and phytoremediation, which tend to have a great capacity to curb Pb-contamination within the soil.
Collapse
Affiliation(s)
- Sapna Chandwani
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli Surat, 394 350, Gujarat, India
| | - Rinkal Kayasth
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli Surat, 394 350, Gujarat, India
| | - Hetvi Naik
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli Surat, 394 350, Gujarat, India
| | - Natarajan Amaresan
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli Surat, 394 350, Gujarat, India.
| |
Collapse
|
7
|
Mesbahi N, Ali O, Ali Ahmed Sadoudi D, Ouidir O. Application of phytoremediation on soil polluted by heavy metals from sewage sludge. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:997-1013. [PMID: 36190109 DOI: 10.1080/15226514.2022.2124952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Soil pollution by heavy metals (HM) has become a problem in Algeria, in particular that caused by the discharge of untreated sewage sludge due to the lack of means at the level of sewage treatment plants (WWTP). The objective of our work was to study the possibility of reducing HM pollution of the soil of the WWTP site of Reghaia (Algeria) by phytoremediation. The results obtained showed the decrease in plant growth parameters (maize, rapeseed and alfalfa) grown on the polluted soil. However, on polluted soil amended with fertilizer, improved growth of these plants was noted. It has also been observed that the cultivation of plants in polluted soils (amended and unamended) made it possible to have attenuation rates for HMs (Cd, Zn and Cr) higher than those obtained in the absence of plant cultivation. However, these rates were not very high (less than 40%), and the fertilizer amendment did not increase these rates, despite the improvement in the production of plant biomass. This would be mainly due to the decrease in the bioavailability of HMs for plants. It was concluded that the tested plants do not allow the phytoextraction of HM but their phytostabilization in the polluted soil of the Reghaia WWTP site.
Collapse
Affiliation(s)
- Naima Mesbahi
- Faculty of Biological and Agricultural Sciences, University Mouloud Mammeri of Tizi-Ouzou, Tizi-Ouzou, Algeria
| | - Oumessaad Ali
- Faculty of Science, University Mouloud Mammeri of Tizi-Ouzou, Tizi-Ouzou, Algeria
| | - Djamila Ali Ahmed Sadoudi
- Faculty of Biological and Agricultural Sciences, University Mouloud Mammeri of Tizi-Ouzou, Tizi-Ouzou, Algeria
| | - Ouerdia Ouidir
- Faculty of Biological and Agricultural Sciences, University Mouloud Mammeri of Tizi-Ouzou, Tizi-Ouzou, Algeria
| |
Collapse
|
8
|
The Role of Plant Growth-Promoting Rhizobacteria (PGPR) in Mitigating Plant’s Environmental Stresses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031231] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phytoremediation is a cost-effective and sustainable technology used to clean up pollutants from soils and waters through the use of plant species. Indeed, plants are naturally capable of absorbing metals and degrading organic molecules. However, in several cases, the presence of contaminants causes plant suffering and limited growth. In such situations, thanks to the production of specific root exudates, plants can engage the most suitable bacteria able to support their growth according to the particular environmental stress. These plant growth-promoting rhizobacteria (PGPR) may facilitate plant growth and development with several beneficial effects, even more evident when plants are grown in critical environmental conditions, such as the presence of toxic contaminants. For instance, PGPR may alleviate metal phytotoxicity by altering metal bioavailability in soil and increasing metal translocation within the plant. Since many of the PGPR are also hydrocarbon oxidizers, they are also able to support and enhance plant biodegradation activity. Besides, PGPR in agriculture can be an excellent support to counter the devastating effects of abiotic stress, such as excessive salinity and drought, replacing expensive inorganic fertilizers that hurt the environment. A better and in-depth understanding of the function and interactions of plants and associated microorganisms directly in the matrix of interest, especially in the presence of persistent contamination, could provide new opportunities for phytoremediation.
Collapse
|
9
|
Tahir M, Khan MB, Shahid M, Ahmad I, Khalid U, Akram M, Dawood A, Kamran M. Metal-tolerant Pantoea sp. WP-5 and organic manures enhanced root exudation and phytostabilization of cadmium in the rhizosphere of maize. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6026-6039. [PMID: 34431061 DOI: 10.1007/s11356-021-16018-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/13/2021] [Indexed: 05/15/2023]
Abstract
This study investigated the phytoremediation potential of maize (Zea mays L.) in Cd-contaminated soil through co-inoculation of metal-tolerant plant beneficial rhizobacteria (MtPBR: Pantoea sp. strain WP-5) with organic manures (PM, poultry manure, and BGR, biogas residues). The objectives of this study were to (i) examine comparative efficiency of MtPBR, PM and BGR alone or in combined form to improve maize biomass and physiology and (ii) understand the role of organic acid production in root exudates of maize for Cd accumulation and translocation. Pantoea sp. WP-5 showed organic acid production and tolerance to high Cd concentration (1000 mg L-1), thereby inoculated to maize seeds sown in soil spiked with 75 mg Cd kg-1 soil and 500 g each of the organic manures per pot. The co-inoculation of MtPBR + BGR significantly (P<0.05) increased chlorophyll contents, root/shoot dry weight, photosynthetic rate, stomatal conductance, and relative water contents and decreased electrolyte leakage, malondialdehyde contents, ascorbate peroxidase, and catalase activity in maize over the control treatment. The co-inoculation of MtPBR + BGR produced significantly (P<0.05) higher concentrations of acetic and citric acid (52.7±0.5 and 22.8±0.08 μg g-1 root fwt, respectively) in root exudates of maize, which immobilized Cd within plant roots inferred by the positive relation (root Cd vs. organic acids; R2 = 0.80-0.92) and reduced Cd translocation to shoots inferred by the negative relation (shoot Cd vs. organic acids; R2 = 0.81-0.90). It is concluded that the application of MtPBR + BGR enhanced organic acid induced phytostabilization and accumulation of Cd in roots and restricted its translocation to shoots.
Collapse
Affiliation(s)
- Muhammad Tahir
- Department of Environmental Sciences, COMSATS University Islamabad, Campus, Vehari, Pakistan.
| | - Muhammad Bismillah Khan
- Department of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Campus, Vehari, Pakistan.
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai, 200240, China.
| | - Umaira Khalid
- Department of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Akram
- Department of Environmental Sciences, COMSATS University Islamabad, Campus, Vehari, Pakistan
| | - Ahmad Dawood
- Department of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Kamran
- Department of Environmental Sciences, COMSATS University Islamabad, Campus, Vehari, Pakistan
| |
Collapse
|
10
|
Jin Y, Zhang B, Chen J, Mao W, Lou L, Shen C, Lin Q. Biofertilizer-induced response to cadmium accumulation in Oryza sativa L. grains involving exogenous organic matter and soil bacterial community structure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111952. [PMID: 33513523 DOI: 10.1016/j.ecoenv.2021.111952] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/25/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The accumulation of cadmium (Cd) in Oryza sativa L., the world's most significant staple crop, is a health threat to millions of people. The objective of this study was to evaluate the effectiveness of commercially available biofertilizers (with high (BF2) and low organic matter (OM) content (BF1)) on Cd accumulation in two types of soils and to determine the bacterial community responses by high-throughput sequencing. The study was conducted in the form of pot experiment in greenhouse in 2018. Four treatments were set: BF1, BF2, organic fertilizer (OF), and control (CK) and the amendments were applied before the rice cultivation. The results showed that the addition of biofertilizers immobilized or mobilized Cd in soils, depending on the soil type and the OM content in biofertilizers. The exogenous OM in biofertilizers was the driving factor for the difference in pH and Cd accumulation in rice grains. The application of biofertilizers with high OM content was effective in reducing Cd accumulation in the rice grains (19.7% lower than CK) by significantly increasing soil pH (from 6.02 to 6.67) in acid silt loam soil (TZ). The consumption of acid fermentation products by soil chemoorganotrophs and the complexation of organic anions in the biofertilizer treatment tended to buffer the pH drop in the drainage and decrease the Cd availability. However, in the weak acid silty clay loam soil (SX), the addition of biofertilizer with high OM significantly increased Cd accumulation in rice grains (21.9% higher than CK), probably owing to the release of acid substances, resulting from the significant increase of the predominant bacteria Chloroflexi. The addition of biofertilizer with low OM content did not significantly change Cd accumulation in rice grains or affect the soil microbial structures in both soils. In conclusion, the effects of biofertilizer on rice Cd accumulation were related to the OM content and soil bacterial community. Biofertilizers with high organic matter may not be suitable for amendments in the paddy soils with high clay content to reduce Cd accumulation in rice grains.
Collapse
Affiliation(s)
- Yu Jin
- Department of Environmental Engineering, Zhejiang University, 310058 Hangzhou, China
| | - Baofeng Zhang
- Hangzhou Environmental Monitoring Central Station, 310007 Hangzhou, China
| | - Junqiao Chen
- Department of Environmental Engineering, Zhejiang University, 310058 Hangzhou, China
| | - Weihua Mao
- The Center of Analysis and Measurement, Zhejiang University, Hangzhou 310058, China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, 310058 Hangzhou, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310058 Hangzhou, China
| | - Chaofeng Shen
- Department of Environmental Engineering, Zhejiang University, 310058 Hangzhou, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310058 Hangzhou, China
| | - Qi Lin
- Department of Environmental Engineering, Zhejiang University, 310058 Hangzhou, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310058 Hangzhou, China.
| |
Collapse
|
11
|
Tang L, Hamid Y, Zehra A, Shohag MJI, He Z, Yang X. Endophytic inoculation coupled with soil amendment and foliar inhibitor ensure phytoremediation and argo-production in cadmium contaminated soil under oilseed rape-rice rotation system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142481. [PMID: 33113675 DOI: 10.1016/j.scitotenv.2020.142481] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/06/2020] [Accepted: 09/16/2020] [Indexed: 05/24/2023]
Abstract
Phytoremediation coupled with agro-production is a sustainable strategy for remediation of toxic metal contaminated farmlands without interrupting crop production. In this study, high accumulating oilseed rape was rotated with low accumulating rice to evaluate the effects of crop rotation on growth performance and uptake of cadmium (Cd) in plants. In this system, oilseed rape was inoculated with plant growth promoting endophyte (PGPE) consortium, and rice was applied with soil composite amendment and foliar inhibitor. The results showed, compared with rice monoculture, crop rotation coupled with superposition measure has potential to enhance yield, biomass and nutritional quality of both crops, as well as to increase Cd uptake in non-edible tissues of oilseed rape and to reduce Cd concentration in individual parts of rice, thus accelerating phytoextraction and ensuring food safety. These comprehensive management practices removed 7.03 and 7.91% total Cd from two experiment fields, respectively, in three years phytoremediation. These results demonstrated a feasible technical mode for phytoremediation coupled with argo-production in slightly Cd contaminated field, and also provided useful information for further investigation of interaction mechanisms between the rotated crops and biofortification measures.
Collapse
Affiliation(s)
- Lin Tang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yasir Hamid
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Afsheen Zehra
- Department of Botany, Federal Urdu University of Arts, Science and Technology, Karachi 75300, Pakistan
| | - Md Jahidul Islam Shohag
- Department of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL 34945, United States
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
12
|
A Review on Practical Application and Potentials of Phytohormone-Producing Plant Growth-Promoting Rhizobacteria for Inducing Heavy Metal Tolerance in Crops. SUSTAINABILITY 2020. [DOI: 10.3390/su12219056] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Water scarcity and high input costs have compelled farmers to use untreated wastewater and industrial effluents to increase profitability of their farms. Normally, these effluents improve crop productivity by serving as carbon source for microbes, providing nutrients to plants and microbes, and improving soil physicochemical and biological properties. They, however, may also contain significant concentrations of potential heavy metals, the main inorganic pollutants affecting plant systems, in addition to soil deterioration. The continuous use of untreated industrial wastes and agrochemicals may lead to accumulation of phytotoxic concentration of heavy metals in soils. Phytotoxic concentration of heavy metals in soils has been reported in Pakistan along the road sides and around metropolitan areas, which may cause its higher accumulation in edible plant parts. A number of bacterial that can induce heavy metal tolerance in plants due to their ability to produce phytohormones strains have been reported. Inoculation of crop plants with these microbes can help to improve their growth and productivity under normal, as well as stressed, conditions. This review reports the recent developments in heavy metal pollution as one of the major inorganic sources, the response of plants to these contaminants, and heavy metal stress mitigation strategies. We have also summarized the exogenous application of phytohormones and, more importantly, the use of phytohormone-producing, heavy metal-tolerant rhizobacteria as one of the recent tools to deal with heavy metal contamination and improvement in productivity of agricultural systems.
Collapse
|
13
|
Hayat K, Menhas S, Bundschuh J, Zhou P, Niazi NK, Hussain A, Hayat S, Ali H, Wang J, Khan AA, Ali A, Munis FH, Chaudhary HJ. Plant growth promotion and enhanced uptake of Cd by combinatorial application of Bacillus pumilus and EDTA on Zea mays L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1372-1384. [PMID: 32579378 DOI: 10.1080/15226514.2020.1780410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In developing countries, Cd contamination is ubiquitous which limits agriculture productivity. The current study was designed to investigate the efficacy of plant-Bacillus pumilus-ethylene diamine tetraacetic acid (EDTA) and plant-microbe-chelator (PMC) synergy for enhanced plant growth and Cd-uptake potential of Zea mays in industrially contaminated and cadmium (Cd) spiked soil. A pot experiment was conducted by growing Z. mays seedlings either inoculated with B. pumilus or un-inoculated along with the application of 5 mM EDTA. Plants were exposed to two levels of Cd contamination for 45 days. An increase in Cd uptake was observed in Z. mays inoculated with B. pumilus followed by EDTA treatment as compared to non-inoculated and un-treated ones. Zea mays showed improved values with PMC approach for different growth parameters including root length (41%), shoot length (40%), fresh weight (59%), dry weight (49%), chlorophyll contents (49%), and relative water contents (30%). Higher tolerance index (117%) was observed for plants grown in soil spiked with 300 mg kg-1 Cd (S2). PMC application markedly enhanced Cd uptake potential of Z. mays up to 12% and 68.8%, respectively, in S1 and S2 soil. While the PMC application increased Cd accumulation capacity of Z. mays by 71.2% and 52.5% in S1 and S2 soil. The calculated bioaccumulation and translocation factor revealed that Z. mays possess Cd uptake potential, and this ability can be significantly enhanced with PMC application.
Collapse
Affiliation(s)
- Kashif Hayat
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saiqa Menhas
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jochen Bundschuh
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, Australia
- School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Australia
| | - Pei Zhou
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nabeel Khan Niazi
- School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Australia
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Amjad Hussain
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Sikandar Hayat
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Hazrat Ali
- Green & Environmental Chemistry, Ecotoxicology and Ecology Laboratory, Department of Zoology, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Juncai Wang
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Amir Abdullah Khan
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Plant Biology and Ecology, Nankai University, Tianjin, China
| | - Amjad Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Farooq Hussain Munis
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hassan Javed Chaudhary
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
14
|
Moreira H, Pereira SIA, Vega A, Castro PML, Marques APGC. Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 257:109982. [PMID: 31868642 DOI: 10.1016/j.jenvman.2019.109982] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 05/28/2023]
Abstract
Salt-affected soils are a major problem worldwide for crop production. Bioinocula such as plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) can help plants to thrive in these areas but interactions between them and with soil conditions can modulate the effects on their host. To test potential synergistic effects of bioinoculants with intrinsically different functional relationships with their host in buffering the effect of saline stress, maize plants were grown under increasing soil salinity (0-5 g NaCl kg--1 soil) and inoculated with two PGPB strains (Pseudomonas reactans EDP28, and Pantoea alli ZS 3-6), one AMF (Rhizoglomus irregulare), and with the combination of both. We then modelled biomass, ion and nutrient content in maize plants in response to increasing salt concentration and microbial inoculant treatments using generalized linear models. The impacts of the different treatments on the rhizosphere bacterial communities were also analyzed. Microbial inoculants tended to mitigate ion imbalances in plants across the gradient of NaCl, promoting maize growth and nutritional status. These effects were mostly prominent in the treatments comprising the dual inoculation (AMF and PGPB), occurring throughout the gradient of salinity in the soil. The composition of bacterial communities of the soil was not affected by microbial treatments and were mainly driven by salt exposure. The tested bioinocula are most efficient for maize growth and health when co-inoculated, increasing the content of K+ accompanied by an effective decrease of Na+ in plant tissues. Moreover, synergistic effects potentially contribute to expanding crop production to otherwise unproductive soils. Results suggest that the combination of AMF and PGPB leads to interactions that may have a potential role in alleviating the stress and improve crop productivity in salt-affected soils.
Collapse
Affiliation(s)
- Helena Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Sofia I A Pereira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Alberto Vega
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Paula M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Ana P G C Marques
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
15
|
Wang Q, Ma L, Zhou Q, Chen B, Zhang X, Wu Y, Pan F, Huang L, Yang X, Feng Y. Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency. CHEMOSPHERE 2019; 234:769-776. [PMID: 31238273 DOI: 10.1016/j.chemosphere.2019.06.132] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 05/12/2023]
Abstract
Plant growth promoting bacteria (PGPB) have been reported to have the ability to promote plant growth, development and increase heavy metals (HMs) uptake. Therefore, PGPB inoculation as soil remediation agents into plants with larger biomass and potential of phytoextraction is of great importance to increase bioremediation efficiency. In this study, 12 PGPB strains isolated from a cadmium (Cd)/zinc hyperaccumulator Sedum alfredii Hance were inoculated into non-host plant Brassica juncea and their effects on plant growth and Cd uptake were determined. The results showed that inoculation of most PGPB strains promoted plant growth, boosted root development and improved chlorophyll content in the absence of Cd. Inoculation of PGPB strains promoted plant growth up to 111% in shoot and 358% in root when treated with 2 μM Cd. In addition, PGPB inoculation not only ameliorated plant root morphology including the total root length (RL), total surface area (SA), total root volume (RV) and number of root tips (RT), but also facilitated Cd uptake up to 126%. Furthermore, inoculation of PGPB strains promoted plant Cd accumulation up to 261% in shoot and up to 8.93-fold increase in root. Among all the 12 PGPB strains, Burkholdria SaMR10 and Sphingomonas SaMR12 were identified as the promising microbes for improving phytoremediation efficiency of Cd contaminated soils. These results not only provided useful findings for further investigation of interacting mechanisms between different bacterial strains and plants, but also facilitated the development of microbe-assisted phytoremediation application for HM contaminated soil.
Collapse
Affiliation(s)
- Qiong Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Luyao Ma
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Qiyao Zhou
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Bao Chen
- Project Business Department, Jinjiang Building, No. 111, Hushu South Road, Hangzhou City, Zhejiang province, 310005, China
| | - Xincheng Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yingjie Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Fengshan Pan
- Hailiang Group Co., Ltd., Hangzhou, 310058, China
| | - Lukuan Huang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiaoe Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
16
|
Sharma RS, Karmakar S, Kumar P, Mishra V. Application of filamentous phages in environment: A tectonic shift in the science and practice of ecorestoration. Ecol Evol 2019; 9:2263-2304. [PMID: 30847110 PMCID: PMC6392359 DOI: 10.1002/ece3.4743] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/25/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
Theories in soil biology, such as plant-microbe interactions and microbial cooperation and antagonism, have guided the practice of ecological restoration (ecorestoration). Below-ground biodiversity (bacteria, fungi, invertebrates, etc.) influences the development of above-ground biodiversity (vegetation structure). The role of rhizosphere bacteria in plant growth has been largely investigated but the role of phages (bacterial viruses) has received a little attention. Below the ground, phages govern the ecology and evolution of microbial communities by affecting genetic diversity, host fitness, population dynamics, community composition, and nutrient cycling. However, few restoration efforts take into account the interactions between bacteria and phages. Unlike other phages, filamentous phages are highly specific, nonlethal, and influence host fitness in several ways, which make them useful as target bacterial inocula. Also, the ease with which filamentous phages can be genetically manipulated to express a desired peptide to track and control pathogens and contaminants makes them useful in biosensing. Based on ecology and biology of filamentous phages, we developed a hypothesis on the application of phages in environment to derive benefits at different levels of biological organization ranging from individual bacteria to ecosystem for ecorestoration. We examined the potential applications of filamentous phages in improving bacterial inocula to restore vegetation and to monitor changes in habitat during ecorestoration and, based on our results, recommend a reorientation of the existing framework of using microbial inocula for such restoration and monitoring. Because bacterial inocula and biomonitoring tools based on filamentous phages are likely to prove useful in developing cost-effective methods of restoring vegetation, we propose that filamentous phages be incorporated into nature-based restoration efforts and that the tripartite relationship between phages, bacteria, and plants be explored further. Possible impacts of filamentous phages on native microflora are discussed and future areas of research are suggested to preclude any potential risks associated with such an approach.
Collapse
Affiliation(s)
- Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Swagata Karmakar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Pankaj Kumar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| |
Collapse
|
17
|
Wang M, Li S, Chen S, Meng N, Li X, Zheng H, Zhao C, Wang D. Manipulation of the rhizosphere bacterial community by biofertilizers is associated with mitigation of cadmium phytotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:413-421. [PMID: 30176454 DOI: 10.1016/j.scitotenv.2018.08.174] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 05/13/2023]
Abstract
The objective of this study was to understand the effect of biofertilizers on cadmium (Cd)-induced phytotoxicity and the rhizosphere bacterial community. The crop specie rice (Oryza sativa L.) was planted in Cd-contaminated soils, and Illumina high-throughput sequencing was performed to investigate how the composition of the rhizosphere bacterial community responded to the addition of biofertilizers. Biofertilizers were effective in alleviating Cd phytotoxicity as indicated by the significant increase in plant biomass (up to 85.2% and 48.4% for roots and shoots, respectively) and decrease in tissue Cd concentration (up to 72.2% in roots) of rice receiving fertilizer treatments compared with the CK (no treatment). These positive effects were likely due to the increase in soil pH, which can be attributed primarily to Cd immobilization, and the promotion of beneficial taxa such as Proteobacteria, Bacteroidetes, Gemmatimonadetes, and Firmicutes. In addition, autoclaved biofertilizers tended to have similar beneficial effects and similar bacterial community alpha diversities as the original biofertilizer treatments. This suggests that the change in soil physicochemical properties by biofertilizer addition might drive the structure of rhizosphere bacterial community, and not the biofertilizer microbes themselves. In both the original and sterilized biofertilizer treatments, the effectiveness in mitigating of Cd phytotoxicity was found to be dependent on the type of biofertilizer applied. Comparatively, the biofertilizer denoted as DY was more effective in mitigating Cd phytotoxicity than others. These results demonstrate that biofertilizer addition could be a promising approach to immobilize soil Cd by manipulating the rhizosphere bacterial community, thus to facilitate plant growth.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shanshan Li
- School of Land Science and Technology, China University of Geosciences, Beijing 100083, PR China
| | - Shibao Chen
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Nan Meng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiaoyue Li
- School of Land Science and Technology, China University of Geosciences, Beijing 100083, PR China
| | - Han Zheng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Chunmei Zhao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Duo Wang
- College of Energy, Xiamen University, Xiamen, Fujian 361102, PR China
| |
Collapse
|
18
|
Panitlertumpai N, Nakbanpote W, Sangdee A, Boonapatcharoen N, Prasad MNV. Potentially toxic elements to maize in agricultural soils-microbial approach of rhizospheric and bulk soils and phytoaccumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23954-23972. [PMID: 29948671 DOI: 10.1007/s11356-018-2427-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Maize fields near Mae Tao Creek in Pha Te Village, Tak Province, Thailand are contaminated with Zn, Cd, and Pb. This research studied the interaction between levels of the metals contaminating the soil and maize development, heavy metal accumulation in the seeds, and the soil bacterial community structure. Our field experiment was carried out in five plots with metal contents that gradually decreased from a high level near the creek to a lower level further into the land: Zn 380-4883 mg kg-1, Cd 6-85 mg kg-1, and Pb 34-154 mg kg-1. Cultivation and isolation on nutrient agar (NA) was utilized to study the culturable bacterial community, and polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) was utilized for the unculturable bacterial communities. All statistical analyses clearly indicated that rainfall and irrigation were the main factors affecting total Zn concentration and bioavailable Zn, Cd, and Pb in the field. The variation in the contents of the heavy metals was weakly correlated with the culturable bacterial community indices (Shannon-Wiener, evenness and richness), but the contents resulted in a difference in the overall diversity of the bacteria in the soil. The richness, numbers of culturable rhizobacteria, and maize growth stage significantly affected the amount of Zn and Cd that accumulated in the roots. In addition, maize accumulated a high level of Zn in the seeds, while the low contents of Cd and Pb in the seeds were below our limit of detection. The results obtained could be informative for the management of maize cultivation in the area.
Collapse
Affiliation(s)
- Natthawoot Panitlertumpai
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Woranan Nakbanpote
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand.
| | - Aphidech Sangdee
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Nimaradee Boonapatcharoen
- Excellent Center of Waste Utilization and Management, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok, Thailand
| | | |
Collapse
|
19
|
Etesami H, Maheshwari DK. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:225-246. [PMID: 29554608 DOI: 10.1016/j.ecoenv.2018.03.013] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/23/2018] [Accepted: 03/06/2018] [Indexed: 05/18/2023]
Abstract
Increased incidence of abiotic stresses impacting adversely plant growth and productivity in major crops is being witnessed all over the world. Therefore, as a result of such stress factors, plant growth under the stress conditions will be less than the non-stress conditions. Growing concerns and global demand for correct, environmentally-friendly techniques exist to reduce the adverse effects of plant stress. Under such stressful conditions, the role of interactions of plant and beneficial microorganisms is of great significance. Application of plant growth promoting rhizobacteria (PGPRs) is a useful option to decrease these stresses and is now widely in practice. Plants inoculated with PGPRs induce morphological and biochemical modifications resulting in increased tolerance to abiotic stresses defined as IST (induced systemic tolerance). PGPRs increase plant growth and resistance to abiotic stresses through various mechanisms (more than one mechanism of action) such as production of ACC (1-aminocyclopropane-1-carboxylate) deaminase, reducing production of stress ethylene, modifications in phytohormonal content, induction of synthezing plant antioxidative enzymes, improvement in the uptake of essential mineral elements, extracellular polymeric substance (EPS) production, decrease in the absorbtion of excess nutrients/heavy metals, and induction of abiotic stress resistance genes. Experimental evidence also suggests that stimulated plant growth by these bacteria is the net result of various mechanisms of action that are activated simultaneously. In this review paper, we reviewed the action mechanisms through which PGPRs could alleviate abiotic stresses (salinity, drought, heavy metal toxicity, and nutritional imbalance) in plants. Use of PGPRs is predicted to become a suitable strategy and an emerging trend in sustainable enhancement of plant growth. Generally, ACC deaminase and IAA-producing bacteria can be a good option for optimal crop production and production of bio-fertilizers in the future due to having multiple potentials in alleviating stresses of salinity, drought, nutrient imbalance, and heavy metals toxicity in plants. This review paper also emphasizes future research needs about the combined utilization of stress tolerant-PGPRs with multiple plant growth promoting (PGP) characteristics under environmental stresses.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Dinesh K Maheshwari
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar, Uttarakhand, India
| |
Collapse
|
20
|
Mitra S, Pramanik K, Sarkar A, Ghosh PK, Soren T, Maiti TK. Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:183-196. [PMID: 29550436 DOI: 10.1016/j.ecoenv.2018.03.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 05/29/2023]
Abstract
UNLABELLED Bacteria-mediated plant growth promotion and bioremediation of heavy metal containing soil is a widely accepted eco-friendly method. The present study is aimed to screen out cadmium resistant bacterial strain from metal contaminated rice rhizosphere and evaluate its effects on the growth of rice seedlings under cadmium stress. Among four different isolates (designated as S1, S2, S3 and S5), the S2 isolate was screened on the basis of different PGP traits and multi heavy metal resistance (minimum inhibitory concentration for cadmium, lead and arsenic were 3500, 2500 and 1050 µg/ml respectively). The selected S2 strain has ability to produce ACC deaminase (236.11 ng α-keto-butyrate/mg protein/h), IAA (726 µg/ml), solubilize phosphate (73.56 ppm) and fix nitrogen (4.4 µg of nitrogen fixed/h/mg protein). The selected strain was identified as Enterobacter sp. on the basis of phenotypic characterization, MALDI-TOF MS analysis of ribosomal proteins, FAME analysis and 16 S rDNA sequence homology. The high cadmium removal efficiency (> 95%) of this strain from the growth medium was measured by Atomic Absorption Spectrophotometer and it was due to intracellular cadmium accumulation evidenced by SEM-EDX-TEM-EDX study. SEM analysis also revealed no distortion of surface morphology of this strain even grown in the presence of high cadmium concentration (3000 µg/ml). Inoculation of this strain with rice seedlings significantly enhanced various morphological, biochemical characters of seedling growth compared with un-inoculated seedlings under Cd stress. The strain also exhibited alleviation of cadmium-induced oxidative stress, reduction of stress ethylene and decreased the accumulation of cadmium in seedlings as well that conferred cadmium tolerance to the plant. Thus the S2 strain could be considered as a potent heavy metal resistant PGPR applicable in heavy metal contaminated agricultural soil for bioremediation and plant growth promotion as well. MAIN FINDING A cadmium resistant plant growth promoting Enterobacter sp. was isolated that accumulated cadmium evidenced by SEM-TEM-EDX study. It reduced Cd uptake and enhanced growth in rice seedlings.
Collapse
Affiliation(s)
- Soumik Mitra
- Microbiology Laboratory, UGC Centre for Advanced Study, Department of Botany, Burdwan University, Burdwan 713104, West Bengal, India
| | - Krishnendu Pramanik
- Microbiology Laboratory, UGC Centre for Advanced Study, Department of Botany, Burdwan University, Burdwan 713104, West Bengal, India
| | - Anumita Sarkar
- Microbiology Laboratory, UGC Centre for Advanced Study, Department of Botany, Burdwan University, Burdwan 713104, West Bengal, India; Department of Botany, Government General Degree College, Singur, Hooghly 712409, West Bengal, India
| | - Pallab Kumar Ghosh
- Department of Marine Science, Calcutta University, Ballygunge Science College, 35 B.C Road, Kolkata 700019, West Bengal, India
| | - Tithi Soren
- Microbiology Laboratory, UGC Centre for Advanced Study, Department of Botany, Burdwan University, Burdwan 713104, West Bengal, India
| | - Tushar Kanti Maiti
- Microbiology Laboratory, UGC Centre for Advanced Study, Department of Botany, Burdwan University, Burdwan 713104, West Bengal, India.
| |
Collapse
|
21
|
Saif S, Khan MS. Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:290. [PMID: 29666936 DOI: 10.1007/s10661-018-6652-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/02/2018] [Indexed: 05/27/2023]
Abstract
Considering the heavy metal risk to soil microbiota and agro-ecosystems, the study was designed to determine metal toxicity to bacteria and to find metal tolerant bacteria carrying multifarious plant growth promoting activities and to assess their impact on chickpea cultivated in stressed soils. Metal tolerant strain SFP1 recognized as Pseudomonas aeruginosa employing 16S rRNA gene sequence determination showed maximum tolerance to Cr (400 μg/ml) and Ni (800 μg/ml) and produced variable amounts of indole acetic acid, HCN, NH3, and ACC deaminase and could solubilize insoluble phosphates even under Cr (VI) and Ni stress. Metal tolerant P. aeruginosa reduced toxicity of Cr (VI) and Ni and concomitantly enhanced the performance of chickpea grown under stressed and conventional soils. At 144 mg Cr kg-1, the measured parameters of a bacterial strain was significantly enhanced, but it was lower compared to those recorded at 660 mg Ni kg-1. The strain SFP1 demonstrated maximum increase in seed yield (81%) and grain protein (16%) at 660 mg Ni kg-1 over uninoculated and untreated control. Stressed plants had more proline, antioxidant enzymes, and metal concentrations in plant tissues. P. aeruginosa, however, remarkably declined the level of stress markers (proline and APX, SOD, CAT, and GR), as well as with Cr (VI) and Ni uptake by chickpea. Conclusively, P. aeruginosa strain SFP1 due to its dual metal tolerant ability, capacity to secrete plant growth promoting regulators even under metal stress and potential to mitigate metal toxicity, could be developed as microbial inoculant for enhancing chickpea production in Cr and Ni contaminated soils.
Collapse
Affiliation(s)
- Saima Saif
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
22
|
Etesami H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:175-191. [PMID: 28843189 DOI: 10.1016/j.ecoenv.2017.08.032] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/29/2017] [Accepted: 08/14/2017] [Indexed: 05/22/2023]
Abstract
Heavy metal pollution of agricultural soils is one of main concerns causing some of the different ecological and environmental problems. Excess accumulation of these metals in soil has changed microbial community (e.g., structure, function, and diversity), deteriorated soil, decreased the growth and yield of plant, and entered into the food chain. Plants' tolerance to heavy metal stress needs to be improved in order to allow growth of crops with minimum or no accumulation of heavy metals in edible parts of plant that satisfy safe food demands for the world's rapidly increasing population. It is well known that PGPRs (plant growth-promoting rhizobacteria) enhance crop productivity and plant resistance to heavy metal stress. Many recent reports describe the application of heavy metal resistant-PGPRs to enhance agricultural yields without accumulation of metal in plant tissues. This review provides information about the mechanisms possessed by heavy metal resistant-PGPRs that ameliorate heavy metal stress to plants and decrease the accumulation of these metals in plant, and finally gives some perspectives for research on these bacteria in agriculture in the future.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Tehran, Iran.
| |
Collapse
|
23
|
Pramanik K, Mitra S, Sarkar A, Soren T, Maiti TK. Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24419-24437. [PMID: 28895046 DOI: 10.1007/s11356-017-0033-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) phytotoxicity in agricultural land is a major global concern now-a-days resulting in very poor yield. Plant growth-promoting rhizobacteria (PGPR)-mediated bioremediation is one of the convenient strategies for detoxification of Cd from the soil and for plant growth promotion under Cd stress. The selected strain K5 was identified as Klebsiella pneumoniae based on MALDI-TOF MS ribosomal protein and 16S rDNA sequence-based homology. The strain possessed several PGP traits viz. IAA production (3413 μg/mL), phosphate solubilization (80.25 ppm), ACC deaminase activity (40 ng α-ketobutyrate/mg protein/h), N2 fixation ability (1.84 μg N2 fixed/h), etc. and has the highest Cd resistance (4000 μg/mL) among Cd-resistant PGPR so far reported. This strain efficiently accumulated Cd and remained viable under Cd stress as confirmed by AAS-TEM-EDX analysis and viability test, respectively. The significant (p < 0.05) positive effect of the strain was reflected in various plant growth parameters like increased seed germination (50 to 90%), root length (5-fold), shoot length (about 2-fold), root fresh weight (> 2-fold), and shoot fresh weight (1.23-fold) under Cd stress compared with uninoculated set. Moreover, the positive impact of this strain on antioxidant enzyme activity (CAT, MDA, SOD) and several other biochemical parameters (proline, α-amylase, protease, total sugar, total protein, chlorophyll content) were also measured that favors plant growth promotion under Cd stress. Besides, the K5 strain also decreased stress-ethylene level under Cd stress and reduction of Cd accumulation in seedling (> 1.5-fold) was conducive to alleviate Cd phytotoxicity. Hence, K. pneumoniae strain K5 can be used as a phytostimulating and Cd-bioremediating biofertilizer for sustainable agriculture in heavy metal-contaminated sites.
Collapse
Affiliation(s)
- Krishnendu Pramanik
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Burdwan, WB, PIN 713104, India
| | - Soumik Mitra
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Burdwan, WB, PIN 713104, India
| | - Anumita Sarkar
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Burdwan, WB, PIN 713104, India
- Department of Botany, Government General Degree College, Singur, WB, PIN 712409, India
| | - Tithi Soren
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Burdwan, WB, PIN 713104, India
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Burdwan, WB, PIN 713104, India.
| |
Collapse
|
24
|
Hassan TU, Bano A, Naz I. Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:522-529. [PMID: 27936865 DOI: 10.1080/15226514.2016.1267696] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The aim of the study was to determine tolerance of plant growth promoting rhizobacteria (PGPR) in different concentrations of Cu, Cr, Co, Cd, Ni, Mn, and Pb and to evaluate the PGPR-modulated bioavailability of different heavy metals in the rhizosphere soil and wheat tissues, grown in saline sodic soil. Bacillus cereus and Pseudomonas moraviensis were isolated from Cenchrus ciliaris L. growing in the Khewra salt range. Seven-day-old cultures of PGPR were applied on wheat as single inoculum, co-inoculation and carrier-based biofertilizer (using maize straw and sugarcane husk as carrier). At 100 ppm of Cr and Cu, the survival rates of rhizobacteria were decreased by 40%. Single inoculation of PGPR decreased 50% of Co, Ni, Cr and Mn concentrations in the rhizosphere soil. Co-inoculation of PGPR and biofertilizer treatment further augmented the decreases by 15% in Co, Ni, Cr and Mn over single inoculation except Pb and Co where decreases were 40% and 77%, respectively. The maximum decrease in biological concentration factor (BCF) was observed for Cd, Co, Cr, and Mn. P. moraviensis inoculation decreases the biological accumulation coefficient (BAC) as well as translocation factor (TF) for Cd, Cr, Cu Mn, and Ni. The PGPR inoculation minimized the deleterious effects of heavy metals, and the addition of carriers further assisted the PGPR.
Collapse
Affiliation(s)
- Tamoor Ul Hassan
- a Department of Plant Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - Asghari Bano
- b Department of Biosciences , University of Wah , Wah Cantt , Pakistan
| | - Irum Naz
- a Department of Plant Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| |
Collapse
|
25
|
Abstract
Phytoremediation is a promising technology that uses plants and their associated microbes to clean up contaminants from the environment. In recent years, phytoremediation assisted by plant growth-promoting bacteria (PGPB) has been highly touted for cleaning up toxic metals from soil. PGPB include rhizospheric bacteria, endophytic bacteria and the bacteria that facilitate phytoremediation by other means. This review provides information about the traits and mechanisms possessed by PGPB that improve plant metal tolerance and growth, and illustrate mechanisms responsible for plant metal accumulation/translocation in plants. Several recent examples of phytoremediation of metals facilitated by PGPB are reviewed. Although many encouraging results have been reported in the past years, there have also been numerous challenges encountered in phytoremediation in the field. To implement PGPB-assisted phytoremediation of metals in the natural environment, there is also a need to critically assess the ecological effects of PGPB, especially for those nonnative bacteria.
Collapse
Affiliation(s)
- Zhaoyu Kong
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China.
| | | |
Collapse
|
26
|
Rizwan M, Ali S, Qayyum MF, Ok YS, Zia-Ur-Rehman M, Abbas Z, Hannan F. Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:259-277. [PMID: 27061410 DOI: 10.1007/s10653-016-9826-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/31/2016] [Indexed: 05/20/2023]
Abstract
Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Muhammad Farooq Qayyum
- Department of Soil Sciences, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Yong Sik Ok
- Korea Biochar Research Center and Department of Biological Environment, Kangwon National University, Chuncheon, 200-701, Korea
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zaheer Abbas
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Fakhir Hannan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| |
Collapse
|
27
|
Moreira H, Pereira SIA, Marques APGC, Rangel AOSS, Castro PML. Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6940-6950. [PMID: 26676544 DOI: 10.1007/s11356-015-5914-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
The use of heavy metals (HM) contaminated soils to grow energy crops can diminish the negative impact of HM in the environment improving land restoration. The effect of two PGPR (B1--Chryseobacterium humi ECP37(T) and B2--Pseudomonas reactans EDP28) and an AMF (F--Rhizophagus irregularis) on growth, Cd and Zn accumulation, and nutritional status of energy maize plants grown in a soil collected from an area adjacent to a Portuguese mine was assessed in a greenhouse experiment. Both bacterial strains, especially when co-inoculated with the AMF, acted as plant growth-promoting inoculants, increasing root and shoot biomass as well as shoot elongation. Cadmium was not detected in the maize tissues and a decrease in Zn accumulation was observed for all microbial treatments in aboveground and belowground tissues--with inoculation of maize with AMF and strain B2 leading to maximum reductions in Zn shoot and root accumulation of up to 48 and 43%, respectively. Although microbial single inoculation generally did not increase N and P levels in maize plants, co-inoculation of the PGPR and the AMF improved substantially P accumulation in roots. The DGGE analysis of the bacterial rhizosphere community showed that the samples inoculated with the AMF clustered apart of those without the AMF and the Shannon-Wiener Index (H') increased over the course of the experiment when both inoculants were present. This work shows the benefits of combined inoculation of AMF and PGPR for the growth energy maize in metal contaminated soils and their potential for the application in phytomanagement strategies.
Collapse
Affiliation(s)
- Helena Moreira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal
| | - Sofia I A Pereira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal
| | - Ana P G C Marques
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal
| | - António O S S Rangel
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal
| | - Paula M L Castro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal.
| |
Collapse
|
28
|
Wang JL, Li T, Liu GY, Smith JM, Zhao ZW. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep 2016; 6:22028. [PMID: 26911444 PMCID: PMC4766571 DOI: 10.1038/srep22028] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/04/2016] [Indexed: 11/24/2022] Open
Abstract
A growing body of evidence suggests that plant root-associated fungi such as dark septate endophytes (DSE) can help plants overcome many biotic and abiotic stresses, of great interest is DSE-plant metal tolerance and alleviation capabilities on contaminated soils. However, the tolerance and alleviation mechanisms involved have not yet been elucidated. In the current study, the regulation and physiological response of Zea mays to its root-associated DSE, Exophiala pisciphila was analyzed under increased soil Cd stress (0, 10, 50, 100 mg kg−1). Under Cd stress, DSE inoculation significantly enhanced the activities of antioxidant enzymes and low-molecular weight antioxidants, while also inducing increased Cd accumulation in the cell wall and conversion of Cd into inactive forms by shoot and root specific regulation of genes related to metal uptake, translocation and chelation. Our results showed that DSE colonization resulted in a marked tolerance to Cd, with a significant decrease in cadmium phytotoxicity and a significant increase in maize growth by triggering antioxidant systems, altering metal chemical forms into inactive Cd, and repartitioning subcellular Cd into the cell wall. These results provide comprehensive evidence for the mechanisms by which DSE colonization bioaugments Cd tolerance in maize at physiological, cytological and molecular levels.
Collapse
Affiliation(s)
- Jun-ling Wang
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, 650091 Yunnan, P.R. China.,Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, P.R. China.,First People's Hospital of Qujing City, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China
| | - Tao Li
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, 650091 Yunnan, P.R. China.,Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, P.R. China
| | - Gao-yuan Liu
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, 650091 Yunnan, P.R. China.,Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, P.R. China
| | - Joshua M Smith
- Irving K. Barber School of Arts and Sciences, University of British Columbia Okanagan, Kelowna, British Columbia V1V 1V7, Canada
| | - Zhi-wei Zhao
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, 650091 Yunnan, P.R. China.,Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, 650091 Yunnan, P.R. China
| |
Collapse
|
29
|
Sangthong C, Setkit K, Prapagdee B. Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:756-64. [PMID: 26336850 DOI: 10.1007/s11356-015-5318-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/25/2015] [Indexed: 05/08/2023]
Abstract
Cadmium-resistant Micrococcus sp. TISTR2221, a plant growth-promoting bacterium, has stimulatory effects on the root lengths of Zea mays L. seedlings under toxic cadmium conditions compared to uninoculated seedlings. The performance of Micrococcus sp. TISTR2221 on promoting growth and cadmium accumulation in Z. mays L. was investigated in a pot experiment. The results indicated that Micrococcus sp. TISTR2221significantly promoted the root length, shoot length, and dry biomass of Z. mays L. transplanted in both uncontaminated and cadmium-contaminated soils. Micrococcus sp. TISTR2221 significantly increased cadmium accumulation in the roots and shoots of Z. mays L. compared to uninoculated plants. At the beginning of the planting period, cadmium accumulated mainly in the shoots. With a prolonged duration of cultivation, cadmium content increased in the roots. As expected, little cadmium was found in maize grains. Soil cadmium was significantly reduced with time, and the highest percentage of cadmium removal was found in the bacterial-inoculated Z. mays L. after transplantation for 6 weeks. We conclude that Micrococcus sp. TISTR2221 is a potent bioaugmenting agent, facilitating cadmium phytoextraction in Z. mays L.
Collapse
Affiliation(s)
- Chirawee Sangthong
- Faculty of Environment and Resource Studies, Mahidol University, Salaya, Nakhonpathom, 73170, Thailand
| | - Kunchaya Setkit
- Faculty of Environment and Resource Studies, Mahidol University, Salaya, Nakhonpathom, 73170, Thailand
| | - Benjaphorn Prapagdee
- Faculty of Environment and Resource Studies, Mahidol University, Salaya, Nakhonpathom, 73170, Thailand.
| |
Collapse
|
30
|
Wang Q, Gu M, Ma X, Zhang H, Wang Y, Cui J, Gao W, Gui J. Model optimization of cadmium and accumulation in switchgrass (Panicum virgatum L.): potential use for ecological phytoremediation in Cd-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16758-16771. [PMID: 26092360 DOI: 10.1007/s11356-015-4878-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/10/2015] [Indexed: 06/04/2023]
Abstract
Soil pollution with heavy metals is an increasingly serious threat to the environment, food security, and human health. Therefore, it is urgent to develop economic and highly efficient soil restoration technology for environmental improvement; phytoremediation is an option that is safe, has low cost, and is environmentally friendly. However, in selecting hyperaccumulators or tolerant plants, theories and operation technologies for optimal restoration should be satisfied. In this study, the switchgrass growth response and performance of phytoextraction under the coupling effect of Cd and pH were investigated by evaluating seed germination, seedling growth, and the Cd content in the plant to evaluate the potential use of switchgrass as a phytoremediation plant in cadmium contaminated soil. This study conducted three sets of independent experiments with five levels of Cd concentrations, including two orthogonal matrix designs of combining Cd with pH values. The results showed that switchgrass was germinated well under all treatments (Cd concentration of 0-500 μM), but the seedling growth was significantly affected by Cd and pH, as shown by multivariate regression analyses. Hormesis was found during the growth of switchgrass plants exposed to low Cd concentrations under hydroponic conditions, and switchgrass plants were capable of developing with a Cd concentration of 100-175 μM and pH of 4.1-5.9. Mild acidic conditions can enhance the ability of Cd to accumulate in switchgrass. Switchgrass was moderately tolerant to Cd and may be used as a phytoremediation plant for Cd-contaminated soils in the future. Our results also suggest that hormetic effects should be taken into consideration in the phytoremediation of Cd-contaminated soils. We discuss the physiological and biochemical mechanisms contributing to the effective application of the plant for the phytoremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Quanzhen Wang
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China.
| | - Muyu Gu
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China
| | - Xiaomin Ma
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China
| | - Hongjuan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China
| | - Yafang Wang
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China
| | - Jian Cui
- Institute of Plant Science, College of life Science, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China
| | - Wei Gao
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China
| | - Jing Gui
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China
| |
Collapse
|
31
|
Zhang Y, Luan H, Wei Z, Hao Z, Xi R, Liao X. Exploiting of honey-associated Bacillus strains as plant-growth promoting bacteria for enhancing barley growth in rare earth tailings. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1135-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Pereira SI, Pires C, Henriques I, Correia A, Magan N, Castro PM. Assessment of rhizospheric culturable bacteria ofPhragmites australisandJuncus effususfrom polluted sites. J Basic Microbiol 2015; 55:1179-90. [DOI: 10.1002/jobm.201500010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/02/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Sofia I.A. Pereira
- CBQF - Centro de Biotecnologia e Qu; í; mica Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa/Porto; Porto Portugal
| | - Carlos Pires
- CBQF - Centro de Biotecnologia e Qu; í; mica Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa/Porto; Porto Portugal
- Cranfield Health; Cranfield University; Cranfield Bedford England
| | - Isabel Henriques
- Department of Biology & CESAM (Center for Environmental and Marine Studies); University of Aveiro; Campus Universit; á; rio de Santiago; Aveiro Portugal
| | - António Correia
- Department of Biology & CESAM (Center for Environmental and Marine Studies); University of Aveiro; Campus Universit; á; rio de Santiago; Aveiro Portugal
| | - Naresh Magan
- Cranfield Health; Cranfield University; Cranfield Bedford England
| | - Paula M.L. Castro
- CBQF - Centro de Biotecnologia e Qu; í; mica Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa/Porto; Porto Portugal
| |
Collapse
|